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Abstract

This extended abstract presents the contributions to automated reasoning made in the context of the
project Matryoshka, funded for five years by the European Research Council.

Interactive theorem proving (ITP) is concerned with using proof assistants to write computer-checked
proofs of theorems, generally expressed in a variant of higher-order logic (HOL). Proof assistants are
expressive and versatile tools, and their success stories range from software and hardware verification
[23] to pure mathematics [22]. Despite the higher trustworthiness of a machine-checked proof compared
with a hand-written one, only a very small fraction of today’s software and mathematical proofs is
verified in a proof assistant. One recurrent complaint about these tools is their lack of automation,
which has let to the creation of “hammers” [16,26] that attempt to delegate the proof obligations to fully
automatic theorem proving (ATP) tools.

Although some automatic theorem provers for HOL exist [14, 33], they tend to underperform on
problems generated from proof assistants [34]. Thus, hammers rely mostly on automatic provers for
first-order logic (FOL), such as SMT (satisfiability modulo theories) solvers [11,17] and superposition-
based theorem provers [27,32]. One unpleasant property of hammers is that they obfuscate the structure
of terms and formulas through the application of a sequence of encodings. This complicates the task of
first-order automatic provers since it is this very structure that they exploit to find proofs efficiently.

To some extent, the ITP and ATP research communities have been working in parallel, largely
ignoring each other. Hammers have contributed to bringing the two communities closer. Two years
ago, a new division was created in the CASC competition, featuring benchmarks generated by Isabelle’s
Sledgehammer [35], reflecting the growing interest of the ATP community in ITP. Next year, IJCAR
will also encompass the ITP conference.

The Matryoshka project, whose general aim is to bridge the gap between ATP and ITP by strength-
ening higher-order proof automation, is part of this trend. So is our colleagues’ work on Leo-III [33] and
Vampire [10]. Since Matryoshka’s start almost two and a half years ago, progress has been achieved
both in terms of improving ATP with an eye on ITP applications and of using ITP as a vehicle for
ATP research, taking the form of several workshops and many publications.1 This year’s edition of the
ARCADE workshop is a good opportunity to provide to the community a comprehensive view of our
contributions and to sketch general avenues for future work.

1http://matryoshka.gforge.inria.fr/#Publications
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1 Automatic Proof at the Service of Interactive Proof

To face the challenges offered by HOL starting from FOL, we have chosen as milestones the interme-
diate logics λ -free HOL and Boolean-free HOL. In λ -free HOL, the only higher-order features allowed
are functional variables and partial application of functions. In Boolean-free HOL, λ -expressions are
additionally allowed. This fragment is encoded in λ -free HOL by relying on combinators, and λ -free
HOL itself is encoded in FOL using the applicative encoding [15]. In these two intermediate logics,
variables cannot be of Boolean type. This is the only difference between Boolean-free and full HOL.
Both λ -free and Boolean-free HOL are interpreted using Henkin-style semantics [9].

To improve automation in proof assistants, our strategy is to develop calculi for these fragments that
extend first-order calculi in a graceful way, meaning that the new calculi should be almost as efficient at
first-order reasoning as their first-order counterparts while being additionally able to cope with higher-
order reasoning steps in a reasonable manner. Our starting points are the superposition calculus and
SMT’s CDCL(T ) calculus, the most successful first-order approaches for solving hammer benchmarks.

Toward Higher-Order Superposition The calculus that Bentkamp, Blanchette, Cruanes, and Wald-
mann [8] designed for λ -free HOL resembles the first-order superposition calculus. A key ingredient is
a term order for λ -free terms. We have developed two such orders that generalize the familiar lexico-
graphic path order (Blanchette, Waldmann, and Wand [13]) and the Knuth–Bendix order with argument
coefficients (Becker, Blanchette, Waldmann, and Wand [6]). Both orders are compatible with function
contexts, just as their first-order counterparts. In the higher-order case, however, one would also like
to have compatibility with arguments (that is, s � s′ implies s t � s′ t), but this is hard to obtain. We
compensate for this deficiency by restricting the superposition rule to apply at argument subterms (e.g.,
a or b in f a b, but not f or f a). Other superpositions are made unnecessary by an additional inference
rule that adds arguments to partially applied functions.

Adding support for λ -terms imposes major modifications on the calculus (Bentkamp, Blanchette,
Tourret, Vukmirović, and Waldmann [7]). Unification is no longer unitary, but infinitary, which means
that inference rules generate streams of conclusions for a fixed set of premises. Handling these in
practice requires dovetailing. Even worse, the structure of some kinds of variable-headed terms and
λ -expressions (called fluid terms) can be fundamentally altered under substitution, which breaks the
connection between superpositions on clauses and on their ground instances and makes the calculus
incomplete. We restore completeness with a new inference rule in which fluid contexts are encoded
by a fresh higher-order variable. To reach full HOL, this calculus must be further extended to handle
Boolean variables, which can be replaced by arbitrary predicates under substitution, thus breaking the
clausal structure of the main formula. Boolean encodings [15] and lazy clausification [21] are promising
options to face this final challenge.

A prototype implementation of the λ -free calculus, based on the superposition prover Zipperpo-
sition, was implemented by Bentkamp [8]. This prover was then extended to Boolean-free HOL by
Bentkamp, Vukmirović, and Tourret with promising results. Following on the same path, Vukmirović,
with some guidance from Blanchette, Cruanes, and Schulz, also extended the high-performance E prover
to λ -free HOL [36]. Partly by chance, the data structures in E were quite easy to adapt. Major changes
include the replacement of the simple sort system by a proper type system. λ -free HOL terms are
represented using E’s existing term data structures. Types are represented as recursive structures and
are maximally shared in a type bank inspired by E’s shared term architecture. Updated unification and
matching algorithms are able to return partial matches and unifiers. All of E’s indexing data structures
(perfect discrimination trees [24], fingerprint indices [30], and feature vector indices [31]) have success-
fully been adapted to λ -free HOL. As a result, the extended E runs at essentially the same speed as the
first-order E. The next planned step is the extension of E to Boolean-free HOL.
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Toward Higher-Order SMT Together with Barbosa, Barrett, Reynolds, and Tinelli from the CVC4
team, the Matryoshka team, and more specifically El Ouraoui, Fontaine, and Tourret are experimenting
with different approaches for extending SMT to HOL. The first, pragmatic approach, targets existing
state-of-the-art SMT solvers with large code bases and complex data structures optimized for the first-
order case. In this approach, the SMT solver is extended with only minimal modifications to its core
data structures and algorithms. The second approach, requiring substantial modifications, entails the
redesign of the essential data structures and algorithms of the solver to work directly in λ -free HOL.
The approaches have been respectively implemented in the CVC4 and veriT solvers [5].

The pragmatic approach is based on the applicative encoding of HOL [15]. A preprocessing phase
eliminates λ -expressions using λ -lifting: Each λ -expression is replaced by a fresh function symbol, and
a quantified formula is introduced to define the symbol in terms of the original expression. Then, the
applicative encoding is used lazily to cope with partial applications on the ground level. Trigger-based
quantifier instantiation is adapted to handle encoded HOL terms properly. A trick that proves useful in
practice is to add axioms that help the instantiation technique to go slightly beyond pure λ -free HOL.
More precisely, the “store” axiom (stating, for any unary function f, the existence of a function that
coincides with f except for one domain value) allows CVC4 to prove quite a few more formulas from
the TPTP library when chosen instances are added [5]. In future work, the other instantiation methods,
model-based, enumeration-based, and conflict-based, will be similarly adapted.

In the redesign approach, a suboptimal but simple classical congruence closure algorithm is extended
to handle ground HOL terms. This algorithm handles partial applications natively, without relying on
the applicative encoding. It is, however, necessary to add axioms to support extensionality. The trigger-
based quantifier instantiation method is also adapted to cope with λ -free HOL terms. This involves the
extension of the indexing techniques and of the matching algorithms. Store axioms are currently not
used in the redesign approach, and we believe this partly explains (together with weaker instantiation
techniques in general) the gap of efficiency between veriT (implementing the redesign approach) and
CVC4 (implementing the pragmatic approach). Our ambition for the near future is to adapt the theory
of the Congruence Closure with Free Variables algorithm [4] to λ -free HOL. An implementation of
this algorithm would directly allow us to lift conflict-based instantiation to this logic. Redesigning
enumerative instantiation techniques is also on our agenda.

Better SMT Proofs for Smooth Reconstruction An important aspect of automated reasoning at the
service of interactive proof is that, beyond checking the validity (or unsatisfiability) of a formula, the
solver should provide some evidence for the result. We advocate proofs for SMT solvers. In particular,
the veriT SMT solver generates fairly comprehensive proofs, and we are working on the proof produc-
tion capabilities of the solver to ease the burden on tools that would want to replay proofs. Barbosa,
Blanchette, and Fontaine [3] recently developed a method to output explicit proofs for many of the
preprocessing steps that usually happen inside SMT solvers. These results have been further polished,
along with the proof format, mostly by Fleury and Schurr [2,20]. In Isabelle, they achieve a reconstruc-
tion success rate of about 99%. Our goal is to have a reconstruction success rate of 100%, with a solver
that behaves gracefully, i.e., that behaves as much as possible in the same way with proof production
enabled as when it is disabled.

2 Interactive Proof at the Service of Automatic Proof
The formal verification of ATP leads to a better understanding of its core mechanisms and strengthen
its theoretical results. It also facilitates incremental research by allowing researchers to experiment with
existing formalisms and easily identify the consequences of their modifications. Sometimes the outcome
of verification is a formal framework that can be instantiated by future applications.
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A Verified SAT Solver Fleury, with some help from Lammich and supervision from Blanchette and
Weidenbach, formalized the conflict-driven clause learning (CDCL) calculus implemented in most mod-
ern SAT solvers [12]. Compared with other SAT solver verification works, this work emphasizes the
stepwise refinement methodology and the connection between calculi variants described in the litera-
ture. It also considers clause forgetting, solver restarts, and incremental solving, which had not been the
focus of formalization before.

Based on the CDCL formalization, Fleury implemented an optimized verified SAT solver called
IsaSAT [18, 19]. IsaSAT implements the two-watched-literal scheme and other imperative data struc-
tures. From a benchmark suite consisting of the preprocessed SAT Competitions problems from 2009
to 2017, IsaSAT solves 801 problems, compared with 368 for versat (the second fastest verified SAT
solver) and 1388 for MiniSAT (the baseline reference for SAT solving) [18].

A Verified Ordered Resolution Prover Schlichtkrull, Blanchette, Traytel, and Waldmann [29] for-
malized in the Isabelle/HOL proof assistant [25] a first-order prover based on ordered resolution with
literal selection. They followed Bachmair and Ganzinger’s account [1] from Chapter 2 of the Handbook
of Automated Reasoning. The formal development covers the refutational completeness of two resolu-
tion calculi for ground clauses and general infrastructure for theorem proving processes and redundancy,
culminating with a completeness proof for a first-order prover, called RP, expressed as transition rules
operating on triples of clause sets. This material corresponds to the first four sections of Chapter 2.
Interestingly, Bachmair and Ganzinger’s main completeness result does not hold as stated, due to the
improper treatment of inferences involving several copies of the same premise. The formalization un-
covered numerous smaller mistakes.

In subsequent work [28], Schlichtkrull, Blanchette, and Traytel specified an executable prover that
implements a fixed clause selection strategy and functional data structures, embodying the abstract
prover described by Bachmair and Ganzinger. The executable prover is connected to the abstract prover
through a chain of refinement steps.

A Framework for Saturation Provers (Ongoing Work) One of the indispensable operations of re-
alistic saturation theorem provers is deletion of subsumed formulas. Unfortunately, the well-known
equivalence of dynamic and static refutational completeness holds only for derivations where all deleted
formulas are redundant, and the usual definition of redundancy does not cover subsumed formulas. The
fact that the equivalence of dynamic and static refutational completeness cannot be exploited directly
is one of the main reasons why Bachmair and Ganzinger’s refutational completeness proof for the RP
prover is rather complicated and nonmodular.

Waldmann, Tourret, Robillard, and Blanchette are currently working on a generic framework for
formal refutational completeness proofs of abstract provers that implement saturation proof calculi. The
framework relies on a modular extension of arbitrary redundancy criteria, which in the end permits
not only to cover subsumption deletion, but to model prover architectures in such a way that the static
refutational completeness of the calculus immediately implies the dynamic refutational completeness
of, say, an Otter loop or Discount loop prover implementing the calculus.

Acknowledgment. We thank Daniel El Ouraoui, Mathias Fleury, Hans-Jörg Schurr, and the anony-
mous reviewers for suggesting textual improvements. We also thank the ARCADE organizers, review-
ers, and attendees for the discussions on this topic. The project receives funding from the European
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