
Quantifier-Free Equational Logic and Prime
Implicate Generation - Proofs

Mnacho Echenim1,2, Nicolas Peltier1,4 and Sophie Tourret1,3

1 Grenoble Informatics Laboratory
2 Grenoble INP - Ensimag
3 Université Grenoble 1

4 CNRS

This technical report completes the article submitted to CADE with the
proofs of all theorems and propositions.

1 Clauses with Uninterpreted Functions in Equational
Logic

1.1 Basic Definitions

The theory of equational logic with uninterpreted functions will be denoted

by EUF throughout the paper. Let Σ be a signature such that Σ =
∞⋃
n=0

Σn. The

signature Σ0 is the signature of constant symbols, usually denoted by a, b, and in
general Σn is the signature of function symbols with arity n, usually denoted by
f , g. The notation T(Σ) stands for the set of well-formed ground terms over Σ,
defined as usual, most often denoted by s, t, u, v, w. A well founded reduction
order ≺ on T(Σ) is assumed given (e.g. KBO [3]). For any term s ∈ T(Σ),
Pos(s) is the set of all positions in s, for example Pos(f(a, g(b))) = {ε, 1, 2, 2.1}.
The expression head(s) represents the symbol of Σ appearing in s at position ε.
Generally, any subterm of a term t at position p is accessed with t|p.

A literal, usually denoted by l or m, is either an equation (or atom, or positive
literal) s ' t, or an inequation s 6' t (or negative literal). The literal written s ./ t
can denote either the equation or the inequation between s and t. The literal
lc stands for s 6' t (resp. s ' t) when l is s ' t (resp. s 6' t). A literal of the
form s 6' s is called a contradictory literal (or a contradiction) and a literal of
the form s ' s is a tautological literal (or a tautology).

We consider clauses as disjunctions (or multisets) of literals and formulæ as
collections of clauses. If C is a clause and l a literal, C\l denotes the clause C
where all occurrences of l have been removed (up to commutativity of equality).
For any clause C, the notation C+ (resp. C−) denotes the set of positive (resp.
negative) literals in C.

In Sect. 2, we also consider conjunctions of literals. If X =
∧n
i=1 li then

X c denotes the clause
∨n
i=1 l

c
i . Similarly, if C =

∨n
i=1 li then ¬C def

=
∧n
i=1 l

c
i .

We often identify sets of clauses with conjunctions, e.g., considering a set of
clauses S, we may write S ∪

∧n
i=1 li for S ∪ {li | i ∈ [1, n]}, and instead of

{l1, . . . , ln} ⊆ {l′1, . . . , l′m}, we may write
∧n
i=1 li ⊆

∧m
i=1 l

′
i.

We define an equational interpretation I as a congruence relation on T(Σ).
In other words, I is an equivalence relation on T(Σ) verifying the following
property: ∀f ∈ Σn,

(
∀i ∈ {1..n} , si =I ti ⇒ f(s1, .., sn) =I f(t1, .., tn)

)
, where

s =I t means that the terms s and t belong to the same class in I. A positive
literal l = s ' t is evaluated to > (true) in I, written I |= l, if s =I t; otherwise
l is evaluated to ⊥ (false). A negative literal l = s 6' t is evaluated to > in I
if s 6=I t, and to ⊥ otherwise. This evaluation is extended to clauses and sets
of clauses in the usual way. An interpretation that evaluates C to > is a model
of C (often written M in this paper). A tautological clause (or tautology) is a
clause for which all equational interpretations are models and a contradiction is
a clause that has no model.

1.2 Entailment of Clauses

Definition 1 Let C be a clause, we define for any term s the C-equivalence
class of s as:

[s]C = {t ∈ T(Σ) | ¬C |= s ' t} .

The corresponding equivalence relation is written ≡C . The C-representative of
a term s, a literal l and a clause D are respectively defined by:

s�C
def
= min

≺
([s]C), l�C

def
= s�C ./ t�C , for l = s ./ t, and D�C

def
= {l�C | l ∈ D}

♦

From the previous definition, the following results can be directly inferred:

Proposition 2 Let s be a term, l be a literal and C and D be two clauses, then:

¬C |= s ' s�C , ¬C |= l⇔ l�C , and ¬C |= D ⇔ D�C .

where ⇔ is the usual logical equivalence.

Proposition 3 Let C be a non-tautological clause and l be a literal. Then l |=
C ∨ l�C .

Proof. LetM be a model of l. IfM |= C then the result clearly holds. Other-
wise M |= ¬C and by Proposition 2, ¬C |= l⇔ l�C , thus M |= l�C .

Definition 4 The two following orders on literals are used throughout the pa-
per.

1. The total order ≺ on terms is extended in the usual way to literals and then
to clauses, by considering that a negative literal t 6' s is a set {{t, s}} and
that a positive literal s ' t is {{t} , {s}}.

2. The total order <π on literals is defined as follows:
– the equations are all greater than the inequations;

– for l1 and l2 literals with the same polarity, l1 <π l2 iff l1 ≺ l2.

Both orders are relaxed (into � and ≤π resp.) by also accepting equal literals or
clauses. ♦

Example 5 Let C = g(a) 6' b ∨ c ' d and D = a 6' b ∨ f(c) ' d, with
a ≺ b ≺ c ≺ d ≺ f(c) ≺ g(a). We have D ≺ C and C <π D, because on
the one hand a 6' b ≺ c ' d ≺ f(c) ' d ≺ g(a) 6' b, and on the other hand
a 6' b <π g(a) 6' b <π c ' d <π f(c) ' d. ♣

The order ≺ is used, as is usual, to determine which implicates are prime and
which are redundant (cf. definition below). The order <π is necessary for han-
dling clauses as presented in Sect. 3, but is not used outside this scope.

In propositional logic, testing entailment for redundancy detection amounts
to a simple inclusion test [2] but things are more complex in EUF because
the axioms of transitivity and substitutivity must be taken into account. For
example, the clause e 6' b ∨ b 6' c ∨ f(a) ' f(b) is redundant w.r.t. the clause
e 6' c ∨ a ' c because of these axioms.

The following proposition and theorem describe the projection method for
testing entailment in a syntactic way.

Proposition 6 Let C be a clause, and s, t be two terms. If there is no positive
literal l in C such that l�C∨s6't is tautological, then C ∨ s 6' t is not a tautology.

Proof. Let D = C ∨ t 6' s. Let I =≡C and J =≡D. We show that J is a
counter-model of D. Note that in particular, if s =I t, then I = J . J 6|= s 6' t
since s =J t and for any negative literal u 6' v ∈ C, by definition u 6' v ∈ D,
thus u =J v and finally J 6|= u 6' v. For the positive literals of C, let u ' v ∈ C,
and assume J |= u ' v. Under this assumption, u 6' v |= D, hence u�D = v�D,
contradicting the hypothesis about the positive literals of C. Thus J 6|= u ' v.

Theorem 7 Let C and D be two non-tautological clauses. The relation D |= C
holds iff for every negative literal l in D, the literal l�C is a contradiction and
for every positive literal l in D, there exists a positive literal m in C such that
m�C∨lc is tautological.

Proof. First assume that D |= C. Consider a negative literal s 6' t ∈ D. Then
we must have s 6' t |= C, thus t�C = s�C , and the corresponding literal in D�C is
a contradiction. Now consider a positive literal s ' t ∈ D. If there is no positive
literal m in C such that m�C∨s6't is a tautology then C∨s 6' t is not a tautology
by Proposition 6. But D∨ s 6' t |= C ∨ s 6' t, and D∨ s 6' t is a tautology, which
yields a contradiction.

For the converse implication, we prove that every literal in D entails C. Let
s 6' t ∈ D, then by hypothesis we have s�C = t�C , thus [s]C = [t]C , and by
definition s 6' t |= C. Let s ' t ∈ D, then by hypothesis there is a literal
u ' v ∈ C such that u�C∨s6't = v�C∨s6't. It follows that u 6' v |= C ∨ s 6' t,
which is equivalent to s ' t |= C ∨ u ' v. Since u ' v ∈ C, we conclude that
s ' t |= C.

Example 8 Given the order a ≺ b ≺ c ≺ e ≺ f(a) ≺ f(b) on terms, let
C = e 6' c ∨ a ' c and D = e 6' b ∨ b 6' c ∨ f(a) ' f(b) and let l = e 6' c
and m = a ' c be the literals of C. We have, l�D = b 6' b because [b]D =
{b, c, e} and min

≺
([b]D) = b. Moreover the literal f(a) ' f(b) ∈ D is such that

(f(a) ' f(b))�D∨mc = f(a) ' f(a), which, by Th. 7, proves that D is redundant
w.r.t. C. ♣

1.3 Clausal Normal Form

In order to avoid having to handle large numbers of equivalent clauses, we
define a clausal normal form that is unique up to equivalence.

Definition 9 A non-tautological clause C is in normal form if:

1. every negative literal l in C is such that l�C\l = l.

2. every literal t ' s ∈ C is such that t = t�C and s = s�C ;

3. there are no two distinct positive literals l, m in C such that m�lc∨C− is a
tautology;

4. C contains no literal of the form t 6' t or t ' t;
5. the literals in C occur exactly once in C;

The normal form equivalent to C is denoted by C↓. ♦

Remark 10 In our last articles on prime implicate generation [4], the focus
was on strictly flat clauses. For the sake of handling non-flat clauses, the clausal
normal form (see e.g. [5], Def. 4) had to be extended. The differences lie with
points 1 and 3 of Def. 9. They strengthen the requirements on negative and
positive literals resp. to cover the non-flat ones.

For example, using the same term ordering as in Ex. 8, the clause c 6' b ∨ e 6'
b ∨ f(b) ' f(a) is the normal form of the clauses c 6' b ∨ e 6' b ∨ f(c) ' f(a),
c 6' b ∨ e 6' b ∨ f(e) ' f(a), c 6' e ∨ e 6' b ∨ f(b) ' f(a), etc...

To prove the uniqueness of the clausal normal form, a rewriting system [1] is
associated with each clause in normal form.

Definition 11 Let C be a clause in normal form. The rewriting system RC
associated to C is such that:

t→ s ∈ RC iff t ' s ∈ C with t � s ♦

Due to the definition of a clausal normal form, the associated rewriting sys-
tems are always convergent. We denote by t�RC the term t ∈ T(Σ) on which all
possible rewriting rules from a rewrite system RC have been applied. Note that
t�RC = t�C .

Proposition 12 Let C be a clause in normal form and t be a term in T(Σ).
The term t�RC is obtained from t by using only the rules of RC that have a
left-hand side smaller or equal to t.

Proof. To compute t�RC , rewriting rules can be applied only on t or its sub-
terms. All the sub-terms of t are smaller than t and by definition of RC a
rewriting always replaces a term by a smaller one.

Theorem 13 The normal form of a non-tautological clause C is the smallest
clause equivalent to C.

Proof. We first prove the uniqueness of the normal form by considering the
negative literals in a clause and then the positive ones. Consider two equivalent
clauses C1 and C2 that are in normal form, so that ≡C1=≡C2 .

By Definition 11, C1 and C2 are associated to rewriting systems respectively
denoted by R1 and R2. If C−1 6= C−2 then R1 6= R2. Let us consider the smallest
rule t → s with t � s that does not appear in both rewriting systems, w.l.o.g.
we assume t → s ∈ R1 and t → s 6∈ R2. Since C1 and C2 are equivalent and
t�R1 = s, we also have t�R2 = s. By Proposition 12, the left-hand side of the rules
used to rewrite t are smaller or equal to t. Note that since t is at least rewritten
into s in R1, there must be at least one rule in R2 that can be applied to t.

– If in R2, the rules applicable to t are all smaller than t→ s, then these rules
also appear in R1, making t→ s redundant in R1 and t 6' s redundant in
C1, thus contradicting the definition of the normal form (Def. 9, point 6).

– Otherwise there is a rule t → v ∈ R2, with t � v � s, and t → v 6∈ R1

by definition of the normal form. This same definition ensures that v = s,
which is impossible under the current hypotheses.

We now consider the case of the positive literals. The equivalence of C1 and C2

allows us to invoke Theorem 7 in both directions. Let l1 be a positive literal
in C1. There exists a literal l2 in C2 such that l2�lc1∨C

−
2

is a tautology, hence

l1 |= C−2 ∨ l2. Similarly for l2, there is a positive literal m1 in C1 such that
m1�lc2∨C

−
1

, so that l2 |= C−1 ∨ m1. By combining the two entailment relations,

given that C−1 ≡ C−2 , we deduce that l1 |= C−1 ∨m1, i.e. mc
1 |= C−1 ∨ lc1, thus

m1�C−1 ∨lc1
is a tautology. This contradicts point 5 of the normal form definition,

unless m1 = l1. Since this property is symmetric for C1 and C2, it follows that
C−1 ∨ l1 ≡ C−2 ∨ l2, hence l1�C1

≡ l2�C2
and so l1�C1

= l2�C2
. In addition C1

and C2 are in normal form, thus l1 = l2 and by symmetry this result can be
generalized to C+

1 = C+
2 .

As for the proof of minimality, it stems directly from the definition of the
normal form. Consider a clause C that is not in normal form. One of the points
of the definition must be contradicted.

– If C contains a negative literal t 6' s with s ≺ t and such that s 6= t�C , it is
greater than the equivalent s 6' t�C ∨ t 6' t�C (which may not even appear
in the normal form of C if it is implied by other negative literals of this
clause).

– If C contains a positive literal u ' v such that u 6= u�C or v 6= v�C (or
both) then replacing this literal with u�C ' v�C yields a smaller equivalent
clause.

– No literal t ' t can be present in a non-tautological clause and removing
literals of the form t 6' t yields a smaller equivalent clause.

– The two last criteria guaranty the absence of redundant literals without
which a smaller equivalent clause is also generated.

2 Implicate Generation

The results presented in this section are a direct extension of those of [4]
(Sect. 2 & 3). Before introducing the calculus used for generating the implicates
we present the notion of a constrained clause.

Definition 14 A constraint is a (possibly empty) conjunction (or set) of literals.
A constrained clause (or c-clause) is a pair [C |X] where C is a clause and X is
a constraint. ♦

Empty constraints are denoted by >. [C | >] is often written simply as C and
referred to as a standard clause. A constraint is normalized, or in normal form,
if the clause X c is in normal form. Note that only non-contradictory constraints
can be normalized.

From a semantic point of view, a constrained clause [C | X] is equivalent to
the standard clause X c ∨ C. For example the c-clause [c ' b | f(a) ' c ∧ c 6' d]
is equivalent to c ' b ∨ f(a) 6' c ∨ c ' d. Intuitively, the intended meaning of a
c-clause [C | X] is that the clause C can be inferred provided the literals in X
are added as axioms to the considered clause set.

The usual notion of redundancy is extended to c-clauses.

Definition 15 A c-clause [C |X] is redundant w.r.t. a set of c-clauses S if either
X is unsatisfiable or there exist c-clauses [Di | Yi] ∈ S (1 ≤ i ≤ n) such that
∀i ∈ {1 . . . n}Di � C and Yi ⊆ X , and X ′, D1, . . . , Dn |= C, where X ′ denotes
the set of literals in X that are smaller than C. ♦

It is now possible to extend the usual superposition calculus [7] to a con-
strained superposition calculus denoted cSP, that is able to generate all prime
implicates of a formula up to redundancy.

This calculus is composed of the standard superposition rules trivially ex-
tended to constrained clauses (Table 1) along with two assertion rules (Table 2).
As usual the calculus is parametrized by the ordering � on terms and a selection
function sel, where sel(C) contains all maximal literals in C or (at least) one
negative literal. A literal is selected in C if it occurs in sel(C). We assume that
the clausal part of c-clauses is systematically normalized (which explains the
absence of reflexivity from the standard rules of Table 1). Note, however, that
the constraint part is not normalized.

The principle of cSP is to generate the implicates of a formula as constraints
of the empty clause. The standard inference rules are used to refute the clausal
part of c-clauses, while the assertion rules explore the possible implicates by
making hypotheses about their literals, that are stored in the constraint part of
the c-clauses. Since only the c-clauses with a refutable clausal part are of interest,
the assertion rules apply only on the literals that render a new superposition

Superposition [r ' l ∨ C |X] [u ./ v ∨D |Y]

[u[l] ./ v ∨ C ∨D |X ∧ Y]

If u|p = r, r � l, u � v,
and (r ' l) and (u ./ v)
are selected in (r ' l ∨C)
and (u ./ v ∨ D) respec-
tively.

Factoring [t ' u ∨ t ' v ∨ C |X]

[t ' v ∨ u 6' v ∨ C |X]

If t � u, t � v and (t ' u)
is selected in t ' u ∨ t '
v ∨ C.

Table 1: Standard Inference Rules

possible (into the clause to which the rule applies for the Pos. Assert. rule and
into the asserted literal for the Neg. Assert. rule). In other words, these rules
use the fact that S |= C iff S ∧ ¬C |= � to build implicates literal by literal.

Example 16 The following example shows how to derive the implicate a 6'
d ∨ f(c) ' f(b) from {a ' b, f(c) ' f(d)}, given the term ordering a ≺ b ≺ c ≺
d ≺ f(a) ≺ f(b) ≺ f(c) ≺ f(d).

1 [f(c) ' f(d) |>] (hyp)
2 [f(c) ' f(a) |a ' d] (Pos. AR, 1)
3 [f(a) 6' f(b) |a ' d ∧ f(c) 6' f(b)] (Neg. AR, 2)
4 [a ' b |>] (hyp)
5 [f(a) 6' f(a) |a ' d ∧ f(c) 6' f(b)] (Sup. 3, 4)
6 [� |a ' d ∧ f(c) 6' f(b)] (Ref. 5)

The negation of a ' d ∧ f(c) 6' f(b) is the desired implicate. ♣

Positive
Assertion

[u ./ v ∨ C |X]

[u[s] ./ v ∨ C |X ∧ t ' s]

If u|p = t, t � s, u � v and (u ./
v) is selected in (u ./ v ∨ C).

Negative
Assertion

[t ' s ∨ C |X]

[u[s] ./ v ∨ C |X ∧ u ./ v]

If u|p = t, t � s, u � v, and
(t ' s) is selected in (t ' s ∨ C).

Table 2: Assertion Rules

Theorem 17 cSP is sound and deductive complete.

Lemma 18 Let [C | X] be a c-clause derived in an arbitrary number of steps
from n premises [Di | Yi] with i ∈ {1 . . . n}. Then C is a logical consequence of
D1, . . . , Dn,X and for all i, Yi ⊆ X .

Proof. It is easy to verify that this property holds for each inference rule, the
result follows by a straightforward induction on the length of the derivation.

Lemma 18 permits to deduce the soundness of the calculus:

Corollary 19 For any c-clause [C |X] deducible from a set of standard clauses
S, C is a logical consequence of S ∪ X . In particular, if C = � then S |= X c.

We now prove that the calculus is deductive-complete, i.e., that it permits to
generate every prime implicate of a given set of clauses.

Definition 20 For every set of c-clauses S and for every constraint X , we denote
by S|X the set of standard clauses D such that [D |Y] ∈ S and Y ⊆ X . ♦

Proposition 21 Let S be a set of c-clauses and let X be a satisfiable constraint.
If a c-clause [C |Y] is redundant in S and Y ⊆ X , then C is redundant in S|X∪X .

Proof. By definition of c-clause redundancy, there are two cases to consider.
– The first condition leading to redundancy is that Y is unsatisfiable. In this

case, since Y is a conjunction of literals and Y ⊆ X , the constraint X is
also unsatisfiable.

– In the second case, there exist n c-clauses [Di | Yi] ∈ S (1 ≤ i ≤ n)
such that ∀i ∈ [1, n]C � Di, ∀i ∈ [1, n]Yi ⊆ Y and Y ′, D1, . . . , Dn |= C,
where Y ′ denotes the set of literals in Y that are smaller than C. Since
Y ⊆ X we deduce that ∀i ∈ [1, n]Yi ⊆ X , hence ∀i ∈ [1, n]Di ∈ S|X . Since
Y ′, D1, . . . , Dn |= C, X ′, D1, . . . , Dn � C and Y ′∪{D1, . . . , Dn} ⊆ S|X∪X ,
C is redundant in S|X ∪ X .

Definition 22 A set of c-clauses S is saturated w.r.t. a constraint X if every
c-clause [C |Y] such that Y ⊆ X that is deducible from S by applying one of the
inference rules once is redundant w.r.t. S. ♦

Theorem 23 Let X be a normalized satisfiable constraint. Let S be a set of
standard clauses and S? be the set obtained by saturating S with cSP. If S? is
saturated w.r.t. X and S |= X c, then there exists a constraint Y ⊆ X such that
[� |Y] ∈ S?.

Remark 24 Note that considering only normalized constraints is not restrictive
since any constraint is equivalent to a normalized one. Moreover our goal is to
eventually generate implicates that are in normal form, thus all c-clauses whose
constraints are not in normal form can be discarded (since these constraints
occur in all the descendants). This strategy strongly restricts the search space.
For instance no rule will apply on [a ' b | c ' d] and [anot ' b | c ' e] because
the obtained constraint c ' d ∧ c ' e is not in normal form. Note also that the
handling of clauses and constraints differ: we normalize the clausal part of the
c-clause, whereas we merely check that the constraint is in normal form.

Proof. Let S′ = S?|X ∪ X . We first remark that S′ is unsatisfiable. Indeed,
S?|> |= S since by Proposition 21 all the standard clauses that are removed
from S during the saturation process must be redundant in S?|>; furthermore,
S?|> ⊆ S?|X , so that S′ |= S?|> ∪ X |= S ∪ X |= X c ∪ X . We now prove that
S′ is saturated (in the standard way [7]). We only consider the case where the
Superposition rule is applied, the proof for the other rules is similar. Let r ' l∨P1

and u ./ v ∨ P2 be two clauses occurring in S′, with r = u|p, l ≺ r, v ≺ u and
assume that r ' l and u ./ v are selected in r ' l∨P1 and u ./ v∨P2 respectively.
Let u[l] ./ v ∨ P1 ∨ P2 be the clause deduced by (standard) superposition from
the two clauses introduced previously. Several cases are distinguished:

– If both r ' l ∨ P1 and u ./ v ∨ P2 occur in S?|X , then S contains two
c-clauses of the form [r ' l∨P1 |X1] and [u ./ v∨P2 |X2] with X1,X2 ⊆ X .
It is clear that the superposition rule of cSP applies to these c-clauses,
yielding [u[l] ./ v ∨ P1 ∨ P2 |X1 ∧ X2]. Since S? is saturated w.r.t. X , this
c-clause is redundant w.r.t. S?, and since X1∧X2 ⊆ X , we deduce by Prop.
21 that u[l] ./ v ∨ P1 ∨ P2 is redundant w.r.t. S′.

– If r ' l∨P1 occurs in S?|X and u ./ v∨P2 occurs in X , then by definition,
P2 must be empty and S? contains a c-clause of the form [r ' l ∨ P1 |X1]
with X1 ⊆ X . Assume first that ./= 6'. Then the Neg. Assert. rule applies
on the c-clause, yielding [u[l] 6' v ∨ P1 |X1 ∧ u 6' v]. Since u 6' v ∈ X and
X1 ⊆ X , this c-clause is redundant in S, and Prop. 21 permits to deduce
that u[l] 6' v∨P1 is redundant in S?|X . If ./=' then the Neg. Assert. rule
applies on [r ' l∨P1 |X1] yielding [u[l] ' v∨P1 |X1∧u ' v] and the result
follows as in the case ./= 6'.

– If r ' l ∨ P1 occurs in X and u ./ v ∨ P2 occurs in S?|X then the proof is
similar to the previous case, replacing the use of the Neg. Assert. rule by
the Pos. Assert. rule.

– If both r ' l∨P1 and u ./ v∨P2 occur in X then X is not in normal form
since by Def. 1 (u ./ v)c�X c\(u./v)c � (u[l] ./ v)c and (u[l] ./ v)c 6= (u ./ v)c,
which contradicts point 6 of Def. 9 in the case ./=' and point 2 if ./= 6'.
This contradicts the hypotheses of the theorem.

Since S′ is unsatisfiable and saturated, this set necessarily contains � by com-
pleteness of the standard superposition calculus, which entails that � ∈ S?|X
(since the clauses in X are unit hence cannot be empty), hence the result.

A seemingly natural idea is to relax the condition of Def. 15 by testing logical
entailment instead of set inclusion when comparing constraints (i.e., replacing
Yi ⊆ X by Yi |= X . However, this makes the calculus incomplete. More precisely,
this relaxed notion of redundancy is not compatible with the previous restriction
concerning the removal of clauses with non-normalized constraints. Experiments
show that the restriction make the calculus more efficient, even with a more
restrictive version of the redundancy elimination rule.

3 Storage and Manipulation of Clauses

To store the clauses generated by cSP and efficiently detect redundancies ,
a trie-like data structure, the clausal tree, is used.

3.1 Clausal Tree

Clausal trees allow one to store efficiently and concisely sets of clauses while
taking into account equality axioms. Note that, since our goal is to generate
all prime implicates of a formula, we only test one-to-one entailment between
clauses (in contrast to the usual practice in automated deduction we cannot
discard clauses that are redundant w.r.t. more than one clause since this clause
may well be prime). For this reason, we define e-subsumption, and we assimilate
it to redundancy in the rest of this article.

Definition 25 Let C and D be two clauses. The clause C e-subsumes the clause
D, written D ≤r C, iff D |= C and D � C. A c-clause [C | X] c-subsumes a
clause [D |Y], written [C |X] ≤r [D |Y]) iff C ≤r D and X ⊆ Y. ♦

Note that both parts of the c-clauses are handled in different ways: the inclusion
relation⊆ used to compare constraints is clearly stronger than the c-subsumption
relation ≤r used for clauses. For instance we have:

[a 6' b ∨ f(b) ' f(d) |>] ≤r [a 6' c ∨ b 6' c ∨ f(c) ' f(d) |>], but

[� |a ' b ∧ f(b) 6' f(d)] 6≤r [� |a ' c ∧ b ' c ∧ f(c) 6' f(d)].

Clausal trees are similar to the tries of propositional logic [6] that are trees
where the edges are labeled with literals and where some additional ordering
constraints ensure the sharing of literals. In such a tree, the clauses are the
branches, that is the disjunction of the literals labeling the edges from root
to leaf. Clausal trees for EUF are enriched with constraints that simplify the
application of the redundancy detection algorithms described in parts 3.2 and
3.3 of this section.

Definition 26 A clausal tree is inductively defined as either �, or a set of pairs
of the form (l, T ′) where l is a literal and T ′ a clausal tree. In addition, a clausal
tree T with (l, T ′) ∈ T must respect the conditions:

– for all l′ appearing in T ′, l′ <π l,
– there is no clausal tree T ′′ such that (l, T ′′) ∈ T .

The set of clauses represented by a clausal tree T is denoted by C(T) and defined
inductively as follows:

C(T) =

{�} if T = �⋃

(l,T ′)∈T

 ⋃
D∈C(T ′)

l ∨D

 otherwise.

♦

As the definition implies, leaves can be either � or ∅, but in practice if a leaf
is labeled with ∅ (a failure node) then the corresponding branch is irrelevant
because a disjunction including the empty set has no meaning as a clause. The
only exception is the empty tree, in which the root is labeled with ∅.

In our context, all the clauses stored in a clausal tree are in normal form.
To emphasize this fact, we introduce a type of clausal tree specific to normal
clauses.

Definition 27 A clausal tree is normalized if all the clauses in C(T) are in
normal form. ♦

From this point on, any reference to a clausal tree is implicitly about a normalized
clausal tree.

Example 28 The structure T below is a clausal tree with the term
order a ≺ b ≺ c ≺ g(c) ≺ g(e) ≺ f(c) ≺ f(d). There
is no failure node, and for a better readability the labels are asso-
ciated with the nodes rather than with the edges leading to them.

T

a 6' g(b)

f(c) 6' f(d)

c ' g(e)a ' c

f(a) ' c

a ' b

f(a) ' c

The clauses in C(T) are:

a ' b ∨ f(a) ' c
a 6' g(b) ∨ f(a) ' c
a 6' g(b) ∨ f(c) 6' f(d) ∨ a ' c
a 6' g(b) ∨ f(c) 6' f(d) ∨ c ' g(e)

♣

Notation 29 Let C be a clause in normal form and T be a clausal tree such
that ∀D ∈ C(T), C ∨D is in normal form and ∀l ∈ D, C <π l. In this case, C.T
denotes the clausal tree T ′ such that C(T ′) = {C ∨D |D ∈ C(T)}. ♦

The storage of constrained clauses is similar to that of standard clauses. A
main clausal tree is used to store the clausal part of constrained clauses and
at each leaf of this tree, a trie is appended to store the different constraints
associated to the same clause. Note that, according to Def. 15, constraints are
compared using set inclusion instead of logical entailment, thus the second tree
must be a trie and not a clausal tree. In addition, all generated implicates (c-
clauses with empty clausal part) should be stored into a clausal tree in order to
remove redundancies.

The corresponding manipulation algorithms are neither theoretically nor
technically challenging compared to the ones for standard clauses. Thus the
choice was made to present these algorithms only for standard clauses.

The manipulation of clausal trees is decomposed into three operations. The
first one consists in checking whether a new clause is redundant w.r.t. an existing
one already stored in a clausal tree. The second one removes from a clausal tree

all clauses that are redundant w.r.t. a given clause. The last one is the insertion
of a new clause into a clausal tree. This last operation is straightforward and
thus will not be described here. On the other hand, the first two operations are
not trivial and are thus carefully described in the remaining parts of this section.

3.2 Testing the Entailment of a Clause

The algorithm isEntailed (Alg. 1) tests whether a clause C is redundant
w.r.t. a clause in C(T), where T is a clausal tree. To do so, a call is made to
isEntailed(C, T,�,�) and in the recursive calls to isEntailed(C ′, T ′,M,N),
M ∨ C ′ is equal to C and N represents the path from the root of T to the
subtree T ′. The principle underlying these calls is to go through the input clause
C and tree T while performing the operations necessary to test entailment with
the projection method (Th. 7). Note that it is here that the use of the order
<π is crucial. Intuitively, the need for this order stems from the fact that the
negative literals of a clause C are the ones used to project C onto other clauses.
In particular for the projection of positive literals, it is necessary to know of all
the negative literals that belong to C, while the reverse does not hold.

Algorithm 1 isEntailed(C, T, M, N)

Require: T is a clausal tree in normal form, M ∨C and N are clauses in normal form,
M is negative and N |= M ∨ C

Ensure: isEntailed(C, T, M, N) = > iff ∃D ∈ C(T), D ∨N ≤r M ∨ C
1: if T = � then
2: return N �M ∨ C

3: T1 ← {(l, T ′) ∈ T | l�M is a contradiction}
4: if

∨
(l,T ′)∈T1

isEntailed(C, T ′, M, N ∨ l) then

5: return >
6: if C = � then
7: return ⊥
8: m1 ← min

<π
{m ∈ C}

9: if m1 is of the form u 6' v, with u � v then
10: T2 ← {(l, T ′) ∈ T | l�M 6<π m1 and @w, (l�M = u 6' w, with u � w)}
11: return

∨
(l,T ′)∈T2

isEntailed(C \m1, l.T
′, M ∨m1, N)

12: else
13: T3 ← {(l, T ′) ∈ T | C�M∨lc contains a tautological literal}
14: return

∨
(l,T ′)∈T3

isEntailed(C, T ′, M, N ∨ l)

Proposition 30 Let C be a non-empty clause such that M ∨ C is in normal
form. Let l be a literal such that l�M |= M ∨ C. Let m1 = min

<π
{m ∈ C}. If l is

a negative literal, then either l�M is a contradiction or l�M 6<π m1.

Proof. Let l�M = u 6' v. Assuming that l�M <π m1, since m1 is minimal in C,
v�M∨C = v�M = v and by Theorem 7, u�M∨C = v�M∨C .

– If m1 is of the form u 6' v′ with v′ ≺ u, then u�C∨M = u�C = v′, because
C ∨M is in normal form and m1 ∈ C. But then v′ = v�C , thus v′ � v and
l�M 6<π m1, contradicting our assumption.

– Otherwise m1 = s 6' t with s � u and thus u�C = u (because the smallest
term to be rewritten, namely s, is greater than u) thus u = v.

Proposition 31 Let M ∨ C be a clause in normal form with M negative. Set
m1 = min

<π
{m ∈ C} and let m1 be a negative literal u 6' v with u � v. Let l be

a literal such that l�M 6<π m1 and l�M |= C ∨M . In these conditions, the literal
l�M cannot be of the form u 6' w with u � w � v

Proof. Assume that l�M = u 6' w with u � w � v. Then because C ∨M is
in normal form u�C∨M = v. In addition, by Theorem 7, since l�M |= C ∨M ,
we know that w�C∨M = u�C∨M , thus w�C∨M = v. The fact that w ≺ u entails
w�C∨M = w�M = w (because the maximal terms in the disequations in C are
all greater than w, hence w cannot be rewritten by C, cf. Prop. 12). Finally, we
have w = v which contradicts the hypothesis w � v. Hence, l�M 6= u 6' w with
u � w � v,

Theorem 32 If T is a clausal tree in normal form, M ∨ C and N are
clauses in normal form, M is negative and N |= M ∨ C then the call
isEntailed(C, T,M,N) terminates and isEntailed(C, T,M,N) = > iff ∃D ∈
C(T), D ∨N ≤r M ∨ C.

Proof. The termination proof is trivial, because for all recursive calls, the pos-
itive value |C|+ depth(T) strictly decreases.

The correction proof requires two inductions, one for each implication. In the
direct direction the proof consists in going through the different cases enumerated
by the algorithm to verify that the requirements of the recursive calls are indeed
met and that it is possible to derive the desired property from its inductive
children. In the converse direction the different cases that validate the right-
hand side of the equivalence are considered and matched with the different cases
of the algorithm.

Direct implication: assuming isEntailed(C, T,M,N) = >, then one of the
“return” instructions (except that of line 7) has been triggered and returned
true. Let us consider each of them in their order of appearance.

1. Line 2, T = � and N � M ∨ C. In this case C(T) = {�}. Given that
N |= M ∨ C by hypothesis, the property N ≤r M ∨ C is verified.

2. Line 4, T 6= � and
∨

(l,T ′)∈T1

isEntailed(C, T ′,M,N ∨ l) returns true,

with T1 = {(l, T ′) ∈ T | l�M is a contradiction}. Thus there exists a pair
(l, T ′) ∈ T1 such that isEntailed(C, T ′,M,N ∨ l) returns true and l�M
is a contradiction. By Theorem 7, l |= M , thus l |= M ∨ C. Moreover by

hypothesis N |= M ∨C. These two properties ensure that the preconditions
of the corresponding recursive call are met. By induction ∃D ∈ C(T ′) s.t.
D ∨ l ∨N ≤r M ∨C. Considering that l ∨D ∈ C(T), the result is verified in
this case.

3. Line 11, T 6= �, C 6= � and
∨

(l,T ′)∈T2

isEntailed(C \m1, l.T
′,M ∨m1, N)

with T2 = {(l, T ′) ∈ T | l�M 6<π m1 and @w, (l�M = u 6' w, with u � w)}
and m1(= min

<π
{m ∈ C}) is of the form u 6' v, with u � v. Thus there is a

pair (l, T ′) ∈ T such that l 6= u 6' w with u � w, and m1 ≤π l�M for which
isEntailed(C\m1, l.T

′,M∨m1, N) returns true. By hypothesisN |= M∨C.
Moreover, M ∨C = M ∨m1∨C \m1 and M ∨m1 is purely negative. There-
fore the pre-conditions of this recursive call are verified. By induction, its
returning true entails ∃D ∈ C(l.T ′) s.t. D ∨ N ≤r M ∨m1 ∨ C \m1. Since
C(l.T ′) ⊂ C(T), the clause D also belongs to C(T), whence the result in this
case.

4. Line 14, m1 = u ' v, l = s ' t and
∨

(l,T ′)∈T3

isEntailed(C, T ′,M,N ∨ l)

returns true, with T3 = {(l, T ′) ∈ T | C�M∨lc contains a tautological literal}.
In this case there exists a pair (l, T ′) ∈ T and m2 ∈ C s.t. mc

2�M∨lc is
a contradiction thus, by Theorem 7, lc2 |= M ∨ lc which is equivalent to
l |= M ∨ l2. Since N |= M ∨ C, the preconditions of the corresponding
recursive call are met. Thus by induction D ∨ l ∨N ≤r M ∨C with D ∈ T ′.
Since l ∨D ∈ C(T), we have the desired result for this case.

Converse implication: Assuming there exists a D in C(T) such that D∨N ≤r
M ∨ C (with C, T , M and N respecting the algorithm’s pre-conditions), there
are several cases to consider.

– If T = �, then line 2 is reached and the test N � M ∨ C returns true
because D = � and N ≤r M ∨ C by hypothesis.

– Otherwise, D = l ∨ D′ with (l, T ′) ∈ T and D′ ∈ C(T ′). Some sub-cases
must be distinguished.
– If C = � then we have l∨D′∨N ≤r M , thus also l∨D′∨N |= M . Since
M is purely negative, Theorem 7 ensures that l�M is a contradiction
thus (l, T ′) ∈ T1. Moreover D′ ∨ l ∨N ≤r M and the pre-conditions of
isEntailed(C, T ′,M,N∨l), called line 4, are verified. Thus by induction
this call returns true, ensuring that isEntailed(C, T,M,N) also returns
true line 5.

– If C = m1 ∨ C ′ with m1 = min
<π
{m ∈ C} and if l is a negative literal,

then by Proposition 30 either 1) l�M is a contradiction or 2) l�M 6<π m1.
Indeed, the conditions of application of this proposition are verified, since
l |= M ∨ C and Proposition 2 ensures that l�M |= M ∨ C.

1. If l�M is a contradiction then (l, T ′) ∈ T2 and N ∨ l |= M ∨ C is
implied by the hypotheses, thus the recursive call isEntailed(C \
m1, l.T

′,M ∨m1, N), line 11, returns true by induction.

2. If l�M 6<π m1 then m1 is a negative literal (since l is negative and
by definition of <π), and since N ∨ l ∨ D′ ≤r M ∨ C, we have

N ∨ l∨D′ ≤r M ∨m1∨C \m1. Here, by Proposition 31, (l, T ′) ∈ T2
thus the recursive call isEntailed(C \ m1, l.T

′,M ∨ m1) reached
line 11 returns true by induction. (The preconditions are respected
and D ≤r M ∨ C = M ∨m1 ∨ C \m1.)

– The last case is when C = m1∨C ′ with m1 = min
<π
{m ∈ C} and l = s ' t

is a positive literal. If m1 is a negative literal then (l, T ′) ∈ T2 and line
11 is reached as in the previous case. It returns true for the same reason.
Otherwise by Theorem 7 there exists a positive literal l2 in C such that
l2�M∨C∨s6't is a tautology, thus (l, T ′) ∈ T3. Since N ∨ l∨D′ ≤r M ∨C,
the precondition N ∨ l |= M ∨C of the call isEntailed(C, T ′,M,N ∨ l)
reached line 14 is verified and by induction it returns true.

3.3 Pruning Entailed Clauses from a Clausal Tree

The algorithm pruneEntailed (Alg. 2) removes from the input tree T all
the clauses redundant w.r.t. the input clause C. It proceeds by going through
both objects, performing projections and storing the already considered literals
resp. in parameters N and M . Once an entailment is established in this way,
all that remains is to compare the selected clauses using the order ≺ to detect
redundancies. This last part is done by the algorithm pruneInf (Alg. 3).

The first correction result is about pruneInf. It is necessary to guarantee
the correction of pruneEntailed which, along with the terminations of both
algorithms, is proved in Th. 34

Proposition 33 Let C and N be clauses in normal form and T be a clausal
tree in normal form verifying the preconditions of pruneInf. The output tree
Tout = pruneInf(C, T,N) is such that C(Tout) = {DT ∈ C(T) | C 6≤r DT ∨N}.

Proof. We proceed by induction. Let D ∈ C(Tout). If D = �, then Tout = � by
definition of a clausal tree. In this case Tout is returned at line 2 and since C 6� N ,
we have C 6≤r N , thus D ∈ {DT ∈ C(T) | C 6≤r DT ∨N}. Otherwise, D = l∨D′
with (l, T ′out) ∈ Tout and D′ ∈ C(T ′out) such that T ′out = pruneInf(C, T ′, N ∨
l) with (l, T ′) ∈ T . By induction C(T ′out) = {DT ′ ∈ C(T ′) | C 6≤r DT ′ ∨N ∨ l}
because the preconditions are verified (in particular C |= N thus C |= N ∨ l).
Therefore C 6≤r D ∨N , validating the property in this case.

Set D ∈ C(T) such that C 6≤r D∨N . We know that C |= N∨D since C |= N ,
hence C 6� N ∨D. If D = � then T = � thus line 2 is reached and D ∈ C(Tout).
Otherwise D = l ∨ D′ with (l, T ′) ∈ T and D′ ∈ C(T). The recursive call line
4 is reached because C 6� N , and since C |= N ∨ l and C 6≤r D′ ∨ l ∨ N , we
have D′ ∈ C(T ′out) by induction (where T ′out = pruneInf(C, T ′, N ∨ l)). Thus,
T ′out 6= ∅ and D ∈ C(Tout).

Theorem 34 Let C ∨ M and N be clauses in normal form and T be a
clausal tree in normal form verifying the preconditions of pruneEntailed.
Then the calls pruneEntailed(C, T,M,N) and pruneInf(C, T,N) always

Algorithm 2 pruneEntailed(C, T, M, N)

Require: T is a clausal-tree in normal form, M ∨C and N are clauses in normal form,
M |= N and isEntailed(C ∨M, N.T , �, �) = ⊥.

Ensure: C(Tout) = {D ∈ C(T) | C ∨M 6≤r D ∨N}, with
Tout = pruneEntailed(C, T, M, N).

1: if C = � then
2: return pruneInf(M, T, N)

3: select m1 ∈ C s.t. m1�N = min
<π
{m�N |m ∈ C}

4: if m1�N is a contradiction then
5: return pruneEntailed(C \m1, T, M ∨m1, N)

6: if T = � then
7: return T
8: T1 ← {(l, T ′) ∈ T | l = u 6' v ∧m1�N � l}
9: Tout1 ← {(l, pruneEntailed(C, T ′, M, N ∨ l)|

(l, T ′) ∈ T1 ∧ pruneEntailed(C, T ′, M, N ∨ l) 6= ∅}
10: if m1 is positive then
11: T2 ← T \ T1

12: Tout2 ← {(l, pruneEntailed(C \ Ll, T ′, M ∨ Ll, N ∨ l))|
(l, T ′) ∈ T2 ∧ Ll = {m ∈ C | l�N∨m is tautological}∧
pruneEntailed(C \ Ll, T ′, M ∨ Ll, N ∨ l) 6= ∅}

13: return Tout1 ∪ Tout2
14: else
15: return Tout1 ∪ T \ T1

terminate and Tout = pruneEntailed(C, T,M,N) is such that C(Tout) =
{D ∈ C(T) | C ∨M 6≤r D ∨N}.

Proof. The termination of both algorithms is ensured by the same argument:
for all recursive calls, the value of |C|+ depth(T) strictly decreases.

The schema of the correction proof of pruneEntailed is identical to that
of Th. 32. Let D be a clause in C(Tout).

– If C = � then line 2 was reached to generate Tout. The preconditions
of pruneInf are respected (in particular M |= N by hypothesis). By
Proposition 33, D ∈ {C(T) |M 6≤r D ∨N}, whence the result in this case.

– Otherwise, C is of the form m1 ∨ C ′, where m1 is such that m1�N =
min
<π
{m�N |m ∈ C}.

– If m1�N is a contradiction then Tout is returned at line 5 and m1 |= N
by Theorem 7. By induction C \m1 ∨m1 ∨M 6≤r D ∨N .

– Otherwise if T = � then Tout = T and m1 6|= N by Theorem 7. Hence
M ∨ C 6|= N .

– Else m1�N is not a contradiction and T 6= � thus D = l ∨ D′, where
(l, T ′out) ∈ Tout and D′ ∈ C(T ′out) such that one of the following holds:

1. (l, T ′out) ∈ Tout1, in which case l = u 6' v, m1�N � l and T ′out =
pruneEntailed(C, T ′,M,N ∨ l);

Algorithm 3 pruneInf(C, T,N)

Require: T is a clausal-tree in normal form, C in a clause in normal form, N is a
clause in normal form, C |= N .

Ensure: C(Tout) = {D ∈ C(T)|C 6≤r D ∨N}, with Tout = pruneInf(C, T,N).
1: if T = � and C 6� N then
2: return T
3: if C 6� N then
4: return {(l, pruneInf(C, T ′, N ∨ l))|(l, T ′) ∈ T∧

pruneInf(C, T ′, N ∨ l) 6= ∅}
5: return ∅

2. l and m1 are positive literals and (l, T ′out) ∈ Tout2 in which case
T ′out = pruneEntailed(C \ Ll, T ′,M ∨ Ll, N ∨ l) with (l, T ′) ∈ T
and Ll ← {l′ ∈ C | l�N∨l′ is tautological};

3. m1 is negative and m1�N ≺ l in which case T ′out = T ′ with (l, T ′) ∈
T \ T1.

In all cases m1 6|= N by Theorem 7. In the first case, the preconditions
of the recursive call of line 9 are respected (M |= N ∨ l). Therefore
C ∨ M 6≤r D′ ∨ l ∨ N . In the second case, Theorem 7 allows us to
assert that M ∨Ll |= N ∨ l. Thus, the preconditions of the recursive call
line 12 (reached because m1 is positive) are verified and by induction
M ∨ Ll ∨ C \ Ll 6≤r D′ ∨ l ∨N . In the last case, by Proposition 12 and
Theorem 7, m1 6|= D thus C 6|= N ∨D.

For the second inclusion, let D be a clause in C(T) such that C ∨M 6≤r D ∨N .
– If C = �, given that M |= N , necessarily M 6� D ∨ N . Thus, Tout must

be generated at line 2 and, by Proposition 33, D ∈ C(Tout).
– Otherwise C is of the form m1 ∨ C ′ where m1 is such that m1�N =

min
<π
{m�N |m ∈ C}.

– If m1�N is a contradiction then m1 |= N by Theorem 7 and Tout is
returned at line 5. Since C \ m1 ∨ m1 ∨ M 6≤r D ∨ N , by induction
D ∈ C(Tout).

– If m1�N is not a contradiction then either T = �, in which case Tout =
T and the result is straightforward, or the same three cases as in the
other direction of the proof can be studied separately (with D = l ∨D′,
(l, T ′) ∈ T and D′ ∈ C(T ′)).
1. If l is negative and m1�N � l, then (l, T ′) ∈ T1. Set T ′out1 =

pruneEntailed(C, T ′,M,N ∨ l), as in line 9. By induction D′ ∈
C(T ′out1) thus D ∈ C(Tout1).

2. If l and m1 are both positive literals then the execution path goes
through line 12. The clause Ll = {l′ ∈ C | l�N∨l′ is tautological} is
such that Ll |= N ∨ l by Theorem 7, thus M ∨Ll |= N ∨ l. Hence the
preconditions of the recursive call pruneEntailed(C \ Ll, T ′,M ∨
Ll, N ∨ l) = T ′out2 are respected. Since C \Ll∨M ∨Ll 6≤r D′∨ l∨N ,
by induction D′ ∈ C(T ′out2) thus D ∈ Tout2.

3. Finally, if m1 is negative and m1�N ≺ l then (l, T ′) ∈ T \T1 and line
15 is triggered, thus D ∈ C(Tout).

References

1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press
(1998), http://www4.informatik.tu-muenchen.de/\%003cnipkow/TRaAT/

2. De Kleer, J.: An improved incremental algorithm for generating prime implicates.
In: Proceedings of the National Conference on Artificial Intelligence. pp. 780–780.
John Wiley & Sons ltd (1992)

3. Dershowitz, N.: Orderings for term-rewriting systems. In: Proceedings of the 20th
Annual Symposium on Foundations of Computer Science. pp. 123–131. IEEE Com-
puter Society, Washington, DC, USA (1979), http://dl.acm.org/citation.cfm?
id=1398508.1382612

4. Echenim, M., Peltier, N., Tourret, S.: A deductive-complete constrained superpo-
sition calculus for ground flat equational clauses. In: 4th Workshop on Practical
Aspects of Automated Reasoning. (2014)

5. Echenim, M., Peltier, N., Tourret, S.: A rewriting strategy to generate prime im-
plicates in equational logic. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) Au-
tomated Reasoning, pp. 137–151. No. 8562 in Lecture Notes in Computer Sci-
ence, Springer International Publishing (Jul 2014), http://link.springer.com/

chapter/10.1007/978-3-319-08587-6_10

6. Fredkin, E.: Trie memory. Commun. ACM 3(9), 490–499 (1960)

7. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Handbook
of Automated Reasoning, pp. 371–443 (2001)

