
Quantifier-Free Equational Logic and Prime
Implicate Generation

Mnacho Echenim1,2, Nicolas Peltier1,4 and Sophie Tourret1,3

1 Grenoble Informatics Laboratory
2 Grenoble INP - Ensimag
3 Université Grenoble 1

4 CNRS

Abstract. An algorithm for generating prime implicates of sets of equa-
tional ground clauses is presented. It consists in extending the standard
Superposition Calculus with rules that allow attaching hypotheses to
clauses to perform additional inferences. The hypotheses that lead to a
refutation represent implicates of the original set of clauses. The set of
prime implicates of a clausal set can thus be obtained by saturation of
this set. Data structures and algorithms are also devised to represent
sets of constrained clauses in an efficient and concise way. Our method
is proven to be correct and complete. Practical experimentations show
the relevance of our method in comparison to existing approaches for
propositional or first-order logic.

1 Introduction

We tackle the problem of generating the prime implicates of a quantifier-free
equational formula. From a formal point of view, an implicate of a formula S is
a clause C such that S |= C, and this implicate is prime if for all implicates D
such that D |= C, we have C |= D. In other words, prime implicates are the most
general clausal consequences of a formula, and their generation is a more difficult
problem than checking satisfiability. Prime implicate generation has many nat-
ural applications in artificial intelligence and system verification. It has been ex-
tensively investigated in the context of propositional logic [6,12,13,16,17,24,26],
but there have been only very few approaches dealing with more expressive
logics [14,15,18,19]. The approaches that are capable of handling first-order for-
mulæ are based mainly on unrestricted versions of the resolution calculus (with
an explicit encoding of equality axioms) or extensions of the tableau method
and do not handle equality efficiently. More recently, algorithms were devised to
generate sets of implicants of formulæ interpreted in decidable theories [8], by
combining quantifier-elimination (for discarding useless variables) with model
building (to construct sufficient conditions for satisfiability). The approach does
not apply to equational formulæ with function symbols since this would involve
second-order quantifier elimination.

In previous work [9,10] we devised procedures for generating implicates of
equational formulæ containing only constant symbols. In this paper, we propose

an approach to handle arbitrary uninterpreted function symbols. There are two
parts to our contribution. First, in Sect. 3, a calculus is devised to generate
implicates. It is based on the standard rules of the Superposition Calculus [20],
together with Assertion rules allowing the addition of new hypotheses during the
proof search. These hypotheses are attached to the clauses as constraints, and
once an empty clause is derived, the associated constraint corresponds to the
negation of an implicate. This algorithm is completely different from that of [9]:
its main advantage is that it remains complete even when applying all the usual
restrictions of the Superposition Calculus, and that it allows for a better control
of the generated implicates, in case the user is interested only to search for im-
plicates of some particular form. Second, in Sect. 4 we extend the representation
mechanism of [9] that uses a trie-based representation of equational clause sets
in order to handle function symbols. This extension is not straightforward since,
in contrast to [9], we have to encode substitutivity as well as transitivity. We
devise data-structures and algorithms to efficiently store equational sets up to
redundancy, taking into account the properties of the equality predicate. In Sect.
5 we experimentally compare our approach with existing tools [19,24] for propo-
sitional logic and first-order logic respectively. We also compare our method with
the approach consisting in encoding equational formulæ as flat clauses by ex-
plicitly adding substitutivity axioms and applying the algorithms from [10]. Due
to space limitations, the formal proofs are omitted. Proofs are all available at
http://membres-lig.imag.fr/tourret/documents/EPT15-long.pdf.

2 Clauses with Uninterpreted Functions in Equational
Logic

The theory of equational logic with uninterpreted functions will be denoted
by EUF (see [2] for details). Let Σ be a signature, and Σn the function symbols
in Σ of arity n, usually denoted by f , g (and a, b for Σ0). The notation T(Σ)
stands for the set of well-formed ground terms over Σ, most often denoted by
s, t, u, v, w. A well-founded reduction order ≺ on T(Σ) such as Knuth-Bendix
Ordering or Recursive Path Ordering [7] is assumed to be given. The subterm
of t at position p is denoted by t|p.

A literal, usually denoted by l or m, is either an equation (or atom, or positive
literal) s ' t, or an inequation s 6' t (or negative literal). The literal written s ./ t
can denote either the equation or the inequation between s and t. The literal
lc stands for s 6' t (resp. s ' t) when l is s ' t (resp. s 6' t). A literal of the
form s 6' s is called a contradictory literal (or a contradiction) and a literal of
the form s ' s is a tautological literal (or a tautology). We consider clauses as
disjunctions (or multisets) of literals and formulæ as sets of clauses. If C is a
clause and l a literal, C\l denotes the clause C where all occurrences of l have
been removed (up to commutativity of equality). In Sect. 3, we also consider
conjunctions of literals, called constraints. For every constraint X =

∧n
i=1 li, ¬X

denotes the clause
∨n
i=1 l

c
i . Similarly, if C =

∨n
i=1 li then ¬C def

=
∧n
i=1 l

c
i . Empty

clauses and constraints are denoted by � and > respectively. We often identify
sets of clauses with conjunctions.

We define an equational interpretation I as a congruence relation on T(Σ).
A positive literal l = s ' t is evaluated to > (true) in I, written I |= l, if s =I t;
otherwise l is evaluated to ⊥ (false). A negative literal l = s 6' t is evaluated to
> in I if s 6=I t, and to ⊥ otherwise. This evaluation is extended to clauses and
sets of clauses in the usual way. An interpretation that evaluates C to > is a
model of C (often written M in this paper). A tautological clause (or tautology)
is a clause of which all equational interpretations are models and a contradiction
is a clause that has no model.

We now associate every clause C with an equivalence relation ≡C among
terms, defined as the equality relation modulo the constraint ¬C, i.e., the small-
est congruence containing all pairs (t, s) such that t 6' s ∈ C.

Definition 1. Let C be a clause, we define for any term s the C-equivalence
class of s as [s]C = {t ∈ T(Σ) | ¬C |= s ' t}. The corresponding equivalence
relation is written ≡C . The C-representative of a term s, a literal l and a clause

D are respectively defined by s�C
def
= min≺([s]C), l�C

def
= s�C ./ t�C , for l = s ./ t,

and D�C
def
= {l�C | l ∈ D}

Example 2. Let a ≺ b ≺ c ≺ d ≺ e ≺ g(b) ≺ g(c) and C = a 6' g(c)∨ b 6' c∨ d '
e. The clause D = g(b) ' e is such that D�C = a ' e because [c]C = {b, c},
[g(b)]C = {a, g(b), g(c)} and [e]C = {e}.

The two following orders on literals are used throughout the paper. Both
orders are extended to clauses using the multiset extension and are relaxed (into
� and ≤π resp.) by also accepting equal literals or clauses.

1. The total order ≺ on terms is extended to literals by considering that a
negative literal t 6' s is a set {{t, s}} and that a positive literal s ' t is
{{t} , {s}} (see [22]).

2. The total order <π on literals is defined as follows:
– the equations are all greater than the inequations;
– for l1 and l2 literals with the same polarity, l1 <π l2 iff l1 ≺ l2.

The order ≺ is used, as is usual, to determine which implicates are prime and
which are redundant (see Definition 14). The order <π is useful for handling
clauses as presented in Sect. 4, but is not used outside of this scope.

Example 3. Let C = g(a) 6' b ∨ c ' d and D = a 6' b ∨ f(c) ' d, with
a ≺ b ≺ c ≺ d ≺ f(c) ≺ g(a). We have D ≺ C and C <π D, because on
the one hand a 6' b ≺ c ' d ≺ f(c) ' d ≺ g(a) 6' b, and on the other hand
a 6' b <π g(a) 6' b <π c ' d <π f(c) ' d.

In propositional logic, testing entailment amounts to a simple inclusion test
[6] but things are more complex in EUF because the axioms of transitivity and
substitutivity must be taken into account. For example, the clause e 6' b ∨ b 6'
c ∨ f(a) ' f(b) is a logical consequence of the clause e 6' c ∨ a ' c because of
these axioms. The following theorem describes the so-called projection method
for testing entailment in a syntactic way.

Theorem 4. Let C and D be two non-tautological clauses. The relation D |= C
holds iff for every negative literal l in D, the literal l�C is a contradiction and
for every positive literal l in D, there exists a positive literal m in C such that
m�C∨lc is tautological.

Example 5. Given the order a ≺ b ≺ c ≺ e ≺ f(a) ≺ f(b) on terms, let D = e 6'
c∨a ' c and C = e 6' b∨b 6' c∨f(a) ' f(b), and let l = e 6' c and m = a ' c be
the literals of D. We have l�C = b 6' b because [b]C = {b, c, e} and min

≺
([b]C) = b.

Moreover the literal f(a) ' f(b) ∈ C is such that (f(a) ' f(b))�C∨mc = f(a) '
f(a), hence C is redundant w.r.t. D.

In order to avoid having to handle large numbers of equivalent clauses, we
define a clausal normal form that is unique up to equivalence.

Definition 6. A non-tautological clause C is in normal form if:

1. every negative literal l in C is such that l�C\l = l;

2. every literal t ' s ∈ C is such that t = t�C and s = s�C ;

3. there are no two distinct positive literals l, m in C such that m�lc∨C is a
tautology;

4. C contains no literal of the form t 6' t;
5. the literals in C occur exactly once in C.

The normal form equivalent to C is denoted by C↓.

In our previous work on prime implicate generation [9], the focus was on strictly
flat clauses (i.e., that contain only constant symbols). For the sake of handling
non-flat clauses, the clausal normal form (see [10], Def. 4) had to be extended.
The differences lie with points 1 and 3 of Def. 6. They respectively strengthen
the requirements on negative and positive literals to cover the non-flat ones.

Example 7. Using the same term ordering as in Ex. 5, the clause c 6' b ∨ e 6'
b ∨ f(b) ' f(a) is the normal form of the clauses c 6' b ∨ e 6' b ∨ f(c) ' f(a),
c 6' b ∨ e 6' b ∨ f(e) ' f(a), c 6' e ∨ e 6' b ∨ f(b) ' f(a), etc.

Theorem 8. The normal form of a non-tautological clause C is the ≺-smallest
clause equivalent to C.

3 Implicate Generation

Definition 9. A constrained clause (or c-clause) is a pair [C |X] where C is a
clause and X is a constraint.

[C | >] is often written simply as C and referred to as a standard clause. A
constraint is normalized, or in normal form, if the clause ¬X is in normal form.
Note that only non-contradictory constraints can be normalized. Semantically,
a constrained clause [C | X] is equivalent to the standard clause ¬X ∨ C. For
example the c-clause [c ' b | f(a) ' c ∧ c 6' d] is equivalent to c ' b ∨ f(a) 6'

Superposition [r ' l ∨ C |X] [u ./ v ∨D |Y]

[u[l] ./ v ∨ C ∨D |X ∧ Y]

If u|p = r, r � l, u � v,
and (r ' l) and (u ./ v)
are selected in (r ' l ∨C)
and (u ./ v ∨ D) respec-
tively.

Factoring [t ' u ∨ t ' v ∨ C |X]

[t ' v ∨ u 6' v ∨ C |X]

If t � u, t � v and (t ' u)
is selected in t ' u ∨ t '
v ∨ C.

Table 1: Standard Inference Rules

c ∨ c ' d. Intuitively, the intended meaning of a c-clause [C | X] is that the
clause C can be inferred provided the literals in X are added as axioms to the
considered clause set. The usual notion of redundancy is extended to c-clauses.

Definition 10. A c-clause [C | X] is redundant w.r.t. a set of c-clauses S if
either X is unsatisfiable or there exist c-clauses [Di | Yi] ∈ S (1 ≤ i ≤ n) such
that ∀i ∈ {1 . . . n}Di � C and Yi ⊆ X , and X ′, D1, . . . , Dn |= C, where X ′
denotes the set of literals in X that are ≺-smaller than C.

We now present an extension of the standard superposition calculus [20] to
a constrained superposition calculus referred to as cSP, that is able to generate
all prime implicates of a formula up to redundancy. This calculus is composed of
the standard superposition rules extended to constrained clauses (Table 1) along
with two assertion rules (Table 2). As usual the calculus is parameterized by the
ordering � on terms and by a selection function sel, where sel(C) contains all
maximal literals in C or at least one negative literal. A literal is selected in C if it
occurs in sel(C). We assume that the clausal part of c-clauses is systematically
normalized, which explains the absence of the reflexion rule from Table 1. Note,
however, that the constraint part is not normalized. Instead, the rules apply
only if the constraint of the conclusion is already in normal form, up to the
deletion of repeated literals. This strategy greatly prunes the search space, since
many inferences can be dismissed. It also preserves deductive-completeness, since
intuitively, one can always assume that implicates are in normal form.

Example 11. Consider the following c-clauses (with f(a) � d � c � b � a):
C : [f(a) ' b | d 6' c], D : [f(a) ' c | d 6' c], E : [f(a) ' c | d 6' a]. The
Superposition rule applies on C and D, yielding: [b ' c |d 6' c] (the conjunction
d 6' c ∧ d 6' c is replaced by d 6' c). However, the rule does not apply on C and
E because the constraint d 6' c ∧ d 6' a is not in normal form.

The principle of cSP is to generate the implicates of a formula as constraints
of the empty clause. The standard inference rules are used to refute the clausal
part of c-clauses, while the assertion rules explore the possible implicates by
making hypotheses about their literals, and these are stored in the constraint
part of the c-clauses. Since only the c-clauses with a refutable clausal part are of
interest, the addition of new hypotheses is done only if these hypotheses render
a new superposition inference possible (into the clause to which the rule applies
for the Pos. Assert. rule and into the asserted literal for the Neg. Assert. rule).

Positive
Assertion

[u ./ v ∨ C |X]

[u[s] ./ v ∨ C |X ∧ t ' s]

If u|p = t, t � s, u � v and (u ./
v) is selected in (u ./ v ∨ C).

Negative
Assertion

[t ' s ∨ C |X]

[u[s] ./ v ∨ C |X ∧ u ./ v]

If u|p = t, t � s, u � v, and
(t ' s) is selected in (t ' s ∨ C).

Table 2: Assertion Rules

In other words, these rules use the fact that S |= C iff S ∧ ¬C |= � to build
implicates literal by literal.

Example 12. The following example shows how to derive the implicate a 6' d ∨
f(c) ' f(b) from {a ' b, f(c) ' f(d)}, given the term ordering a ≺ b ≺ c ≺ d ≺
f(a) ≺ f(b) ≺ f(c) ≺ f(d).

1 [f(c) ' f(d) |>] (hyp)
2 [f(c) ' f(a) |a ' d] (Pos. AR, 1)
3 [f(a) 6' f(b) |a ' d ∧ f(c) 6' f(b)] (Neg. AR, 2)
4 [a ' b |>] (hyp)
5 [f(a) 6' f(a) |a ' d ∧ f(c) 6' f(b)] (Sup. 3, 4)
6 [� |a ' d ∧ f(c) 6' f(b)] (Ref. 5)

The negation of a ' d ∧ f(c) 6' f(b) is the desired implicate. Note for instance
that the addition of the hypothesis a ' d in Clause 1 was possible because it
allowed one to replace constant d by a. The Assertion rules merge in a single
rule the addition of a new hypothesis followed by a superposition inference from
or into this hypothesis.

Theorem 13. cSP is sound and deductive-complete, i.e., for any set of clauses
S, C is a non-tautological implicate of S iff cSP generates from S a c-clause
[� |X] such that ¬X |= C.

Note that S possibly admits infinitely many prime implicates (e.g.,
a ' b, c ' d |= f(a, c, t) ' (b, d, t) for every term t). Furthermore, S is not nec-
essarily equivalent to its set of prime implicates, for instance {f(a) ' a, f(b) '
b, a 6' b} |= fn(a) 6' fn(b), for every n ∈ N and none of the fn(a) 6' fn(b) is
prime, because fn+1(a) 6' fn+1(b) |= fn(a) 6' fn(b) holds for any n ∈ N.

4 Clause Storage and Redundancy Detection

To store the clauses generated by cSP and efficiently detect redundancies, a
trie-like data structure, the clausal tree, is used. It allows one to store efficiently
and concisely sets of clauses while taking into account equality axioms. Note
that, since our goal is to generate all prime implicates of a formula, we only

test one-to-one entailment between clauses (in contrast to the usual practice in
automated deduction we cannot discard clauses that are redundant w.r.t. more
than one clause since this clause may well be prime). For this reason, we define
e-subsumption, and we assimilate it to redundancy in the rest of this article.

Definition 14. Let C and D be two clauses. The clause C e-subsumes the clause
D, written C ≤e D, iff C |= D and C � D. A c-clause [C | X] c-subsumes a
clause [D |Y], written [C |X] ≤e [D |Y]) iff C ≤e D and X ⊆ Y.

Note that both parts of the c-clauses are handled in different ways: the inclusion
relation⊆ used to compare constraints is clearly stronger than the e-subsumption
relation ≤e used for clauses. For instance we have (if a � b � c):

[a 6' b ∨ f(b) ' f(d) |>] ≤e [a 6' c ∨ b 6' c ∨ f(c) ' f(d) |>], but

[� |a ' b ∧ f(b) 6' f(d)] 6≤e [� |a ' c ∧ b ' c ∧ f(c) 6' f(d)].

Clausal trees are similar to the tries of propositional logic that are trees where
the edges are labeled with literals and where some additional ordering constraints
ensure the efficiency of the search algorithms. In such a tree, the represented
clauses are the branches, that is the disjunction of the literals labeling the edges
from root to leaf.

Definition 15. A clausal tree is inductively defined as either �, or a set of
pairs of the form (l, T ′) where l is a literal and T ′ a clausal tree. In addition, a
clausal tree T with (l, T ′) ∈ T must respect the following conditions:

– for all l′ appearing in T ′, l′ <π l,
– there is no clausal tree T ′′ 6= T ′ such that (l, T ′′) ∈ T .

The set of clauses represented by a clausal tree T is defined inductively as follows:

C(T) =

{�} if T = �⋃

(l,T ′)∈T

 ⋃
D∈C(T ′)

{l ∨D}

 otherwise.

As the definition implies, leaves can be either � or ∅, but in practice if a leaf
is labeled with ∅ (a failure node) then the corresponding branch is irrelevant
because a tree of the form T ∪ {(l, ∅)} can be replaced by T without affecting
the represented set. The only exception is the empty tree, in which the root
is labeled with ∅. A clausal tree is normalized if all the clauses in C(T) are in
normal form. In the following, we assume that all clausal trees are normalized.

Example 16. The structure T below is a clausal tree with the term order a ≺
b ≺ c ≺ g(c) ≺ g(e) ≺ f(c) ≺ f(d). No leaf is labeled with ∅, and for a better
readability the labels are associated with the nodes rather than with the edges
leading to them.

T

a 6' g(b)

f(c) 6' f(d)

c ' g(e)a ' c

f(a) ' c

a ' b

f(a) ' c

The clauses in C(T) are:

a ' b ∨ f(a) ' c
a 6' g(b) ∨ f(a) ' c
a 6' g(b) ∨ f(c) 6' f(d) ∨ a ' c
a 6' g(b) ∨ f(c) 6' f(d) ∨ c ' g(e)

Notation 17 Let C be a clause in normal form and T be a clausal tree such
that ∀D ∈ C(T), C ∨D is in normal form and ∀l ∈ D, C <π l. In this case, C.T
denotes the clausal tree T ′ such that C(T ′) = {C ∨D |D ∈ C(T)}.

The storage of constrained clauses is similar to that of standard clauses. A
main clausal tree is used to store the clausal part of constrained clauses and
at each leaf of this tree, a trie is appended to store the different constraints
associated to the same clause. Note that, according to Def. 10, constraints are
compared using set inclusion instead of logical entailment 5, thus the second tree
must be a trie and not a clausal tree. In addition, all generated implicates (c-
clauses with an empty clausal part) should be stored in a clausal tree in order
to remove non-prime implicates.

There are three main operations on clausal trees. The first one consists in
checking whether a new clause is redundant w.r.t. an existing one already stored
in a clausal tree. The second one removes from a clausal tree all clauses that are
redundant w.r.t. a given clause. The last one is the insertion of a new clause into a
clausal tree. This last operation is straightforward and thus is not described here.
On the contrary, the first two operations are not trivial and are thus carefully
detailed in the remaining parts of this section. The algorithms for c-clauses
are neither theoretically nor technically challenging compared to the ones for
standard clauses. Thus the choice was made to present them only for standard
clauses.

The algorithm isEntailed (Alg. 1) tests whether a clause C is redundant
w.r.t. a clause in C(T), where T is a clausal tree. To do so, a call is made to
isEntailed(T,�, C,�) and in the recursive calls to isEntailed(T ′,M,C ′, N),
M ∨ C ′ is equal to C and N represents the path from the root of T to the
subtree T ′. The principle underlying these calls is to go through the input clause
C and tree T while performing the operations necessary to test entailment with
the projection method (Th. 4). Note that it is here that the use of the order
<π is crucial. Intuitively, the need for this order stems from the fact that the
negative literals of a clause C are the ones used to project C onto other clauses.
In particular for the projection of positive literals, it is necessary to know of all
the negative literals that belong to C, while the reverse does not hold.

5. Using logical entailment makes the calculus incomplete due to the deletion of
clauses whose constraint is not in normal form.

Algorithm 1 isEntailed(T, M, C, N)

Require: T is a clausal tree in normal form, M ∨C and N are clauses in normal form,
M is negative and N |= M ∨ C

Ensure: isEntailed(T, M, C, N) = > iff ∃D ∈ C(T), D ∨N ≤e M ∨ C
1: if T = � then return N �M ∨ C

2: T1 ← {(l, T ′) ∈ T | l�M is a contradiction}
3: if

∨
(l,T ′)∈T1

isEntailed(T ′, M, C, N ∨ l) then return >

4: if C = � then return ⊥
5: m1 ← min

<π
{m ∈ C}

6: if m1 is of the form u 6' v, with u � v then
7: T2 ← {(l, T ′) ∈ T | l�M 6<π m1 and @w, (l�M = u 6' w, with u � w)}
8: return

∨
(l,T ′)∈T2

isEntailed(l.T ′, M ∨m1, C \m1, N)

9: else
10: T3 ← {(l, T ′) ∈ T | C�M∨lc contains a tautological literal}
11: return

∨
(l,T ′)∈T3

isEntailed(T ′, M, C, N ∨ l)

Theorem 18. If T is a clausal tree in normal form, M ∨ C and N are
clauses in normal form, M is negative and N |= M ∨ C then the call
isEntailed(T,M,C,N) terminates and isEntailed(T,M,C,N) = > iff ∃D ∈
C(T), D ∨N ≤e M ∨ C.

The algorithm pruneEntailed (Alg. 2) removes from the input tree T all
the clauses redundant w.r.t. the input clause C. It proceeds by going through
both objects, performing projections and storing the already considered literals
in parameters N and M . Once an entailment is established in this way, all
that remains is to compare the selected clauses using the order ≺ to detect
redundancies. This last part is done by the algorithm pruneInf (Alg. 3).

Proposition 19. Let C and N be clauses in normal form and T be a clausal
tree in normal form verifying the preconditions of pruneInf. The output tree
Tout = pruneInf(T,C,N) is such that C(Tout) = {DT ∈ C(T) | C 6≤e DT ∨N}.

Theorem 20. Let C ∨ M and N be clauses in normal form and T be a
clausal tree in normal form verifying the preconditions of pruneEntailed.
Then the calls pruneEntailed(T,M,C,N) and pruneInf(T,C,N) always
terminate and Tout = pruneEntailed(T,M,C,N) is such that C(Tout) =
{D ∈ C(T) | C ∨M 6≤e D ∨N}.

Remark 21. The main difference with the flat version of the algorithms [9] is
the handling of clausal tree branches labeled with positive literals, which had
to be adapted to the redefined projection method. Also the case in which no
redundancy is detected (resp. lines 4 & 5 of Alg. 1 & 2) has to be postponed.
To ensure the correctness of the algorithms some recursive cases must now be
checked first.

Algorithm 2 pruneEntailed(T, M, C, N)

Require: T is a clausal-tree in normal form, M ∨C and N are clauses in normal form,
M |= N and isEntailed(N.T , �, C ∨M, �) = ⊥.

Ensure: C(Tout) = {D ∈ C(T) | C ∨M 6≤e D ∨N} ,
with Tout = pruneEntailed(T, M, C, N).

1: if C = � then return pruneInf(T, M, N)

2: select m1 ∈ C such that m1�N = min
<π
{m�N |m ∈ C}

3: if m1�N is a contradiction then
4: return pruneEntailed(T, M ∨m1, C \m1, N)

5: if T = � then return T
6: T1 ← {(l, T ′) ∈ T | l = u 6' v ∧m1�N � l}
7: Tout1 ← {(l, pruneEntailed(T ′, M, C, N ∨ l)|

(l, T ′) ∈ T1 ∧ pruneEntailed(T ′, M, C, N ∨ l) 6= ∅}
8: if m1 is positive then
9: T2 ← T \ T1

10: Tout2 ← {(l, pruneEntailed(T ′, M ∨ Ll, C \ Ll, N ∨ l))|
(l, T ′) ∈ T2 ∧ Ll = {m ∈ C | l�N∨m is tautological}∧
pruneEntailed(T ′, M ∨ Ll, C \ Ll, N ∨ l) 6= ∅}

11: return Tout1 ∪ Tout2
12: else
13: return Tout1 ∪ T \ T1

Algorithm 3 pruneInf(T,C,N)

Require: T is a clausal-tree in normal form, C in a clause in normal form, N is a
clause in normal form, C |= N .

Ensure: C(Tout) = {D ∈ C(T)|C 6≤e D ∨N}, with Tout = pruneInf(T,C,N).
1: if T = � and C 6� N then return T

2: if C 6� N then
3: return {(l, pruneInf(T ′, C,N ∨ l))|(l, T ′) ∈ T∧

pruneInf(T ′, C,N ∨ l) 6= ∅}
4: return ∅

5 Experimental Results

We have developed a prototype for generating EUF prime implicates. It uses
the Logtk library [5] at its core for term manipulation, and for parsing TPTP
inputs [25]. The cSP rules and the clausal tree operations are built into a Given-
Clause loop [23] (in the Otter variant). To ensure termination, it is necessary to
impose additional conditions on the generated implicates. Indeed, the set of im-
plicates is infinite in general, e.g, a 6' b, f(a) ' a, f(b) ' b |= fn(a) 6' fn(b). In
the experiments we only computed implicates built on the set of ground terms
occurring in the initial formula. We tested the tool on two sets of problems:
a collection of randomly generated formulæ of small size and a set of bench-
marks from the SMT-LIB library [3]. All the tests were conducted on a machine
equipped with an Intel core i5-3470 CPU and 4× 2 GB of RAM.

successes SOLAR successes Zres successes (flat-)cSP timeouts
time(s) inf. PIs time(s) inf. PIs time(s) inf. PIs inf. PIs?

SOLAR 15% 11.842 663190 506 - - - - - - 2452908 28152
Zres 52% 0.695 X 2986 12.474 X 13804 - - - X X

flat-cSP 63% 6.622 5157 74 2.334 3300 158 14.290 11005 348 68959 X
cSP 76% 0.042 110 21 3.436 1322 47 10.193 1834 79 14714 538

Table 3: Randomly generated formulæ - test results summary

The first experiment presented is a comparison of different prime implicate
generation systems on a set of randomly generated formulæ with a timeout of 5
minutes. The selected systems are:

– Zres 6, a prime implicate generation tool for propositional logic [24],
– SOLAR 7, a prime implicate generation tool for first-order logic [19] which

can handle equational formulæ through the use of modification methods
[11],

– cSP, the prime implicate generator prototype for ground equational logic
described in this paper,

– and flat-cSP, the former version of the cSP prototype, that only handles
flat clauses.

To the best of our knowledge only two other prime implicate generation tools
are currently available. One is ritrie [17], a tool that generates propositional
prime implicates. This tool was outperformed by Zres in past experiments and
we chose not to include it in this set of experiments. The second is the Mistral

SMT solver [8] that cannot be compared with the other tools because its prime
implicate generation is not complete. More generally the approach in [8] applies
to any theory admitting quantifier-elimination but this property does not hold
for the logic we consider in the present paper since the elimination of function
symbols would require to handle second-order quantification. The input prob-
lems were flattened (see e.g. [4] for a definition) for flat-cSP and Zres, and the
substitutivity axiom instantiated when necessary. Furthermore, for Zres, these
flat equational problems were also converted to propositional ones, by instanti-
ating the transitivity of equality when necessary. In order to perform meaningful
comparisons, SOLAR has been parameterized to generate only implicates built on
the considered ground terms. Note that Zres generates propositional implicates
which can always be translated back into equational clauses built on these terms.

The test set consists of randomly generated formulæ of 2 to 4 clauses con-
taining 1 to 3 literals each, with terms of depth between 0 and 2, based on
signatures of either 3 or 6 symbols of arity 0 or 1 and 2 constants. Six formulæ
are generated in each case, for a total of 144 benchmarks. Although the resulting
formulæ are rather small, some of them are complex enough that they timeout
on all systems and some produce tens of thousands of implicates, generated after
millions of inferences.

The results are summarized in Table 3. Each line corresponds to a system.
The column labeled ’successes’ indicates the percentage of tests that were com-
pleted before the 5 minute timeout. The three columns under the label ’SOLAR

6. Many thanks to Prof. L. Simon for providing the executable file.
7. Many thanks to Prof. H. Nabeshima for providing the executable file.

successes’ summarize average results on those tests on which SOLAR terminated
before the timeout. The other columns contain results on tests on which Zres

terminated but not SOLAR, and on which flat-cSP terminated but not Zres and
SOLAR. Finally, the ’timeout’ columns expose the mean results on all interrupted
tests. Columns labeled ’time’, ’inf.’ and ’PIs’ respectively give the mean exe-
cution time, mean number of inferences and mean number of prime implicates
found for each set of tests. The last column is labeled ’PIs?’ because due to the
timeout, the implicates found are not guaranteed to be prime. Cells labeled with
an ’X’ indicate that the corresponding data is not accessible.

As shown in the ’successes’ column, cSP is the obvious winner in terms of
the number of tests handled before timeout. It should also be mentioned that
cSP solves all the problems that other systems solve, except for two that are
solved only by Zres. The 15% of problems solved by SOLAR are the simplest
of the random formulæ. The results show that SOLAR’s approach is very costly
both in terms of time and space, although methods to reduce these costs are
being investigated 8. The high number of prime implicates this tool generates
compared to those produced by cSP may seem surprising. In fact, SOLAR re-
turns an over-approximation of the result because it does not take into account
the equality axioms in its redundancy detection. Thus for example, any literal
t ' s also appears as s ' t and f(s) ' f(t) is not detected as redundant w.r.t.
s ' t. Comparatively, the huge number of prime implicates generated by Zres is
not surprising at all. It stems directly from the propositional translation of the
initial problems and the introduction of new propositional variables. Although
Zres is faster than cSP on the problems they both solve, it solves only 52% of
the problems, while cSP solves 76% of them. The results in the ’(flat-)cSP’
column are globally higher than those in the ’Zres successes’ columns, because
the most difficult benchmarks are solved only by cSP and to a lesser extend by
flat-cSP. Since cSP solves more problems than flat-cSP and does so faster and
with fewer clauses processed, cSP is clearly better adapted to dealing with orig-
inally non-flat formulæ. The number of inferences and generated non-redundant
implicates when the tool times out illustrate the heavy cost of the cSP inferences
and redundancy detection mechanism compared to that of SOLAR. It is a price
that seems partly unavoidable to eliminate all redundancies, since this requires
complex algorithms.

The second experiment presented uses benchmarks from the QF AX logic of
SMT-LIB [3]. They are synthetic benchmarks that model some properties in the
SMT theory of arrays with extensionality, namely:

– some swappings of elements between cells of an array are commutative
(swap benchmarks),

– swapping elements between identical cells of equal arrays generate equal
arrays (storeinv benchmarks)

The benchmarks labeled with invalid have been tweaked to falsify the property.

Given that cSP cannot handle smt-lib inputs or the theory of arrays, we
preprocessed the benchmarks by first converting them to TPTP using the

8. Personal communication of Prof. Nabeshima

SMTtoTPTP tool 9 and then applying the method described in [4] to generate
equisatisfiable problems free of the axioms of the theory of arrays with exten-
sionality. As shown in [1], these problems can be nontrivial to solve even for
state-of-the-art theorem provers like E [23] and one cannot expect that the entire
set of prime implicates can be generated in reasonable time. We use them mainly
to evaluate the impact of our redundancy-pruning technique on the number of
superposition inferences carried out by blocking the Assertion rules inferences,
allowing the comparison of cSP with the E theorem prover. The main differences
between the methods are the normalization of clauses and the redundancy prun-
ing mechanism. On the one hand, the redundancy pruning algorithm used by
cSP is weaker because it does not allow for equational simplification or other
n-to-one redundancy pruning rules. On the other hand one-to-one redundancy
testing is stronger since its uses logical entailment instead of subsumption. The
comparison of cSP with the E theorem prover on these benchmarks shows that
the normalization approach can, in some nontrivial cases, reduce the number of
processed clauses by an order of magnitude.

0 10000 20000 30000 40000 50000 60000
0

2000

4000

6000

8000

10000

12000

14000

E prover

cS
P

Fig. 1: swap benchmarks - comparison of
the number of processed clauses for E

and cSP.

Figure 1 presents the most no-
table results of this experiment, that
is the results of the swap benchmarks.
Among these, only the benchmarks on
which both E and cSP (without Asser-
tion rules) terminate before timeout
and without memory overflow were
kept, i.e. 76 out of 146. Squares rep-
resent the invalid benchmarks, i.e.
the satisfiable formulæ, while crosses
mark the unsatisfiable ones. An in-
teresting observation is that for the
largest invalid benchmarks, cSP needs
to process a smaller number of clauses
than E before terminating, even 10 times less in the case of the invalid swap

benchmarks. The unsatisfiable swap benchmarks were run with a timeout of 10
minutes (the triangles in Fig. 1) and the corresponding results hint that this
phenomenon could also be true for larger unsatisfiable problems. This suggests
that the redundancy pruning technique based on normalization and clausal trees
could be profitably integrated into state-of-the-art superposition-based theorem-
provers, at least for ground equational clause sets. However, it might not always
be useful, for example the 10 out of 19 storeinv benchmarks that do not fail
show the opposite tendency.

6 Conclusion

In this article, a novel approach for the generation of prime implicates in
ground equational logic is presented. It is proved sound and complete and ex-

9. http://users.cecs.anu.edu.au/~baumgart/systems/smttotptp/

periments are conducted to compare the approach to state-of-the-art tools. These
show that cSP outperforms all other prime implicate generation systems on sim-
ple formulæ and can even tackle more involved problems than others, although
none of the methods scale well. We also evaluate the impact of the normalization
and pruning techniques of cSP compared to the redundancy detection of the E

theorem prover. A potential improvement of redundancy detection using these
techniques is highlighted. From a practical point of view, the implementation of
the cSP prototype leaves rooms for many improvements, for instance a better
selection strategy could be used. Note also that tries or clausal trees can be rep-
resented as directed acyclic graphs (where identical subtrees are shared) in order
to merge suffixes as well as prefixes of clauses. A more drastic evolution would be
to integrate cSP to an existing theorem prover to take advantage of its built-in
optimizations. On the theoretical side, the cSP calculus can easily be extended,
at least to handle variables, but the extensibility of the redundancy detection
method has not been investigated yet. Well-known theoretical limitations may
threaten such an extension since the entailment relation in full first-order logic
is not decidable [21]. The frontier of what can and cannot be done on the gen-
eration of prime implicates in first-order logic is not yet clear and needs further
investigations.

References

1. A. Armando, M. P. Bonacina, S. Ranise, and S. Schulz. New results on rewrite-
based satisfiability procedures. ACM Trans Comput Log., 10(1):1–51, 2009.

2. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

3. C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB standard: Version 2.0. Techni-
cal report, Department of Computer Science, The University of Iowa, 2010. Avail-
able at ttwww.SMT-LIB.org.

4. M. P. Bonacina and M. Echenim. Theory decision by decomposition. J. Symb.
Comput., 45(2):229–260, 2010.

5. S. Cruanes. Logtk: A logic ToolKit for automated reasoning and its implementa-
tion. In 4th Workshop on Practical Aspects of Automated Reasoning., 2014.

6. J. De Kleer. An improved incremental algorithm for generating prime implicates.
In Proceedings of the National Conference on Artificial Intelligence, pages 780–780.
John Wiley & Sons ltd, 1992.

7. N. Dershowitz. Orderings for term-rewriting systems. In Proceedings of the 20th
Annual Symposium on Foundations of Computer Science, pages 123–131, Wash-
ington, DC, USA, 1979. IEEE Computer Society.

8. I. Dillig, T. Dillig, K. L. McMillan, and A. Aiken. Minimum satisfying assignments
for SMT. In P. Madhusudan and S. A. Seshia, editors, Computer Aided Verification,
number 7358 in Lecture Notes in Computer Science, pages 394–409. Springer, 2012.

9. M. Echenim, N. Peltier, and S. Tourret. An approach to abductive reasoning in
equational logic. In F. Rossi, editor, IJCAI 2013 - International Joint Conference
on Artificial Intelligence, pages 531–537, Beijing, China, Aug. 2013. AAAI Press.

10. M. Echenim, N. Peltier, and S. Tourret. A rewriting strategy to generate prime
implicates in equational logic. In S. Demri, D. Kapur, and C. Weidenbach, editors,
Automated Reasoning, number 8562 in Lecture Notes in Computer Science, pages
137–151. Springer International Publishing, July 2014.

11. K. Iwanuma, H. Nabeshima, and K. Inoue. Toward an efficient equality computa-
tion in connection tableaux: A modification method without symmetry transfor-
mation—a preliminary report—. First-Order Theorem Proving, page 19, 2009.

12. P. Jackson. Computing prime implicates incrementally. Autom. Deduc. CADE-11,
pages 253–267, 1992.

13. A. Kean and G. Tsiknis. An incremental method for generating prime impli-
cants/implicates. J. Symb. Comput., 9(2):185–206, 1990.

14. E. Knill, P. T. Cox, and T. Pietrzykowski. Equality and abductive residua for horn
clauses. Theoretical Computer Science, 120(1):1–44, Nov. 1993.

15. P. Marquis. Extending abduction from propositional to first-order logic. In P. Jor-
rand and J. Kelemen, editors, Fundamentals of Artificial Intelligence Research,
number 535 in Lecture Notes in Computer Science, pages 141–155. Springer, 1991.

16. A. Matusiewicz, N. Murray, and E. Rosenthal. Prime implicate tries. Autom.
Reason. Anal. Tableaux Relat. Methods, pages 250–264, 2009.

17. A. Matusiewicz, N. Murray, and E. Rosenthal. Tri-based set operations and selec-
tive computation of prime implicates. Found. Intell. Syst., pages 203–213, 2011.

18. M. C. Mayer and F. Pirri. First order abduction via tableau and sequent calculi.
Log. J. IGPL, 1(1):99–117, 1993.

19. H. Nabeshima, K. Iwanuma, K. Inoue, and O. Ray. SOLAR: An automated de-
duction system for consequence finding. AI Commun., 23(2):183–203, Jan. 2010.

20. R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem proving. In Hand-
book of Automated Reasoning, pages 371–443. 2001.

21. M. Schmidt-Schauss. Implication of clauses is undecidable. Theor. Comput. Sci.,
59:287–296, 1988.

22. S. Schulz. E - a brainiac theorem prover. AI Commun, 15(2-3):111–126, 2002.

23. S. Schulz. System description: E 1.8. In K. McMillan, A. Middeldorp, and
A. Voronkov, editors, Proc.of the 19th LPAR, Stellenbosch, volume 8312 of LNCS.
Springer, 2013.

24. L. Simon and A. Del Val. Efficient consequence finding. In International Joint
Conference on Artificial Intelligence, volume 17, pages 359–370. Lawrence Erlbaum
Associates ltd, 2001.

25. G. Sutcliffe. The TPTP problem library and associated infrastructure: The FOF
and CNF parts, v3.5.0. J. Autom. Reason., 43(4):337–362, 2009.

26. P. Tison. Generalization of consensus theory and application to the minimization
of boolean functions. IEEE Trans. Electron. Comput., EC-16(4):446–456, 1967.

