
An Approach to Abductive Reasoning in Equational Logic∗

M. Echenim, N. Peltier, S. Tourret
University of Grenoble (CNRS, Grenoble INP/LIG)

Abstract
Abduction has been extensively studied in proposi-
tional logic because of its many applications in arti-
ficial intelligence. However, its intrinsic complex-
ity has been a limitation to the implementation of
abductive reasoning tools in more expressive log-
ics. We have devised such a tool in ground flat
equational logic, in which literals are equations or
disequations between constants. Our tool is based
on the computation of prime implicates. It uses a
relaxed paramodulation calculus, designed to gen-
erate all prime implicates of a formula, together
with a carefully defined data structure storing the
implicates and able to efficiently detect, and re-
move, redundancies. In addition to a detailed de-
scription of this method, we present an analysis of
some experimental results.

1 Introduction
Abductive reasoning (see for instance [Peirce, 1955]) is the
process of inferring relevant hypotheses from data (as op-
posed to deduction, which consists in deriving logical con-
sequences of axioms). Given a logical formula C, the goal is
to compute a formula H such that the implication H ⇒ C
holds. This mode of reasoning can be used for instance
to infer plausible explanations of observed facts. There ex-
ists an extensive amount of research on abductive reasoning,
mainly in propositional logic, with numerous applications for
instance in planning [Shanahan, 1989] or truth-maintenance
in knowledge bases [De Kleer and Reiter, 1987]. Abduction
can be performed in a top-down manner, by allowing some
hypotheses to be asserted instead of being proven. However it
is more often reduced to a consequence-generation problem:
indeed, by contrapositive, the implication H ⇒ C holds iff
¬H is a logical consequence of ¬C. Thus explanations of
C can be generated from the derivation of the logical conse-
quences (i.e., the implicates) of the negation of C. In gen-
eral, these explanations are further restricted to ensure rele-
vance: for instance only explanations defined on a particular

∗This work has been partly funded by the project ASAP of the
French Agence Nationale de la Recherche (ANR-09-BLAN-0407-
01).

set of symbols, called the abducible symbols are considered.
It is clear that the problem of generating all the implicates of
a given formula is much more difficult than merely testing
whether the latter is satisfiable. Existing proof procedures
are tailored to test that a given formula is a logical conse-
quence of a set of axioms (usually by reductio ad absurdum),
and therefore are not well-adapted to generate all such im-
plicates. Existing approaches for computing implicates are
mostly restricted to propositional logic. They use either vari-
ants of the resolution rule (see, e.g., [Leitsch, 1997]), together
with specific redundancy criteria and strategies ensuring effi-
ciency [Tison, 1967; Kean and Tsiknis, 1990; Jackson, 1992;
De Kleer, 1992], or decomposition-based approaches in the
spirit of the DPLL method, which compute implicates by
recursively decomposing them into smaller pieces [Rymon,
1994; Ramesh et al., 1997; Matusiewicz et al., 2009]. To the
best of our knowledge, the only published papers in which the
problem of abductive reasoning in more expressive logics has
been considered are [Mayer and Pirri, 1993; Marquis, 1991;
Mayer and Pirri, 1994]. In [Marquis, 1991], implicates are
generated by using the resolution rule. This approach extends
straightforwardly to first-order logic (using unification) and
some specific classes for which termination can be ensured
are defined, relying on well-known termination results for the
resolution calculus, see for instance [Fermüller et al., 2001].
In [Mayer and Pirri, 1993] a tableaux-based proof procedure
is described for abductive reasoning. The principle is to ap-
ply the usual decomposition rules of propositional logic, and
then to compute the formulæ that force the closure of all open
branches in the tableaux, thus yielding sufficient conditions
ensuring unsatisfiability. The approach is extended to first-
order logic by using reverse skolemization techniques in or-
der to eliminate the Skolem symbols introduced for handling
existential quantifiers. This procedure has been extended to
some modal logics [Mayer and Pirri, 1994]. As far as we are
aware, there is no published work on abductive reasoning for
equational formulæ.

In [Echenim and Peltier, 2012], we have proposed a
method to extract ground abducible implicates of first-order
formulæ, motivated by some applications in program verifi-
cation. The method works by using a specifically tailored
superposition-based calculus [Nieuwenhuis and Rubio, 2001]
which is capable of generating, from a given set of first-order
clauses S with equality, a set of ground (i.e., with no vari-

ables) and flat (i.e., with no function symbols) clauses S′ such
that all abducible implicates of S are implicates of S′. If the
formula at hand is satisfiable, these implicates can be seen
as missing hypotheses explaining the “bad behavior” of the
program (if the formula is unsatisfiable then the program is
of course error-free). However, the proposed calculus is not
able to generate explicitly the implicates of S′. This task is
performed by a post-processing step which consists in trans-
lating the clause set S′ into a propositional formula by adding
relevant instances of the equality axioms, and then using the
unrestricted resolution calculus to generate the propositional
implicates. This approach is sound, complete and terminat-
ing, but it is also very inefficient, in particular due to the fact
that a given clause may have several (in general, exponen-
tially many) representants, that are all equivalent modulo the
usual properties of the equality predicate. Computing and
storing such a huge set of clauses is time-consuming and of
no practical use.

The present paper addresses this issue. We devise a new
algorithm for generating implicates of quantifier-free equa-
tional formulæ with no function symbols. It uses a more di-
rect approach, in which the properties of the equality predi-
cate are “built-in” instead of being explicitly encoded as ax-
ioms. This affects both the representation of the clauses, i.e.,
the way they are stored in the database and tested for redun-
dancy, and their generation: instead of using the resolution
method, new rules are devised, which can be viewed as a
form of relaxed paramodulation. Our algorithm is proven to
be sound, terminating and complete (i.e., it generates all im-
plicates in a finite time, up to redundancy).

The paper is structured as follows. In Section 2, we briefly
recall the basic definitions that are necessary for the under-
standing of our work. In Section 3, a new data-structure is
introduced to allow for a compact storage of the clauses (up
to equivalence) and algorithms are devised for storing and re-
trieving clauses. In Section 4, inference rules are presented
to generate implicates in equational logic. Section 5 reports
some experiments showing evidence of the practical inter-
est of our approach (w.r.t. the translation-based approach, us-
ing state-of-the-art systems for propositional logic). Section
6 briefly concludes the paper and discusses some promising
lines of future work. Due to space restriction the proofs are
omitted. All proofs and additional examples can be found in
[Echenim et al., 2013].

2 Equational logic
Let C be a finite set of constant symbols (usually denoted by
the letters a, b, c, . . .). We assume that a total precedence ≺
is given on the elements of C (in all examples the symbols
are ordered alphabetically: a ≺ b ≺ c ≺ . . .). An atom is
an expression of the form a ' b, where a, b ∈ C. Atoms are
considered modulo commutativity of ', i.e. a ' b and b ' a
are viewed as syntactically equivalent. A literal is either an
atom a ' b (positive literal) or the negation of an atom a 6' b
(negative literal). A literal l will sometimes be written a ./ b,
where the symbol ./ stands for ' or 6'. The literal lc denotes
the complement of l. A clause is a finite multiset of literals
(usually written as a disjunction). As usual 2 denotes the

empty clause and |C| is the number of literals in C. For every
clause C, ¬C denotes the set of clauses {{lc} | l ∈ C}. For
any set of clauses S, we denote by |S| the cardinality of S
and by size(S) the total size of S: size(S)

def
= ΣC∈S |C|.

An equational interpretation I is an equivalence relation
on C. Given two constant symbols a, b ∈ C, we write a =I b
if a and b belong to the same equivalence class in I. A literal
a ' b (resp. a 6' b) is true in I if a =I b (resp. if a 6=I b).
A clause C is true in I if it contains a literal l that is true in
I. A clause set S is true in I if all clauses in S are true in
I. We write I |= E and we say that I is a model of E if the
expression (literal, clause or clause set) E is true in I. For all
expressions E, E’, we write E |= E′ if every model of E is a
model of E′. A tautology is a clause for which all equational
interpretations are models and a contradiction is a clause that
has no model. For instance, a 6' b ∨ a 6' c ∨ b ' c is a
tautology (indeed, for all equivalence relations =I , if a =I b
and a =I c, then necessarily b =I c, by transitivity), whereas
2 and a 6' a are contradictions.

We now introduce the central notion of a prime implicate.

Definition 1 A clause C is an implicate of a clause set S if
S |= C. C is a prime implicate of S if, moreover, C is not a
tautology, and for every clause D such that S |= D, we have
either D 6|= C or C |= D. 3

Example 2 Consider the clause set S:

1 a ' b ∨ d ' a 2 a ' c
3 c 6' b 4 c 6' e ∨ d ' e

The clause d ' a is an implicate of S, since Clauses 2 and 3
together entail a 6' b and thus d ' a can be inferred from the
first clause. The clause a 6' e∨ d ' e can be deduced from 4
and 2 and thus is also an implicate. But it is not prime, since
d ' a |= a 6' e∨d ' e (it is clear that d ' a, a ' e |= d ' e,
by transitivity) but a 6' e ∨ d ' e 6|= d ' a. ♣

The purpose of the present paper is to devise an algorithm
that, given a set of clauses S, is able to compute the entire set
of prime implicates of S, up to equivalence.

3 Representation of Clauses Modulo Equality
In propositional logic, detecting redundant1 clauses is an easy
task, because a clause C is a logical consequence of D iff ei-
ther it is a tautology or D is a subclause of C. Thus a non-
tautological clause C is redundant in a clause set iff there ex-
ists a clause D ∈ S such that D ⊆ C. Furthermore, the only
tautologies in propositional logic are the clauses containing
two complementary literals, which is straightforward to test.
The clause set S can be represented as a trie (a tree-based
data-structure commonly used to represent strings [Fredkin,
1960]), so that inclusion can be tested efficiently (the literals
can be totally ordered and sorted to handle commutativity).
However, in equational logic, the above properties do not hold
anymore: for example the clause a 6' b ∨ b ' c is a logical

1Note that the redundancy relation is defined only at the level of
clauses: indeed, a clause C entailed by a clause set S is not nec-
essarily redundant w.r.t. S in our context; for instance C can be a
prime implicate of S not occurring in S.

consequence of a ' c but obviously a ' c is not a sub-
clause of a 6' b ∨ b ' c. Thus testing clause inclusion is no
longer sufficient and representing clause sets as tries would
yield many undesired redundancies: for instance the clauses
a 6' b ∨ b ' c and a 6' b ∨ a ' c would be both stored,
although they are equivalent. Our first task is thus to devise
a new redundancy criterion that generalizes subsumption, to-
gether with a new way of representing clauses, that takes into
account the special properties of the equality predicate. To
this purpose we show how to normalize ground clauses ac-
cording to the total ordering ≺ on constant symbols, and we
introduce a new notion of projection.

3.1 Testing Logical Entailment
Let C be a clause. The C-representative of a constant a is
the constant a�C

def
= min≺{b ∈ C | b 6' a |= C}. Note that

every constant has a representative, since it is clear that a 6'
a |= C. This notion extends easily to more complex expres-
sions: (a ./ b)�C

def
= a�C ./ b�C and D�C

def
= {l�C | l ∈ D}.

The expression E�C is called the projection of E on C. We
write E ≡C E′ if E�C = E′�C . By definition, ≡C is
an equivalence relation and the following equivalences hold:
(a ≡C b)⇔ (a 6' b |= C)⇔ (¬C |= a ' b).
Example 3 Let C = a 6' b ∨ b 6' c ∨ d 6' e ∨ a ' e.
We have a 6' b |= C and b 6' c |= C since both a 6' b
and b 6' c occur in C. By transitivity, this implies that a 6'
c |= C, and therefore we have a�C = b�C = c�C = a (recall
that constants are ordered alphabetically). Similarly, d�C =
e�C = d. If f is a constant distinct from a, b, c, e, d, then
f�C = f . We have (b ' e ∨ a 6' b)�C = a ' d ∨ a 6' a. ♣

The next proposition introduces a notion of normal form
for equational clauses, which in particular permits to test effi-
ciently whether a clause is tautological. The intuition behind
this proposition is best seen by considering negations: the
negation of a clause C :

∨n
i=1 ai 6' bi ∨

∨m
i=1 ci ' di is

equivalent to the set ¬C = {ai ' bi | i ∈ [1, n]} ∪ {ci 6'
di | i ∈ [1,m]}. By definition, the relation≡C is the smallest
equivalence relation satisfying all the equations ai ' bi and
a�C denotes the smallest representant of a modulo this rela-
tion. The relation ≡C can be defined in a canonical way by
stating that each constant a is mapped to its normal form a�C ,
which is expressed by the negative literal a 6' a�C . Then each
constant a can be replaced by its normal form in the positive
part of the clause.
Proposition 4 Every clause C is equivalent to the clause:
C↓

def
=
∨

a∈C,a 6=a�C
a 6' a�C ∨

∨
a'b∈C a�C ' b�C . Fur-

thermore, C is a tautology iff C↓ contains a literal a ' a. A
non-tautological clause C is in normal form if C = C↓ and
if, moreover, all literals occur at most once in C.
Example 5 The clause C of Example 3 is equivalent to the
clause in normal form: b 6' a ∨ c 6' a ∨ e 6' d ∨ a ' d. Let
D

def
= a 6' b ∨ b 6' c ∨ a ' c; D↓ is b 6' a ∨ c 6' a ∨ a ' a,

and therefore D is a tautology. ♣
We now introduce conditions that will permit to design effi-

cient methods to test if a given clause is redundant w.r.t. those
stored in the database (forward subsumption) and conversely

to delete from the database all clauses that are redundant w.r.t.
a newly generated clause (backward subsumption).

Definition 6 Let C,D be two clauses. The clause D eq-
subsumes C (written D ≤eq C) iff the two following con-
ditions hold.
- ≡D⊆≡C (i.e. every negative literal in D�C is a contradic-
tion).

- For every positive literal l ∈ D, there exists a literal l′ ∈ C
such that l ≡C l′.

If S, S′ are sets of clauses, we write S ≤eq C if ∃D ∈
S,D ≤eq C and S ≤eq S′ if ∀C ∈ S′, S ≤eq C. A clause C
is redundant in S if either C is a tautology or if there exists a
clause D ∈ S such that D 6≡ C and D |= C. A clause set S
is subsumption-minimal if it contains no redundant clause. 3

Intuitively, the test is performed by verifying that ¬C |= ¬D.
To this purpose, we first check that all equations in ¬D are
logical consequences of those in ¬C, which can be easily
done by checking that the relation ≡D⊆≡C holds. Then, we
consider the negative literals in ¬D. Such a literal ¬l can
only be entailed by ¬C iff ¬C contains a literal ¬l′ which
can be reduced to ¬l by the relation ≡C .

Example 7 Let C be the clause of Example 3. C is eq-
subsumed by the clauses a 6' b ∨ a 6' c, a 6' b ∨ c ' e
and c ' d. However, it is neither eq-subsumed by the clause
a 6' d, because a�C 6= d�C , nor by the clause a ' b, because
there is no literal l ∈ C such that (a ' b)�C = l�C . ♣

Theorem 8 Let C and D be two clauses. If C is not a tau-
tology then D |= C iff D ≤eq C.

In the following, we will actually use a slightly more re-
strictive version of this criterion for redundancy elimination:
we impose that the positive literals in D�C are mapped to
pairwise distinct literals in C�C . This additional restriction
is necessary to prevent the factors of a clause from being re-
dundant w.r.t. the initial clause. For example, the clause a '
b∨a 6' a′ will not be redundant w.r.t. a ' b∨a′ ' b∨a 6' a′,
although a ' b ∨ a′ ' b ∨ a 6' a′ |= a ' b ∨ a 6' a′.

3.2 Clausal Trees
A prime implicate generation algorithm will typically infer
huge sets of clauses. It is thus essential to devise good data-
structures for storing and retrieving the generated clauses, in
such a way that the redundancy criterion introduced in Sec-
tion 3.1 can be tested efficiently. We devise for this purpose a
tree data-structure, called a clausal tree, specifically tailored
to store sets of literals while taking into account the usual
properties of the equality predicate. As in tries, the edges
of the tree are labeled by literals and the leaves are labeled
either by 2 (representing the empty clause) or by ∅ (failure
node). Each branch leading to a leaf labeled by 2 represents
a clause defined as the disjunction of the literals labeling the
nodes in the branch. Failure nodes are useful mainly to rep-
resent empty sets – in fact they can always be eliminated by
straightforward simplification rules, except if the root itself is
labeled by ∅.
Definition 9 A clausal tree is inductively defined as either 2,
or a set of pairs (l, T ′) where l is a literal and T ′ a clausal tree.

The set of clauses represented by a clausal tree T is denoted
by C(T) and defined inductively as follows: C(T) = {2}

if T = 2 and C(T) =
⋃

(l,T ′)∈T

(⋃
D∈C(T ′)

l ∨D

)
otherwise

(note that C(∅) = ∅). 3

We impose additional conditions on the clausal tree, in or-
der to ensure that the represented clauses are in normal form
and that sharing is maximal, in the sense that there are no
two edges starting from the same node and labeled by the
same literal. Furthermore, the literals occurring along a given
branch are ordered using the usual multiset extension of ≺,
with the additional constraints that all negative literals are
strictly smaller than positive ones. More formally, we define
an ordering < on literals as follows.

- If l is a negative literal and l′ is a positive literal, then l < l′.
- If l and l′ have the same sign, with l = (b ./ a), l′ = (d ./
c), b � a and d � c then l < l′ iff either b ≺ d or (b = d
and a ≺ c).

Definition 10 A clausal tree T is normal if for any pair
(l, T ′) in T , all the following conditions hold.
- There is no T ′′ 6= T ′ such that (l, T ′′) ∈ T ;
- l is not of the form a ' a or a 6' a, all literals occurring in
T ′ are strictly greater than l w.r.t. < and if l = a 6' b with
a ≺ b then b does not occur in T ′.

- T ′ is a normal clausal tree. 3

It is easy to see that if T is a normal clausal tree then all the
clauses in C(T) are in normal form.

We now introduce two algorithms for manipulating such
data-structures. The first algorithm (ISENTAILED) is invoked
on a clause C and a tree T , and returns true if and only if
there exists a clause D in C(T) such that D eq-subsumes C.
To test this entailment, the algorithm performs a depth-first
traversal of T and attempts to project every encountered lit-
eral on C. If a literal cannot be projected, the exploration of
the subtree associated to this literal is useless, so the algo-
rithm switches to the following literal. As soon as a clause
entailing C is found, the traversal halts and true is returned.
For any expression E, E[a := b] denotes the expression ob-
tained from E by replacing all occurrences of a by b. For any
clausal tree T and literal l, we denote by l.T the clausal tree
l.T

def
= {(l, T)}. The following theorem states the properties

of ISENTAILED.
Theorem 11 The procedure ISENTAILED terminates in
O(size(C(T))+|C|×|C(T)|). Moreover, ISENTAILED(C, T)
is true iff C(T) contains a clause D such that D ≤eq C.

The second algorithm (PRUNEENTAILED) deletes from a
tree T all clauses that are eq-subsumed by C. It performs a
depth-first traversal of T and attempts to project C on every
clause in C(T), deleting those on which such a projection suc-
ceeds. As soon as a projection is identified as impossible, the
exploration of the associated subtree halts and the algorithm
moves on to the next clause. When every literal in C has
been projected, all the clauses represented in the current sub-
tree are entailed by C, and are therefore deleted. Afterward,
the clause C can itself be added in the tree (the insertion al-
gorithm is straightforward and thus is omitted).

Algorithm 1 ISENTAILED(C, T)

if T = 2 then
return true

end if
if C = 2 then

return false
end if
l1 ← min

<
{l ∈ C}

for all (l, T ′) ∈ T such that l ≥ l1 do
if l1 = a 6' b, with a � b then

if l = l1 then
if ISENTAILED(C \ {l1}, T ′) then

return true
end if

else if ¬(l = a 6' c), with a � c then
if ISENTAILED(C \ {l1}, (l.T ′)[a := b]) then

return true
end if

end if
else if l ∈ C then

if ISENTAILED(C \ {l}, T ′) then
return true

end if
end if

end for
return false

Theorem 12 The procedure PRUNEENTAILED terminates in
O(size(C(T))). Moreover, PRUNEENTAILED(C, T) is a nor-
mal clausal tree and C(PRUNEENTAILED(C, T)) contains
exactly the clauses D ∈ C(T) such that C 6≤eq D.

4 Generation of Implicates
The present section addresses the problem of the generation
of the implicates. We consider the following inference rules.
These rules are very similar to the usual inference rules of
the paramodulation calculus (see for instance [Nieuwenhuis
and Rubio, 2001]). The only difference is that we allow for
the replacement of arbitrary terms, provided some additional
semantic conditions are attached to the conclusion. For in-
stance, the usual paramodulation rule applies on clauses of
the form C[a] and a ' b ∨D, yielding C[b] ∨D. In our con-
text, the rule is applied on a clause C[a′], where a′ is an arbi-
trary constant and the conclusion is a 6' a′ ∨ C[b] ∨D. This
clause can be viewed as an implication, stating that C[b] ∨D
holds if the condition a ' a′ is satisfied (indeed, in this case
C[a′] is equivalent to C[a] and thus C[b] ∨D can be derived
by standard paramodulation).

Paramodulation (P): a ./ b ∨ C a′ ' c ∨D
a 6' a′ ∨ b ./ c ∨ C ∨D

Factorization (F): a ' b ∨ a′ ' b′ ∨ C
a ' b ∨ a 6' a′ ∨ b 6' b′ ∨ C

Negative Multi-Paramodulation (M):∨n
i=1(ai 6' bi) ∨ P1 c ' d ∨ P2∨n
i=1(ai 6' c ∨ d 6' bi) ∨ P1 ∨ P2

Algorithm 2 PRUNEENTAILED(C, T)

if C = 2 then
return ∅

end if
if T = 2 then

return T
end if
l1 ← min

<
{li ∈ C}

for all (l, T ′) ∈ T such that l ≤ l1 do
if l1 = l then

T ′′ := PRUNEENTAILED(C \ {l1}, T ′)
else

if l = a ' b then
T ′′ := PRUNEENTAILED(C, T ′)

else if l = a 6' b, with a � b
and @c, l1 = a 6' c, with a � c then
T ′′ := PRUNEENTAILED(C[a := b], T ′)

end if
end if
T := (T \ {(l, T ′)}) ∪ {(l, T ′′)}

end for
return T

We write S ` C if C is generated from premises in S
by one application of the rules P, F or M. The premises are
assumed to be in normal form and the conclusion is normal-
ized before being stored. The rule P is similar to the usual
paramodulation rule, except that the unification between the
terms a and a′ is omitted and replaced by the addition of
the literal a 6' a′ ensuring that these terms are semantically
equal. Similarly, F factorizes the literals a ' b and a′ ' b′

and adds literals ensuring that a = a′ and b = b′. The rule M
corresponds to an application of the factorization rule on the
negative literals ai 6' bi, followed by a paramodulation step
which removes these literals, while adding the conditions en-
suring that ai = c and bi = d.

A set of clauses S is saturated iff for every non-
tautological clause C that can be derived from S using these
rules, there exists a clause C ′ ∈ S such that C ′ ≤eq C.

The following theorem states that a saturated set S sub-
sumes all its implicates. Therefore, if moreover S is
subsumption-minimal then it contains exactly its set of prime
implicates, up to equivalence.
Theorem 13 Let S be a normalized clause set that is satu-
rated. If S |= C then S ≤eq C.

Putting together all the previous results, we now present
our overall algorithm for prime implicates generation. It
is similar to the standard “given clause” algorithm used by
state-of-the-art saturation-based theorem-provers (see, e.g.,
[Robinson and Voronkov, 2001]). Note that the generated
clauses are handled in a lazy way: rather than storing them
in the clausal tree as soon as they are generated, we keep
them in a clausal tree T ′ until they are considered for infer-
ences. The procedure ADD(S, T) adds every clause C ∈ S
into the clausal tree T , using the previously defined proce-
dures ISENTAILED and PRUNEENTAILED (its definition is
straightforward and is omitted for the sake of conciseness).

The choice of the clause in C(T ′) is heuristically guided by
the cardinality of the clauses: the smallest clauses are se-
lected with the highest priority (thus, if 2 is generated, then
the search stops immediately).

Algorithm 3 PRIMEIMPLICATES(S)

T := ∅
% T is the clausal tree used to store the implicates, initially
empty
T ′ := ADD(S, ∅)
% T ′ is the clausal tree used to store the newly generated
clauses
while T ′ 6= ∅ ∧2 6∈ C(T) do

Choose a clause C ∈ T ′

Remove C from T ′

if ¬ISENTAILED(C, T) then
T := PRUNEENTAILED(C, T)
Add C in T
Let N be the set of clauses that can be
generated from C and a premise in T
T ′ := ADD(N,T ′)

end if
end while
return C(T)

Theorem 14 follows immediately from the previous results:

Theorem 14 Let S be a set of clauses. PRIMEIMPLICATES
terminates on S. Moreover, PRIMEIMPLICATES(S) is the set
of prime implicates of S.

5 Experiments
We have implemented our algorithms in an Ocaml program
called K-param. As far as we are aware there are two avail-
able systems for generating prime implicates of propositional
formulæ. The first one is Zres [Simon and Del Val, 2001]
that uses a resolution-based algorithm together with ZBDDs
for storing clause sets, and the second one is ri-trie2,
which uses a decomposition method to transform the formula
in a reduced implicate trie. We have chosen to compare K-
param against Zres with the “Tison” strategy, since our ex-
periments showed that the latter performs uniformly better
than the other propositional systems on the considered bench-
mark. Our benchmark is made of more than 500 satisfiable
ground flat equational formulæ that were randomly gener-
ated. Their propositional equivalent were obtained by instan-
tiating the transitivity3 axiom for all constant symbols appear-
ing in the corresponding equational formulæ. Both programs
were run on the same machine4 and forcibly halted after 5
minutes of execution. Our experimental results are shown in
the graphs of Figure 1. Graph (1a) is a comparison (using
a logarithmic scale for the X axis) of the number of prime
implicates found by Zres for the propositional formulæ (X

2http://www.cs.albany.edu/ritries/index.html
3The reflexivity and commutativity axioms are encoded directly

in the transformation by orienting and simplifying the equations.
4equipped with an Intel core i5-3470 CPU and 4x2 GB of RAM

(a) Prime implicates: K-param/Zres-tison (b) Execution time: K-param/Zres-tison (c) K-param: generated implicates/prime implicates

Figure 1: Experimental results

axis) with the one found by K-param for the equivalent equa-
tional problems (Y axis). Our results indicate that the num-
ber of prime implicates is exponentially smaller in equational
logic than in propositional logic. This observation is under-
standable if we take into account the numerous instantiations
of the transitivity axiom that were necessary to translate the
problems into propositional logic and the many instances of
equivalent clauses that cannot be detected in a purely propo-
sitional setting. This means that the propositional output con-
tains a lot of redundancy that has to be deleted in a post-
processing step, a problem that our method averts. The results
shown in Graph (1b) concern the execution time (in seconds).
Note that the running time for Zres represented here does
not include the aforementioned post-processing step. These
results are somewhat less evidently in favour of K-param, that
is at least twice as fast 54% of the time, and globally faster
65% of the time. We have observed that the problems for
which Zres outperforms K-param are mostly those contain-
ing many unit clauses. Our system is not well-suited for this
class of problems because it does not currently use equational
unit propagation techniques. If we focus on problems with
no initial unit clauses, then K-param is faster 85% of the time
(92% if simultaneous timeouts are ignored). In most cases,
K-param is very efficient, which is encouraging, seeing as it
is only a first prototype. Graph (1c) represents the relative
number of implicates (Y axis) and prime implicates (X axis)
generated by K-param. There is a quadratic growth of the to-
tal number of implicates generated, hence the importance of
the redundancy elimination techniques from Section 3.2. This
suggests that a lot of time could be gained by constraining the
inference rules so as to generate less non-prime implicates.

6 Conclusion
We have devised an algorithm for generating prime implicates
of clause sets defined over equations and disequations be-
tween constants, which is much more efficient than the naive
approach consisting in applying the resolution calculus on the
equality axioms. In particular, all the properties of the equal-
ity predicate are built-in and appropriate data-structures are
used to represent clause sets. Algorithms are provided for up-
dating such data-structures and detecting redundancy. Impli-
cates are generated by a relaxed paramodulation rule, where
equations permitting the application of the transitivity axiom

are allowed to be asserted instead of being proved. The first
experimental results are promising although they leave some
place for improvements, at least in terms of execution time.

Future work includes the improvement of the implementa-
tion (e.g., by using a low-level programming language such
as C/C++) and the refinement of the inference rules, for in-
stance by considering ordering restrictions. The usual order-
ing restrictions of the superposition calculus cannot be em-
ployed in our context, because they may block the generation
of some implicates, but some partial ordering conditions can
probably be enforced while retaining completeness. Simi-
larly, some of the literals in the clauses, more precisely the
negative literals corresponding to the conditions introduced
by the inference rules can be “frozen” in the sense that no
further inference would be allowed within them (these liter-
als will eventually remain – after normalization – in the con-
sidered prime implicate). Although this strategy can dismiss
many inferences, its practical interest remains unclear, since
the frozen literals have to be considered apart when apply-
ing the redundancy detection algorithm, which may prevent
the removal of numerous clauses (this is the reason why such
a strategy was not considered in our current implementation).
Apart from constraining the rules, we plan to investigate other
means of gaining efficiency, such as the addition of equational
unit propagation techniques to handle unit clauses in a proper
way, the handling of symmetric variables or the study of dif-
ferent strategies to select clauses. In a longer range, the ex-
tension of the presented techniques to more expressive lan-
guages (such as first-order clauses with variables and func-
tion symbols) deserves to be considered, although it raises
very difficult theoretical issues: not only can termination not
be enforced in general (due to well-known theoretical limita-
tions), but also the (clausal) logical entailment relation is un-
decidable [Schmidt-Schauß, 1988] and even worse, not well-
founded [Marquis, 1991], thus a given clause set is no longer
equivalent to the conjunction of its prime implicates.

References
[De Kleer and Reiter, 1987] J. De Kleer and R. Reiter. Foun-

dations for assumption-based truth maintenance systems:
Preliminary report. In Proc. American Assoc. for Artificial
Intelligence Nat. Conf, pages 183–188, 1987.

[De Kleer, 1992] J. De Kleer. An improved incremental al-
gorithm for generating prime implicates. In Proceedings
of the National Conference on Artificial Intelligence, pages
780–780. John Wiley & Sons ltd, 1992.

[Echenim and Peltier, 2012] M. Echenim and N. Peltier. A
Calculus for Generating Ground Explanations. In Pro-
ceedings of the International Joint Conference on Auto-
mated Reasoning (IJCAR’12). Springer LNCS, 2012.

[Echenim et al., 2013] M. Echenim, N. Peltier, and S. Tour-
ret. An Approach to Abductive Reasoning in Equa-
tional Logic (long version). Technical report, LIG, 2013.
http://membres-lig.imag.fr/peltier/EPT13.pdf.

[Fermüller et al., 2001] C. G. Fermüller, A. Leitsch, U. Hus-
tadt, and T. Tammet. Resolution decision procedures. In
A. Robinson and A. Voronkov, editors, Handbook of Au-
tomated Reasoning, chapter 25, pages 1791–1849. North-
Holland, 2001.

[Fredkin, 1960] Edward Fredkin. Trie memory. Commun.
ACM, 3(9):490–499, 1960.

[Jackson, 1992] Peter Jackson. Computing prime impli-
cates incrementally. In Proceedings of the 11th Interna-
tional Conference on Automated Deduction, pages 253–
267. Springer-Verlag, 1992.

[Kean and Tsiknis, 1990] A. Kean and G. Tsiknis. An incre-
mental method for generating prime implicants/implicates.
Journal of Symbolic Computation, 9(2):185–206, 1990.

[Leitsch, 1997] A. Leitsch. The resolution calculus.
Springer. Texts in Theoretical Computer Science, 1997.

[Marquis, 1991] Pierre Marquis. Extending abduction from
propositional to first-order logic. In Philippe Jorrand
and Jozef Kelemen, editors, FAIR, volume 535 of Lec-
ture Notes in Computer Science, pages 141–155. Springer,
1991.

[Matusiewicz et al., 2009] A. Matusiewicz, N. Murray, and
E. Rosenthal. Prime implicate tries. Automated Reasoning
with Analytic Tableaux and Related Methods, pages 250–
264, 2009.

[Mayer and Pirri, 1993] Marta Cialdea Mayer and Fiora
Pirri. First order abduction via tableau and sequent cal-
culi. Logic Journal of the IGPL, 1(1):99–117, 1993.

[Mayer and Pirri, 1994] Marta Cialdea Mayer and Fiora
Pirri. Propositional abduction in modal logic. Journal of
the IGPL, 3:153–167, 1994.

[Nieuwenhuis and Rubio, 2001] Robert Nieuwenhuis and
Albert Rubio. Paramodulation-based theorem proving. In
John Alan Robinson and Andrei Voronkov, editors, Hand-
book of Automated Reasoning, pages 371–443. Elsevier
and MIT Press, 2001.

[Peirce, 1955] Charles S. Peirce. Philosophical Writings of
Peirce. Dover Books, Justus Buchler editor, 1955.

[Ramesh et al., 1997] A. Ramesh, G. Becker, and N.V. Mur-
ray. CNF and DNF considered harmful for computing
prime implicants/implicates. Journal of Automated Rea-
soning, 18(3):337–356, 1997.

[Robinson and Voronkov, 2001] A. Robinson and
A. Voronkov, editors. Handbook of Automated Rea-
soning. North-Holland, 2001.

[Rymon, 1994] R. Rymon. An se-tree-based prime implicant
generation algorithm. Annals of Mathematics and Artifi-
cial Intelligence, 11(1):351–365, 1994.

[Schmidt-Schauß, 1988] Manfred Schmidt-Schauß. Impli-
cation of clauses is undecidable. Theor. Comput. Sci.,
59:287–296, 1988.

[Shanahan, 1989] Murray Shanahan. Prediction is deduction
but explanation is abduction. In Proceedings of the 11th
International Joint Conference on Artificial Intelligence,
pages 1055–1060. Morgan Kaufmann, 1989.

[Simon and Del Val, 2001] L. Simon and A. Del Val. Ef-
ficient consequence finding. In Proceedings of the 17th
International Joint Conference on Artificial Intelligence,
pages 359–370, 2001.

[Tison, 1967] P. Tison. Generalization of consensus theory
and application to the minimization of boolean functions.
Electronic Computers, IEEE Transactions on, (4):446–
456, 1967.

