
Learning from Interpretation Transition using
Feed-Forward Neural Networks

Enguerrand Gentet1,2, Sophie Tourret2, and Katsumi Inoue2,3

1 ENS (Cachan)/Paris-Sud University (Orsay) France,
enguerrand.gentet@ens-cachan.fr

2 National Institute of Informatics (Tokyo) Japan,
tourret@nii.ac.jp, inoue@nii.ac.jp

3 Tokyo Institute of Technology (Tokyo) Japan.

Abstract. Understanding the evolution of dynamical systems is an ILP
topic with many application domains, e.g., multi-agent systems, robotics
and systems biology. In this paper, we present a method relying on an
artificial neural network (NN) to learn rules describing the evolution of
a dynamical system of Boolean variables. The experimental results show
the potential of this approach, which opens the way to many extensions
naturally supported by NNs, such as the handling of noisy data, contin-
uous variables or time delayed systems.

1 Introduction

Learning the dynamics of systems is an important problem in Inductive Logic
Programming (ILP) [14]. Applications range from multi-agent systems, where
learning other agents behavior can be crucial for decision making [11,13], to sys-
tems biology [3,16], where knowing the interaction between genes can greatly
help in the creation of drugs to treat sicknesses for example. This paper in-
troduces an algorithm, called Artificial Neural Networks for Learning From In-
terpretation Transition (NN-LFIT), that automatically constructs an accurate
model of the dynamics of a Boolean system from the observation of its state
transitions and then extracts rules describing these dynamics. It offers an al-
ternative to the LFIT algorithm introduced in [9], where rules describing the
dynamics of a system are built directly from the observation of the system tran-
sitions in a purely logical framework. Artificial neural networks (NNs) have been
successfully applied to solve a large variety of predictive learning and function
approximation problems [2]. The motivation behind their use here is their in-
herent ability to generalize observations [17] that answers a major limitation of
LFIT, namely its difficulty to handle noisy data and continuous variables in par-
tially observed systems. Previous uses of NNs for ILP include [5] that initializes
and refines NNs using logic programs (symbolic knowledge) and [6,12] that focus
on rule extraction from NN. The results obtained during this preliminary work
are encouraging and several extensions are considered.

In Section 2, we present a formal description of the problem. In Section 3,
the NN-LFIT algorithm is detailed. Section 4 contains all the results and their
discussion. Finally, Section 5 concludes this paper.

...

... ...

x1(t)

x2(t)

xnvar (t)

i1

i2

invar

h1

hnhid

o1

o2

onvar

x1(t + 1)

x2(t + 1)

xn(t + 1)

w1,1,1

w1,2,1

w1,nvar,nhid

w2,1,1

w2,1,2

w2,nhid,nvar

Input layer Hidden layer Output layer

Fig. 1: NN architecture and notations used in NN-LFIT

2 Problem description

We adopt the representation of dynamical systems used in [9]. A system is a
finite state vector evolving through time x(t) = (x1(t), x2(t), ..., xnvar

(t)) where
each xi(t) is Boolean variable. In systems biology these variables can represent,
e.g., the presence or absence of some genes or proteins inside a cell. The aim
of NN-LFIT is to output a normal logic program P that satisfies the condition
x(t + 1) = TP (x(t)) for any t, where TP is the immediate consequence opera-
tor for P [9]. The rules of P are of the form ∀t, xi(t + 1) ← F (x(t)) for all i in
{1 . . . , nvar} where F is a Boolean formula in propositional logic (PL). The stan-
dard terminology and notations of PL are used1, i.e., when referring to literals
(variables or negation of variables), terms (conjunctions of literals) and formulæ.
We are especially concerned with formulæ in disjunctive normal form (DNF),
i.e., disjunctions of terms. Note that this formalism allows us to describe only
the simplest of dynamical systems, meaning those purely Boolean and without
delays i.e. where x(t + 1) depends only of x(t).

The type of NN used in NN-LFIT reflects the simplicity of the systems con-
sidered. We use feed-forward NNs [17], where the information moves in only one
direction, forward, starting from the input layer, going through the hidden lay-
ers and ending to the output layer. We furthermore restrict ourselves to using
only one hidden layer, i.e. a total of three layers, because it simplifies a lot the
architecture of the NN and its treatment. This does not limit the accuracy of the
NN as long as there are enough neurons in the hidden layer [8]. The notations
related to the NN are introduced in Fig. 1. Formally, each ith neuron on the lth

layer is connected to each jth neuron on the (l+1)th layer by a link characterized
by its weight denoted wl,i,j ∈ R and the output of each neuron is computed from

the weighted sum of all its inputs2, e.g., output(ok) = f(
nhid∑
j=1

w2,j,koutput(hj)),

where f is a sigmoid function. The state vector x(t) is directly fed to the input

1 An introduction to logic is available in, e.g., [1].
2 Due to the space limitations, details about inner mechanisms of NNs, e.g. biases, are

omitted.

layer and the output layer predicts the values of x(t + 1). The last parameter
remaining to choose is the number of neurons on the hidden layer nhid, which
is tuned specifically by NN-LFIT to suit each problem. To determine the cor-
rect weights of an NN, it must be trained on the available data. The standard
approach consists in splitting the available data in two sets: the training set, on
which the training of the NN is performed, and the test set, on which the perfor-
mance of the trained NN is measured. Usually 80% of the training set is used to
tune the weights of the NN while the remaining 20%, called the validation set,
is used to tune the NN parameters (meaning in our case, the nhid value). The
training method used in NN-LFIT is standard: backward propagation with an
adaptive rule on the gradient step and L2 regularization to avoid over-fitting the
training data. The error made by the trained NN on each data set (resp. written
Etrain, Eval, and Etest) is the ratio of incorrect predictions made by each output
neuron averaged on all output neurons.

3 The NN-LFIT algorithm

The purpose of this section is to introduce the NN-LFIT algorithm. This algo-
rithm constructs automatically a model of a system from the observation of its
state transitions and generate transition rules which describe the dynamic of the
system. The main steps of NN-LFIT are listed bellow:

Step 1: Create the model of the system.
1. Choose the number of hidden neurons nhid and train the NN.

(a) Initialize nhid with a trial and error algorithm.
(b) Refine nhid with a basic constructive algorithm.

2. Simplify the NN by pruning useless links.
Step 2: Extract the rules

1. Extract logical rules in DNF using a blackbox algorithm.
2. Simplify logical rules into DNF form with an external tool.

The NN building steps are inspired by the work presented in [10].

Step 1 - Creation of the model. The first building step is to generate a fully
connected NN with a well fitted architecture to learn the dynamics of the ob-
served system. We first use an initialization algorithm and then we refine the
architecture with a constructive algorithm.

Initialization algorithm The initial number of neurons on the hidden layer
nhid is chosen using a simple trial and error algorithm. It consists in training
the NN using several architectures with an incremental initial number of
hidden neurons starting from one and stopping when Eval no longer decreases
after a few tries. Every time we try a new architecture, we randomly initialize
all the weights.

Constructive algorithm The architecture is improved by using a basic con-
structive algorithm. It uses the same principle as the initialization algorithm
except that every time we add a hidden neuron, we keep all the trained
weights attached to the former neurons.

Pruning algorithm The purpose of this step is to remove useless links. To
do so we introduce the notion of link efficiency. To compute the efficiency
of a specific link, we multiply its weight by the weights of every other link
starting from (or ending to) the same hidden neuron it ends to (or starts
from). In other words, the efficiency of a link quantifies the best contribution
among all the paths going through this link. It is therefore logical to remove
links with low efficiency because they have less effects on the predictions
compared to others. We use a simple dichotomous search to remove as many
links as possible without increasing Etrain. After the pruning algorithm has
been run, if some hidden neurons have lost all their links to the output layer
or all their links from the input layer, they can be removed3.

Extracting rules from the fully connected NN right after the steps 1.(a) and 1.(b)
is possible. However, as shown in the experimental results, the rules extracted
after the simplification step are both simpler and more accurate than those
extracted before. In addition, thanks to the simplification (step 2.2), the rule
extraction process is less time consuming.

Step 2 - Extraction of the rules. To extract the rules underlying the transition
system from the NN, each output neuron oi is considered independently. First
the sub-NN Ni, made of oi plus all the input and hidden neurons that can reach
oi and their connections to each other, is extracted from the main NN . Then,
Ni is used as a blackbox to construct the rules. All possible input vectors are
fed to Ni and only those that activate oi are kept. The union of these vectors
is converted into a DNF formula F that is then simplified using a tool called
primer [15]4. For example, let us consider a system (x1(t), . . . , x4(t)) and the
NN N obtained by applying Step 1 of NN-LFIT on it. We focus on the neuron
o2 of N and consider that, due to the pruning algorithm, o2 only depends on
i1, i2 and i4. We start by querying all the possible combinations of (i1, i2, i4)
inputs, keeping only the ones that activate o2. Now consider that o2 is activated
only in the following cases: (1) i1 is on, i2 and i4 are off;(2) i1 and i2 are on
and i4 is off; (3) i1, i2 and i4 are on. Then o2 is represented by the formula:
F = (i1 ∧ ¬i2 ∧ ¬i4) ∨ (i1 ∧ i2 ∧ ¬i4) ∨ (i1 ∧ i2 ∧ i4). Finally, primer returns
the simpler but equivalent formula F ′ = (i1 ∧¬i4)∨ (i1 ∧ i2). Going back to the
original transition system, the rule describing the evolution of x2(t) extracted
from N is thus: x2(t + 1)← (x1(t) ∧ ¬x4(t)) ∨ (x1(t) ∧ x2(t)).

4 Experimental results

The benchmarks used in this paper are three Boolean networks from [4] also
used for evaluating LFIT in [9], describing the cell cycle regulation of budding
yeast, fission yeast and mammalians. We randomly assign the 2nvar transitions

3 The method to remove unreachable neurons is detailed in Appendix A for the con-
venience of the reviewers.

4 The usage of primer is detailed in Appendix B for the convenience of the reviewers.

(a) mammalian benchmark (b) fission benchmark

Fig. 2: Influence of the train size on Etest for every step of NN-LFIT.

describing these networks into the test set and training set (that includes the
validation set). Although it is standard to put around 80% of the available data
in the training set, we want to simulate the fact that real world biological data are
incomplete hence we start by analyzing the influence of the size of the training
set on the accuracy of the NN (see Fig. 2)5 It is measured by Etest and averaged
over 30 random allocations of the data in the different sets. We observe that
each successive sub-step of NN-LFIT improves the accuracy of the model and
that, as expected, Etest decreases when the size of the training set increases. It
reaches an error rate of only 1% while training only on 15% of the data and
becomes negligible when the training covers 50% of the data. In comparison,
LFIT [9] has a nearly constant error rate on the test set (resp. 36% and 33%
on the mammalian and fission benchmarks) for all sizes of the training set. The
following experiments are conducted allocating 15% of the data to the training
set and the results are also averaged over 30 random allocations.

Table 1 shows the parameters of the NN architectures produced by NN-
LFIT and their corresponding Etest. The numbers of neurons and links decrease
significantly during the pruning step (16% less hidden neurons and 65% less
links) along with Etest (29% reduction) showing that the simplification step not
only reduces the complexity of the NN but also improves the model performances
through an efficient generalization.

Mammalian, nvar = 10 Fission, nvar = 10 Budding, nvar = 12

Architecture Neurons Links Etest(%) Neurons Links Etest(%) Neurons Links Etest(%)

Initial 7.10 142 3.19 9.07 181 2.23 11.4 273 0.313

Constructed 13.5 270 1.92 13.73 275 1.61 14.4 346 0.237

Pruned 11.2 98.6 1.37 11.7 97.8 1.21 12.2 91 0.156

Table 1: Architecture and test error evolution during NN-LFIT steps.

5 The results for the budding benchmark are omitted due to space limitations.

(a) mammalian benchmark (b) fission benchmark

Fig. 3: Distributions of the categories of term on each variables.

Finally we evaluate the correctness and simplicity of the rules learned by NN-
LFIT. For each variable xi, we write Ri the corresponding inferred rule and R∗i
the original rule. Considering each term D in Ri and D∗ in R∗i , we identify three
categories: true positives (valid) when D∧R∗i is true; false positives (wrong) when
D ∧ ¬R∗i is true; and false negatives (missing) when D∗ ∧ ¬Ri is true. For each
variable, the distribution of these categories after the construction and pruning
steps of NN-LFIT are shown on Fig. 36. The pruning step reduces the number
of terms (true and false positives) in almost all the rules which means they are
simpler. Moreover the proportion of false positives and negatives diminishes,
reflecting the increase of the accuracy of the rules observed on Fig. 2.

5 Conclusion

In this paper, we present NN-LFIT, a method using feed-forward NNs to extract
logic programs, describing the dynamics of systems from state measurements.
Experimental results indicate good overall performances in term of correctness
and simplicity of the obtained rules, even when handling only a fraction of the
data. Improvements and extensions of NN-LFIT exploiting more capacities of
NNs are planned. One such improvement is to extract the rules using a decompo-
sitional approach as in, e.g., [6] which details a sound but incomplete extraction
algorithm improving the complexity × quality trade-off. Considered extensions
also include the handling of noisy data and systems with continuous variables
which can be naturally handled by feed-forward NNs. It should also be possible
to use recursive NNs to model systems with delays where x(t) depends not only
on x(t−1) but also on some x(t−k) for k greater than one. Equipped with such
extensions, the field of application of NN-LFIT would encompass problems such
as those found in the Dream challenges [7], including real-life data.

6 Note that a rule of a logic program as defined in [9] is a term here, except for constant
rules, e.g., x1 in 3b which is always false and thus contains no term.

References

1. Ricardo Caferra. Logic for computer science and artificial intelligence. John Wiley
& Sons, 2013.

2. Vladimir Cherkassky, Jerome H Friedman, and Harry Wechsler. From statistics to
neural networks: theory and pattern recognition applications, volume 136. Springer
Science & Business Media, 2012.

3. Jean-Paul Comet, Jonathan Fromentin, Gilles Bernot, and Olivier Roux. A formal
model for gene regulatory networks with time delays. In Computational Systems-
Biology and Bioinformatics, pages 1–13. Springer, 2010.

4. Elena Dubrova and Maxim Teslenko. A sat-based algorithm for finding attractors
in synchronous boolean networks. IEEE/ACM Transactions on Computational
Biology and Bioinformatics (TCBB), 8(5):1393–1399, 2011.

5. Artur S Avila Garcez and Gerson Zaverucha. The connectionist inductive learning
and logic programming system. Applied Intelligence, 11(1):59–77, 1999.

6. AS d’Avila Garcez, Krysia Broda, and Dov M Gabbay. Symbolic knowledge ex-
traction from trained neural networks: A sound approach. Artificial Intelligence,
125(1):155–207, 2001.

7. Alex Greenfield, Aviv Madar, Harry Ostrer, and Richard Bonneau. Dream4: Com-
bining genetic and dynamic information to identify biological networks and dy-
namical models. PloS one, 5(10):e13397, 2010.

8. Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward
networks are universal approximators. Neural networks, 2(5):359–366, 1989.

9. Katsumi Inoue, Tony Ribeiro, and Chiaki Sakama. Learning from interpretation
transition. Machine Learning, 94(1):51–79, 2014.

10. SM Kamruzzaman and Md Monirul Islam. An algorithm to extract rules from
artificial neural networks for medical diagnosis problems. International Journal of
Information Technology, 12(8), 2006.

11. Andreas D Lattner, Andrea Miene, Ubbo Visser, and Otthein Herzog. Sequential
pattern mining for situation and behavior prediction in simulated robotic soccer.
In Robot Soccer World Cup, pages 118–129. Springer, 2005.

12. Jens Lehmann, Sebastian Bader, and Pascal Hitzler. Extracting reduced logic
programs from artificial neural networks. Applied intelligence, 32(3):249–266, 2010.

13. David Mart́ınez, Guillem Alenya, Carme Torras, Tony Ribeiro, and Katsumi Inoue.
Learning relational dynamics of stochastic domains for planning. Proceedings of
ICAPS 2016, pages 235–243, 2016.

14. Stephen Muggleton, Luc De Raedt, David Poole, Ivan Bratko, Peter Flach, Kat-
sumi Inoue, and Ashwin Srinivasan. Ilp turns 20–biography and future challenges.
Machine Learning, 86(1):3–23, 2012.

15. Alessandro Previti, Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva.
Prime compilation of non-clausal formulae. In Proceedings of the 24th International
Conference on Artificial Intelligence, pages 1980–1987. AAAI Press, 2015.

16. Tony Ribeiro, Morgan Magnin, Katsumi Inoue, and Chiaki Sakama. Learning
delayed influences of biological systems. Frontiers in bioengineering and biotech-
nology, 2, 2014.

17. Daniel Svozil, Vladimir Kvasnicka, and Jiri Pospichal. Introduction to multi-layer
feed-forward neural networks. Chemometrics and intelligent laboratory systems,
39(1):43–62, 1997.

Appendices

In case of acceptance, a technical report containing the following content and
some other details will be made available.

A Removal of unreachable neurons

In this article, the NN model is simplified and in particular, the fact that each
hidden neuron contains an intrinsic bias, learned along the weights of the links
is omitted. Due to the presence of these biases, it is not possible to simply
delete unreachable hidden neurons, because even without inputs, they can still
influence the output neurons they are connected to. To remove an unreachable
hidden neuron h with a bias bh, it is thus necessary to update the bias of each of
the output neuron under its influence by adding to it the product of its output
value (computed from bh alone) with the weight linking the two neurons before
deleting the hidden neuron. On the contrary, hidden neurons with no connection
to the output layer can be removed without care since they have no influence on
the results of the NN.

B Usage of primer

To simplify a DNF formula F , we rely on primer [15] to compute a prime
implicant cover of F , but in practice primer is used to solve the dual problem of
prime implicate covering because it only accepts CNF formulæ (i.e., conjunctions
of disjunctive clauses) as inputs.

We use the standard notion of entailment in the following definitions: F1

entails F2, written F1 |= F2, means that all the models of F1 are models of F2.
We say that a term D1 covers a term D2 when D1 ⊆ D2, which is equivalent to
D2 |= D1 in propositional logic. For formulæ we say that a formula F1 in DNF
covers another formula F2 also in DNF when the terms in F2 are all covered by
terms in F1, and F1 and F2 are equivalent. Note that the definition of “cover”
usually used in ILP does not require the equivalence of F1 and F2. A prime
implicant of F is a term D such that D |= F and for any D′ such that D′ |= F ,
if D |= D′ then D′ |= D. This means that if a term D′′ is such that D′′ ⊂ D
and D′′ 6= D then D′′ 6|= F . When handling a formula F in DNF, a formula
F ′ syntactically simpler than F but semantically equivalent to F is obtained by
replacing each term of F by a prime implicant that covers it. The notion of a
prime implicate is dual to that of a prime implicant. It is a clause C such that
F |= C and if there exists another clause C ′ such that F |= C ′ and C |= C ′

then C ′ |= C. Intuitively, prime implicants and prime implicates can be seen
respectively as the most specific conditions and the most general consequences
of a formula.

primer is thus fed the CNF formula F̃ that is called the dual of F . It is
obtained by swapping conjunctions and disjunctions in formulæ, hence trans-
forming DNFs in CNFs and vice versa. For example, if F = (i1 ∧ ¬i2 ∧ ¬i4) ∨

(i1∧i2∧¬i4)∨(i1∧i2∧i4) then F̃ = (i1∨¬i2∨¬i4)∧(i1∨i2∨¬i4)∧(i1∨i2∨i4). A
prime implicant cover of F is then generated by duality from the prime implicate
cover of F̃ generated by primer. To develop our example, in this case primer

returns F̃ ′ = (i1∨¬i4)∧ (i1∨ i2) thus the cover of F is F ′ = (i1∧¬i4)∨ (i1∧ i2).
Note how the first term of F ′ covers the two first terms of F and the second one
covers the two last terms of F , but still F ′ remains equivalent to F .

	Learning from Interpretation Transition using Feed-Forward Neural Networks

