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Abstract. Learning from interpretation transition (LFIT) automati-
cally constructs a model of the dynamics of a system from the observa-
tion of its state transitions. So far, the systems that LFIT handles are
restricted to discrete variables or suppose a discretization of continuous
data. However, when working with real data, the discretization choices
are critical for the quality of the model learned by LFIT. In this paper,
we focus on a method that learns the dynamics of the system directly
from continuous time-series data. For this purpose, we propose a mod-
elling of continuous dynamics by logic programs composed of rules whose
conditions and conclusions represent continuums of values.

Keywords: Continuous Logic Programming, learning from interpreta-
tion transition, dynamical systems, Inductive Logic Programming

1 Introduction

Learning the dynamics of systems with many interactive components becomes
more and more important due to many applications, e.g., multi-agent systems,
robotics and bioinformatics. Knowledge of system dynamics can be used by
agents and robots for planning and scheduling. In bioinformatics, learning the
dynamics of biological systems can correspond to the identification of the influ-
ence of genes and can help to understand their interactions. Dynamic system
modelling based on time-series data can be classified into discrete and continu-
ous approaches. Discrete and logic-based modelling methodologies assume that
the temporal evolution of each entity or variable describing the system occurs
in synchronous discrete time steps. These methods seek to infer the regulation
functions that update the state of each variable based on the states at previous
time steps. In contrast with this approach, continuous models are defined by
differential equations in which the rate of change of a given variable is related to
the actual state of the system. Continuous approaches do not need the discretiza-
tion of the real-valued measurement data. As a consequence, using real-valued
parameters over a continuous timescale yields more reliable results, at least in
theory, because it does not introduce any discretization related error. A review
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Fig. 1: Existing work: assumes a discretization of the time-series data used as
input to LFIT. New method: no abstraction of the time-series data.

of both approaches, outlining their advantages and limitations, with specific ap-
plications to gene regulatory networks, is found in [8]. In this paper, we propose
a logic-based modeling, which like continuous approaches, allows to deal with
real-valued measured data. It is however assuming discrete time steps.

Learning from interpretation transition (LFIT) [7] has been proposed to au-
tomatically construct a model of the dynamics of a system from the observation
of its state transitions. Figure 1 shows this learning process. Given some raw
data, like time-series data of gene expression, a discretization of those data in
the form of state transitions is assumed. From those state transitions, accord-
ing to the semantics of the system dynamics, different inference algorithms that
model the system as a logic program are proposed. The semantics of system dy-
namics can differ regarding the synchronism of its variables, the determinism of
its evolution and the influence of its history. The LFIT framework proposes sev-
eral modeling and learning algorithms to tackle those different semantics. So far
the following systems are tackled: memory-less synchronous consistent systems
[7], systems with memory [13], non-consistent systems [10].

So far, the discretization of the raw data was assumed given. Its quality is
critical to obtain good quality models out of LFIT. For example when learning
gene expression evolution, it means that the gene expression levels must be
known beforehand. This information is usually unknown and statistical methods
are used to guess it. Those methods rely most of the time on static state analysis
to provide a division of the gene expressions into meaningful intervals [9,6]. But
the levels of expressions and the dynamics are inseparable in biological models.
Sometimes those levels of expressions are in fact what must be learned.

In this paper, we learn both at the same time (see Fig. 1). For this purpose,
we extend LFIT to handle variables representing intervals instead of singletons.
In the case of learning gene expression levels, a method that builds dynamical
Bayesian networks has been proposed in [11], but it provides no theoretical guar-
antees. In contrast our approach, that computes continuous logic programs, is
generic and comes with soundness and completeness results. Time series data
are considered in [14] but continuous data are statically discretized into interval
predicate representing statistical properties and their goal is classification. The
best-known logic handling intervals is temporal logic [4], which is solely con-



cerned with temporal intervals. In [3] learning of temporal interval relationship
defined by [1] (like meet or overlap) is considered. We rely on some of those
relationships for rule comparison but learning those relations is not our concern.
Temporal logic aside, the other such techniques focus on applying continuous
functions on them [12]. The closest to our approach is interval constraint pro-
gramming [2], but it handles static equational systems. All these techniques are
thus unsuitable to solve the problem considered here, where the time is discrete,
the values continuous and no continuous function is required.

The organization of the paper is as follows. Section 2 provides a formalization
of continuum logic programs, the learning operations and their properties. Sec-
tion 3 presents the ACEDIA learning algorithm and its experimental evaluation.

2 Continuum Logic and Program Learning

In this section, the concepts necessary to understand the learning algorithm are
formalized. In Sect. 2.1 the basic notions of continuum logic (CL) and a number
of important properties that the learned programs must have are presented.
Then in Sect. 2.2 the operations that are performed during the learning, as
well as results about the preservation of the properties introduced in Sect. 2.1
throughout the learning are exposed.

2.1 Continuum Logic Programs

Let V = {v1, . . . , vn} be a finite set of n variables and IR be the set of all intervals
in R. We use basic interval arithmetic operations such as intersection, hull and
avoid. Formally for I1, I2 ∈ IR, I1 ∩ I2 = {x ∈ R | x ∈ I1 ∧ x ∈ I2},

hull(I1, I2) =

 I1 if I2 = ∅,
I2 if I1 = ∅,
{x ∈ R | ∃y ∈ I1,∃z ∈ I2, y ≤ x ≤ z ∨ z ≤ x ≤ y} otherwise.

and avoid(I1, I2) = {{x ∈ I1 | ∀x′ ∈ I2, x < x′}, {x ∈ I1 | ∀x′ ∈ I2, x > x′}}.
The atoms of CL are of the form vI where v ∈ V and I ∈ IR. An atom vI is

unit when I = {x} and empty when I = ∅. A CL rule is defined by:

R = vI ← vI1
1 ∧ · · · ∧ vIn

n (1)

where vI and vIi
i for 1 ≤ i ≤ n are atoms in CL. The atom on the left-hand side

of the arrow is called the head of R and is denoted h(R). The notation vh(R)

denotes the variable that occurs in h(R). The conjunction on the right-hand
side of the arrow is called the body of R, written b(R). The conjunction b(R),
that contains a single occurrence of each variable in V, is assimilated to the set
{vI1

1 , . . . , vIn
n } and we use set operations such as ∈ and ∩ on it. A continuum

logic program (CLP) is a set of CL rules. Intuitively, the rule R has the following
meaning: the variable v takes a value in I at the next step if each variable vi

takes a value in Ii at the current step.
The two following definitions introduce relations between atoms and between

rules that are used further along.



Definition 1 (Relations between atoms). Two atoms a = vI and a′ = vI′

that are based on the same variable v ∈ V can have the following relationships
with each other:

– a and a′ overlap when I ∩ I ′ 6= ∅, written a u a′,
– a subsumes a′ when I ′ ⊆ I, written a′ v a.

In the last case, we also write that a is more general than a′ (resp. a′ is more
specific than a). The notion of subsumption is straightforwardly extended to
conjunctions of atoms B1 and B2 in the following way. B1 subsumes B2, written
B2 v B1 iff:

∀a ∈ B1,∃a′ ∈ B2, such that a′ v a.

Definition 2 (Rules Domination). Let R1, R2 be two CL rules. The rule R1

dominates R2, written R2 ≤ R1 if h(R1) v h(R2) and b(R2) v b(R1).

Proposition 1. Let R1, R2 be two CL rules. If R1 ≤ R2 and R2 ≤ R1 then
R1 = R2.

Rules with more specific heads and more general bodies dominate the other
rules. In practice, these are the rules we are interested in since they cover the
most general cases and give the most accurate results.

The dynamical system that we want to learn the rules of is represented by a
succession of continuum states as formally defined below.

Definition 3 (Continuum State). A continuum state s is a function from V
to R, i.e. it associates a real value to each variable in V. It represents the set

of unit atoms {v{x1}
1 , . . . , v

{xn}
n }. We write S to denote the set of all continuum

states and a pair of states (s, s′) ∈ S2 is called a transition.

The following definitions and propositions describe the interactions between
states and rules.

Definition 4 (Rule-states matching). Let s ∈ S. The CL rule R matches s,
written R u s, if ∀a ∈ b(R), ∃a′ ∈ s such that a u a′.

A rule is activated only when it matches the current state of the system.

Definition 5 (Cross-matching). Let R and R′ be two CL rules. These rules
cross-match, written R uR′ when there exists s ∈ S such that R u s and R′ u s.

Cross-matching can also be defined without the use of a matching state.

Proposition 2 (Cross-matching). Let R and R′ be two CL rules.

R uR′ iff ∀(vI , vI′) ∈ b(R)× b(R′), vI u vI′ .

The final program we want to learn should be complete and consistent within
itself and with the observed transitions. The following definitions formalize these
desired properties.



Definition 6 (Rule and program realization). Let R be a CL rule and

(s, s′) ∈ S2. The rule R realizes the transition (s, s′), written s
R−→ s′, if Rus and

there exists a ∈ s′ such that a v h(R). It realizes a set of transitions T ⊆ S2,

written
R
↪−→ T if for all (s, s′) ∈ T, s

R−→ s′.

A CLP P realizes (s, s′), written s
P−→ s′, if for all v ∈ V, there exists R ∈ P ,

s
R−→ s′. It realizes T , written

P
↪−→ T if for all (s, s′) ∈ T and all v ∈ V, there

exists R ∈ P , such that vh(R) = v and s
R−→ s′.

Definition 7 (Conflicts). Conflicts can occur between a CL rule R and a state
(s, s′) ∈ S2 or between two CL rules R and R′. The first kind of conflict is when

R u s and 6s
R−→ s′ and the second when vh(R) = vh(R′), R u R′ and neither

h(R) v h(R′) or h(R′) v h(R).

Definition 8 (Consistent program). A CLP P is strongly consistent if it
does not contain conflicting rules, i.e. for all R,R′ ∈ P such that vh(R) = vh(R′)

and R u R′, either h(R) v h(R′) or h(R′) v h(R). It is consistent when for all
conflicting R,R′ ∈ P , the rule R′′ = v∅h(R) ← {v

I′′ | v ∈ V, vI ∈ b(R), vI′ ∈
b(R′) and I ∩ I ′ ⊆ I ′′} belongs to P . Otherwise P is said to be non-consistent.

Note that in the definition of a consistent CLP, due to the conflict between R and
R′, I ∩ I ′ is never empty. In case there is a blind spot in the observed transitions
close to a frontier in the behavior of the system (which always happens to some
degree due to the continuous nature of the rules and the discreet nature of the
observed transitions) the rules with empty heads indicate the uncertainty of the
behavior between the two closest observations.

Definition 9 (Complete program). A CLP P is complete if for all s ∈ S
and all v ∈ V there exists R ∈ P such that R u s and vh(R) = v.

Example 1. Let V = {v1, v2} and consider the two rules R1 = v
[5;8]
1 ← v

]−∞;∞[
1 ∧

v
]0;5[
2 and R2 = v

{7}
1 ← v

]−∞;∞[
1 ∧ v

[4;9]
2 . The rules R1 and R2 cross-match

but they do not conflict since vh(R2) v vh(R1) and they do not dominate each
other since b(R1) 6v b(R2) and b(R2) 6v b(R1). They both realize the transition
t = ((10; 4.5), (7; 1)), however the program P = {R1, R2} does not realize t
because it contains no rule with v2 as its head variable. P is also not complete,

while the CLP P ′ = {v[1;2]
1 ← v

]−∞,∞[
1 ∧ v

]−∞,∞[
2 , v∅2 ← v

]−∞,∞[
1 ∧ v

]−∞,∞[
2 } is

complete.

2.2 Learning operations

The three following definitions describe formally the main operation performed
by the learning algorithm, which is to adapt a CLP to realize a new transition
with a minimal amount of changes in the dynamics of the program.



Definition 10 (Rule least specialization). Let R be a CL rule and (s, s′) ∈
S2 such that R and (s, s′) are conflicting. The least specialization of R by (s, s′)
is:

Pspe(R, (s, s′)) =
⋃

v{x}s ∈s

{h(R)← ({vI′

s } ∪ b(R)\{vIs
s })},

where vIs
s ∈ b(R), I ′ ∈ avoid(Is, {x}).

Definition 11 (Rule least generalization). Let R be a CL rule and (s, s′) ∈
S2 such that R and (s, s′) are conflicting. The least generalization of R by (s, s′)
is:

Pgen(R, (s, s′)) = {vI′′ ← b(R) | h(R) = vI , v{x} ∈ s′, I ′′ = hull(I, {x})}

Note that Pgen(R, (s, s′)) contains a single rule while the number of rules in
Pspe(R, (s, s′)) depends on the relationship between the variables in b(R) and in
s.

Definition 12 (Rule least revision). Let R be a CL rule and t ∈ S2. The
least revision of R by t is:

Prev(R, t) =

{
Pspe(R, t) ∪ Pgen(R, (s, s′)) when R and t are conflicting
{R} otherwise.

The least revision of a CLP P by a transition t ∈ S2 is Prev(P, t) =
⋃

R∈P
Prev(R, t).

The intuition behind the least revision is that when a rule is conflicting with
a considered transition it is for two possible reasons. Either the conclusion of the
rule is correct but the conditions are too general, or the conditions of the rule
are correct but the conclusion is too specific.

The following theorem collects properties of the least revision that make it
suitable to be used in the learning algorithm.

Theorem 1. Let R be a CL rule and (s, s′) ∈ S2. Assume R and (s, s′) are
conflicting, and let SR = {s′′ ∈ S | R u s′′} and Sspe = {s′′ ∈ S | ∃R′ ∈
Pspe(R, (s, s′)), R′ u s′′}. The following results hold:

1. Sspe = SR \ {s},

2. s
Pgen(R,(s,s′))−−−−−−−−−→ s′,

3. Prev(R, (s, s′)) is strongly consistent and contains no rule conflicting with R
and (s, s′).

Proof sketch. The two first points follow from Def. 10 and 11 respectively and
the last point is proven using Def. 12 and the two previous points. ut

Example 2. Let V = {v1, v2}, R = v
{5}
1 ← v

]−∞,∞[
1 ∧v

]−∞,8[
2 and t = ((0; 1), (4, 2)).

Then Prev(R, t) = {v[4;5]
1 ← v

]−∞,∞[
1 ∧ v

]−∞;8[
2 , v

{5}
1 ← v

]−∞;0[
1 ∧ v

]−∞;8[
2 , v

{5}
1 ←

v
]0;∞[
1 ∧v

]−∞;8[
2 , v

{5}
1 ← v

]−∞,∞[
1 ∧v

]−∞,1[
2 , v

{5}
1 ← v

]−∞,∞[
1 ∧v

]1,8[
2 }. The first rule

in Prev(R, t) is the least generalization of R.



The following definition groups all the properties that we want the learned
program to have.

Definition 13 (Suitable and optimal program). Let T ⊆ S2. A CLP P is
suitable for T when:

– P is consistent,
– P is complete,
– P realizes T ,
– there is no rule with empty head in P that matches a s such that (s, s′) ∈ T ,
– for all CL rules R not conflicting with a s such that (s, s′) ∈ T , there exists

R′ ∈ P such that R ≤ R′.

If in addition, for all R ∈ P , all the CL rules R′ belonging to CLP suitable for
T are such that R ≤ R′ implies R′ ≤ R then P is called optimal.

Proposition 3. Let T ⊆ S2. The CLP optimal for T is unique and denoted
PO(T ).

Proof sketch. Reasoning by contradiction, a rule that should occur in only one
CLP optimal for T necessarily occurs in another one. ut

The starting point of the learning algorithm is PO(∅), described in the fol-
lowing proposition.

Proposition 4. PO(∅) = {v∅ ← {v′]−∞,∞[ | v′ ∈ V} | v ∈ V}.

Proof sketch. By construction. ut
The CLP optimal for a set of transitions can be obtained from any CLP

suitable for T by removing all the dominated rules from it, as stated in the
following proposition. This means that it suffices to compute a CLP suitable for
T to obtain PO(T ) by getting rid of the dominated rules.

Proposition 5. Let T ⊆ S2. If P is a CLP suitable for T , then PO(T ) = {R ∈
P | ∀R′ ∈ P,R ≤ R′ implies R′ ≤ R}

The following theorem in association with the two previous results gives a
method to iteratively compute PO(T ) for any T ⊆ S2, starting from PO(∅).

Theorem 2. Let T ⊆ S2 and (s, s′) ∈ S2. Prev(PO(T ), (s, s′)) is a CLP suitable
for T ∪ {(s, s′)}.

Proof sketch. Consistency is proved by contradiction. Completeness and realiza-
tion stem from Th. 1. The final point is proved by exhibiting for each R not
conflicting with T ∪ {(s, s′)} the rule in Prev(PO(T ), (s, s′)) that subsumes it. ut

3 ACEDIA

In this section we present ACEDIA, the Abstraction-free Continuum Environ-
ment Dynamics Inference Algorithm and its experimental evaluation.



3.1 Algorithm

ACEDIA learns a CLP from time-series data over continuous domains. Those
time-series data are observations of a system’s state transitions (S2). Given as
input a set of transitions T ⊆ S2, ACEDIA iteratively constructs a model of the
system by applying the method formalized in the previous section to compute
PO(T ) as follows:

ACEDIA: Abstraction-free Continuum Environment Dynamics Inference Algorithm

– INPUT: a set of transitions T ⊆ S2.
– Initialize P as PO(∅).
– For each transition (s, s′) ∈ T
• Extract each rule R of P that conflicts with (s, s′).
• For each rule R
∗ Compute its least revision P ′ = Prev(R, (s, s′)).
∗ Remove all the rules in P ′ dominated by a rule in P or P ′.
∗ Remove all the rules in P dominated by a rule in P ′.
∗ Add all remaining rules in P ′ to P .

– OUTPUT: P = PO(T ).

Algorithms 1 and 2 provide the detailed pseudocode of the algorithm. Lines
3-6 of Alg. 1 realize the computation of PO(∅) as defined in Prop. 4. Then the
learning is performed iteratively on each transition t ∈ T by applying the least-
revision operation (lines 7-17) as defined in Def. 12 and removing dominated
rules (lines 18-20) to ensure the optimality of the obtained program as stated
in Prop. 5. The rules obtained by specialization that have empty intervals in

Algorithm 1 ACEDIA(T )

1: INPUT: T ⊆ S2

2: OUTPUT: PO(T )

3: // 1) Initialization of P

4: P = ∅ // The empty logic program

5: for each v ∈ V do
6: P := P ∪ {v∅ ← {v′]−∞,∞[ | v′ ∈ V}}

7: // 2) Revision of P for each transition

8: for each (s, s′) ∈ T do :

9: conflicts := ∅
10: //2.1) Extraction of conflicting rules

11: for each R ∈ P do
12: if b(R) conflicts with (s, s′) then

13: P := P \ {R}
14: conflicts := conflicts ∪ {R}
15: //2.2) Revision of conflicting rules

16: for each R ∈ conflicts do
17: LR := least revision(R, (s, s′))
18: for each R′ ∈ LR do
19: if @R′′ ∈ P,R′ ≤ R′′ then

20: P := P \ {R′′′ ∈ P | R′′′ ≤ R′} ∪ {R′}
21: return P

Algorithm 2 least revision(R, t)

1: INPUT: a rule R and a transition t = (s, s′),
2: OUTPUT: LR = Prev(R, t).

3: // 1) Least generalization

4: x = I, vI ∈ s′

5: if h(R) = v∅ then

6: h = v{x}

7: else
8: if x < min(h(R)) then

9: h := v[x,max(h(R))]

10: else
11: h := v[min(h(R)),x]

12: LR := {h← b(R)}

13: // 2) Least specialization

14: for each vI ∈ b(R) do

15: Rmin :=

16: h(R)← (b(R) \ {vI}∪ {v]min(I),x[|min(I) 6= x})
17: Rmax :=

18: h(R)← (b(R)\{vI}∪{v]x,max(I)[|max(I) 6= x})
19: LR := LR ∪ {Rmin, Rmax}

20: return LR



their bodies are discarded since they cannot match or realize anything. Another
noteworthy difference between the theory and the implementation is that the
variables are not necessarily defined over all of R but may be constrained over
an interval in IR encompassing all the values associated to each variable in the
observed transitions. This does not impact the theoretical results stated below.

Theorem 3 (ACEDIA Termination, soundness, completeness, optimal-
ity). Let T ⊆ S2. The call ACEDIA(T ) terminates and ACEDIA(T )=PO(T )

Theorem 4 (ACEDIA Complexity). Let T ⊆ S2 be a set of transitions and
|V| = n. The worst-case time complexity of ACEDIA when learning from T
belongs to O(|T |2n×n5) and its worst-case memory use belongs to O(|T |2n×n2).

3.2 Evaluation

In this section, the benefits from ACEDIA are demonstrated on a case study
and its scalability is assessed w.r.t. the input size and the number of variables.
All experiments were conducted on an Intel Core I7 (6700, 3.4GHz) with 32 Gb
of RAM and can be accessed via the hyperlink given in footnote4.

The first evaluation is a case study on learning a CLP equivalent to a Boolean
network of 3 variables. For the purpose of this experiment the levels of expression
can be changed by setting the condition/conclusion intervals as shown in Fig.
2a and 2b. In the rules body, q and r have a unique expression level but the
level of p differs in the dynamics of q and r: to activate q, p = 0.5 is enough
but p = 0.75 is necessary to inhibit r. This is done to show that ACEDIA can
learn different behaviors and different expression levels for the same variable,
while previous versions of LFIT assumed the same discretization in all rules.
The domain of each variable is restricted to [0, 1], which can be considered like a

p[0,P1[ ← q[0,Q[.

p[P1,1] ← q]Q,1].

q[0,Q[ ← p[0,P1].

q[0,Q[ ← r[0,R].

q[Q,1] ← p]P1,1], r]R,1].

r[0,R[ ← p[P2,1].

r[R,1] ← p[0,P2[.

(a) CLP with editable
levels of expression in
bold.

p[0,0.5[ ← q[0,0.5[.

p[0.5,1] ← q[0.5,1].

q[0,0.5[ ← p[0,0.5[

q[0,0.5[ ← r[0,0.5[.

q[0.5,1] ← p]0.5,1], r]0.5,1].

r[0,0.5[ ← p[0.75,1].

r[0.5,1] ← p[0,0.75[.

(b) CLP with levels of expres-
sion set to P1=Q=R=0.5 and
P2=0.75

p[0,0.25] ← q[0,0.5[.

p[0.5,1] ← q]0.25,1].

p[0,1].

q[0,0.25] ← p[0,0.5[

q[0,0.25] ← r[0,0.5[.

q[0.5,1] ← p]0.25,1], r]0.25,1].

q[0,1].

r[0,0.25] ← p]0.5,1].

r[0.5,1] ← p[0,0.75[.

r[0,1].

(c) ACEDIA output
from all the transitions of
the CLP in Fig. 2b

Fig. 2: Experimentation on a CLP with three variables.

normalization of the time-series in practice. For readability reasons, in the body

4 Experiments sources: http://tonyribeiro.fr/data/experiments/ILP_2017.zip

http://tonyribeiro.fr/data/experiments/ILP_2017.zip
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Fig. 3: Evaluation of ACEDIA’s scalability w.r.t. input size (log scale) on learn-
ing the CLP of Fig. 2b.

Variables
run time/rules w.r.t. input transitions (|T |)

|T | = 10 |T | = 25 |T | = 50 |T | = 100 |T | = 250 |T | = 500 |T | = 1000
2 0.015s / 137 0.031s / 296 0.067s / 425 0.105s / 437 0.143s / 420 0.217s / 422 0.337s / 456
3 0.034s / 464 0.667s / 3K 3.082s / 5K 10s / 8K 31s / 11K 56s / 13K 73s / 13K
4 0.322s / 2K 16s / 14K 127s / 36K 1081s / 86K T.O. T.O. T.O.
5 2.8s / 7K 239s / 58K 4,522s / 203K T.O. T.O. T.O. T.O.
6 15s / 21K 4,063s / 217K T.O. T.O. T.O. T.O. T.O.
7 73s / 45K 22,616s / 596K T.O. T.O. T.O. T.O. T.O.
8 424s / 120K T.O. T.O. T.O. T.O. T.O. T.O.
9 2,239s / 228K T.O T.O. T.O. T.O. T.O. T.O.

Table 1: Evaluation of ACEDIA scalability over 10 runs: average run time and
memory use (in number of rules) on learning mammalian cell Boolean Network
evolving the number of variables. Time Out (T.O.) is 10 hours.

of the rules, variables of which the corresponding value is the whole domain are
omitted. Considering a precision of 0.25 for each variable value, 150 possible
states are generated. The algorithm computes the approximately 1700 possible
transitions according to the CLP. From those transitions, ACEDIA learns the
original rules to capture the dynamics of the system and finds the expression level
of the variables. ACEDIA’s output is shown in Fig. 2c. The rules are ordered
and grouped to follow Fig. 2b and the rules with empty heads are omitted.
They encode all non-observed states, e.g. p∅ ← q]0,0.25[. and r∅ ← q]0.25,0.75[. By
looking closely to the first rule in Fig. 2c, it appears to be different from the first
rule in Fig. 2b: the head of the former is equal to [0, 0.25] while the latter is equal
to [0, 0.5[. This is as close an approximation as is possible with a precision of 0.25
in the states, and the fact that only closed bounds (respectively open bounds)
can be created in the head (respectively body) of a rule. Such minor differences
have been highlighted in bold in Fig. 2c. The rules with no body are the most
general possible. They are always generated and cover all the observations but
do not impact the dynamics since they are always true. This experiment shows
that the dynamics of the system and the expression level of each variable are
approximated as well as possible by ACEDIA.

Figure 3 shows the run time (Fig. 3a) and memory use (Fig. 3b) of ACEDIA
on learning the CLP of Fig. 2b (middle) with regards to the number of input
transitions. In this experiment, the precision of the value of each variable is



0.1 in the interval [0,1], thus there are 11 possibles values for a variable and
11 × 11 = 121 possible continuums. In theory, more than 200 millions of rules
(121 heads times 1213 bodies) could be learned, but this number never exceeds
much more than 10, 000 at a given time. The domination relation (Def. 2) allows
to reduce the number of candidate rules at each step of the learning process.
After approximately 400 transitions, the real rules of the system are learned
and most of the computation consists in checking those rules against the new
transitions and eliminating the remaining rules that are still specific enough
to survive. This experiment shows that when the observed system has a small
number of variables, the algorithm can be fed with as many observations as
wanted.

Table 1 shows the run times and memory use of ACEDIA on learning par-
tial mammalian cell Boolean networks [5] by varying the number of variables
considered. The original number of variables is 10. To reduce the variables to
n < 10, we removed the occurrences of 10−n variables in all original rules, thus
creating a new system of n variables. In this experiment the exponential evolu-
tion of run time caused by the exponential explosion of the number of generated
rules can be seen. For now, ACEDIA cannot handle systems with more than
9 variables in a reasonable amount of time and memory when considering 10
transitions and it tends to be limited to 4 variables when more than 10 input
transitions are studied. However, as in the previous experiment, we observe the
convergence of the number of rules and thus run time for 2 and 3 variables, which
hints that such behavior should occur for more variables but with an exponen-
tially greater input size. The current implementation is rather näıve. As with
previous LFIT algorithms, we can expect better experimental results regarding
scalability by developing dedicated data structures and learning heuristics. Such
improvements remain as future work.

4 Conclusions

In the previous LFIT algorithms, it was assumed that the discretization of raw
input data was performed by some third-party agent. Such an hypothesis is
rather naive, and does not match with real-life systems since the dynamics of
a system is defined by both the levels of expression of variables and their in-
fluences on each other. In this paper, we introduce ACEDIA an algorithm to
learn the dynamics of a system directly from continuous time-series data. For
this purpose we propose a modeling of continuous dynamics by continuum logic
programs. As far as we know, this approach is completely new and its strengths
and weaknesses are shown through theoretical results and practical evaluations.
Similarly to continuous approaches, the modeling we propose allows to deal with
real-valued measured data. It is however assuming discreet time steps. One of
our future works will thus address continuous time dynamics in the LFIT frame-
work. It is important to note that this method can also be applied to discrete
data like previous LFIT algorithms. In the case of multi-valued discrete data,
ACEDIA learns more compact and expressive rules. Indeed, multiple condi-



tions over different contiguous discrete levels can be expressed by one condition
over a continuum including those levels. Where previous LFIT algorithms need
several rules to express those conditions, ACEDIA expresses them with a single
one. The detailed comparison of ACEDIA with previous LFITs on this kind
of data is out of the scope of this paper and remains as a future work.

This paper focuses on the theoretical bases of ACEDIA and we are now
working on an efficient implementation of the algorithm, with the goal of apply-
ing it to real biological time-series data. The complexity of the current algorithm
(see Th. 4) limits its current usability to rather small systems as shown by the
experimental results. However, the convergences observed gives us good hope
about the practical use of the methods.
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A Appendix: proofs of Section 2

Proposition 6 (Prop. 1). Let R1, R2 be two CL rules. If R1 ≤ R2 and R2 ≤ R1

then R1 = R2.

Proof. Let R1, R2 be two CL rules such that R1 ≤ R2 and R2 ≤ R1. Then
h(R1) v h(R2) and h(R2) v h(R1), hence h(R1) = vI1 and h(R2) = vI2 and
I1 ⊆ I2 ⊆ I1 thus I1 = I2 and h(R1) = h(R2). The same reasoning is applied on
each variable to conclude b(R1) = b(R2). ut

Proposition 7 (Prop. 2: Cross-matching). Let R and R′ be two CL rules.

R uR′ iff ∀(vI , vI′) ∈ b(R)× b(R′), vI u vI′ .

Proof. For the direct implication, assume given two CL rules R and R′ such
that R u R′. By definition, there exists s ∈ S such that s matches both R and
R′. Also by definition, for all (vI , vI′) ∈ b(R)× b(R′), there exists a, a′ ∈ s such
that vI u a and vI′ u a′. Moreover, by the definition of a state, a = a′ = v{x}.
Thus x ∈ (I ∩ I ′), hence vI u vI′ .

For the converse implication, it suffices to construct a suitable s ∈ S, which
can be done in the following way: For all v ∈ V, there exists xv ∈ I ∩ I ′, where
vI ∈ b(R) and vI′ ∈ b(R′) since by Def. 1, I ∩ I ′ 6= ∅. The state s = {xv | v ∈ V}
is such that s uR and s uR′. ut

Theorem 5 (Th. 1: properties of the least revision). Let R be a CL rule
and (s, s′) ∈ S2. Assume R and (s, s′) are conflicting, and let SR = {s′′ ∈ S |
R u s′′} and Sspe = {s′′ ∈ S | ∃R′ ∈ Pspe(R, (s, s′)), R′ u s′′}. The following
results hold:

1. Sspe = SR \ {s},

2. s
Pgen(R,(s,s′))−−−−−−−−−→ s′,

3. Prev(R, (s, s′)) is strongly consistent and contains no rule conflicting with R
and (s, s′).

Proof.

1. First, let s′′ ∈ SR \ {s}. Then there exists v{x
′′} ∈ s′′, such that v{x} ∈ s,

vI ∈ b(R), x′ ∈ I and x 6= x′. Since x ∈ I because R and (s, s′) conflict
with each other, we can assume that x′ < x (the proof in the case x′ > x is
symmetrical). Thus, the rule R′ = h(R) ← b(R) \ {vI} ∪ {v{x′′∈I|x′′<x}} is
such that R′ u s′′ and R′ ∈ Pspe(R, (s, s′)) hence s′′ ∈ Sspe.
Now consider s′′ ∈ Sspe. By the definition of Sspe there exists R′ ∈ Pspe(R, (s, s′))
such that R′ u s′′ thus there exists I{x} ∈ s′′ such that vI ∈ b(R), v{x} ∈ s
and x′ ∈ I, x′ 6= x. Hence R u s′′ but s′′ 6= s thus s′′ ∈ SR \ {s}.

2. Let Pgen(R, (s, s′)) = {R′}. Since (s, s′) and R are conflicting, Rus. Moreover
given h(R′) = vI , by the definition of Pgen and the hull function, there exists

v{x} ∈ s′ such that x ∈ I = hull(I, {x}), hence s
R′−→ s′.



3. Let R1, R2 ∈ Pspe(R, (s, s′)). By the definition of Pspe(R, (s, s′)), h(R1) =
h(R2), thus R1 and R2 cannot conflict. Now let R3 ∈ Pgen(R, (s, s′)). Again
R1 and R3 cannot conflict because h(R1) v h(R3). Thus Prev(R,R′) is free
of conflicts. In addition, for all R′ ∈ Pspe(R, (s, s′)), h(R′) = h(R) and for
{R′} = Pgen(R, (s, s′)), h(R) v h(R′) by the definition of the hull function.
Finally, Prev(R, (s, s′)) does not conflict with (s, s′) due to the two previous
points of this theorem.

ut
The following proposition is not included in the main part of this paper. It

is used in the proof of the main theorem of the section.

Proposition 8. Let P be a consistent CLP and (s, s′) ∈ S2. The CLP Prev(P, (s, s′))
is consistent.

Proof. Let us assume there exists two CL rules R1, R2 ∈ Prev(P, (s, s′)). Since
by Theorem 1, for all R ∈ P , Prev(R, (s, s′)) is strongly consistent, necessar-
ily there exists two distinct R′1, R

′
2 ∈ P such that R1 ∈ Prev(R′1, (s, s

′)) and
R2 ∈ Prev(R′2, (s, s

′)). The fact that R1 and R2 conflict implies that vh(R1) =
vh(R2) = v. It also implies that R1 u R2. Whether R1 and R2 are obtained
by least specialization or least generation, the following relationships hold by
construction:

1. b(R1) v b(R′1) and b(R2) v b(R′2),
2. h(R′1) v h(R1) and h(R′2) v h(R2).

Due to point 1, R′1 u R′2. Since in addition P is consistent and vh(R′1)
= vh(R′2)

,
either h(R′1) v h(R′2) or h(R′2) v h(R′1). If vh(R′1)

and vh(R′2)
are not empty, due

to point 2, the same relationship also holds between R1 and R2, a contradiction
with the fact that there is a conflict between R1 and R2. Otherwise, one of vh(R1)

and vh(R2) is empty, thus its least generalization’s head is sure to be a singleton.
Assume w.l.o.g. that vh(R′1)

is empty. Since R1 and R2 conflict with each other,
their heads cannot be empty or subsume each other, thus {R1} = Pgen(R′1, (s, s

′))
and R2 ∈ Pspe(R

′
2, (s, s

′)). Thus b(R2) avoids s on a variable v∗ and there is a
rule R ∈ Pspe(R

′
1, (s, s

′)) that avoids s on the same variable and in the same
way (either over or under it). The rule R has an empty head since R′1 also has
one and for all v ∈ V, if vI1 ∈ b(R1), vI2 ∈ b(R2) and vI ∈ b(R) then I1 ∩ I2 ⊆ I
since I coincides with I1 except on v∗ where I ∈ avoid(I1, {x}) and I overlaps
with I2 from its bound at x and until the bound of I1, thus covering I1 ∩ I2
entirely. ut

Proposition 9 (Prop. 3). Let T ⊆ S2. The CLP optimal for T is unique and
denoted PO(T ).

Proof. Let T ⊆ S2. Assume the existence of two distinct CLPs optimal for T ,
denoted by PO1(T ) and PO2(T ) respectively. Then w.l.o.g. we consider that there
exists a CL rule R such that R ∈ PO1

(T ) and R 6∈ PO2
(T ). If R is conflicting with

T , since PO1
(T ) realizes T there exists R′ ∈ PO1

(T ) and (s, s′) ∈ T such that

Rus, R′us, s 6R−→ s′, s
R′−→ s′ and vh(R) = vh(R′). Hence R and R′ are conflicting,



thus there exists R′′ = v∅h(R) ← {v
I′′ | vI ∈ b(R), vI′ ∈ b(R′), I ∩ I ′ ⊆ I ′′}. But

then R′′ u s and PO1
(T ) is not suitable for T , a contradiction. Thus R is not

conflicting with T and there exists a CL rule R2 ∈ PO2(T ), such that R ≤ R2.
By the definition of an suitable program, there exists R1 ∈ PO1(T ) such that
R2 ≤ R1 since R2 is not conflicting with T . Thus R ≤ R1 and by the definition
of an optimal program R1 ≤ R. By Proposition 1, R1 = R and thus R ≤ R2 ≤ R
hence R2 = R, a contradiction. ut

Proposition 10 (Prop. 4). PO(∅) = {v∅ ← {v′]−∞,∞[ | v′ ∈ V} | v ∈ V}.

Proof. Let P = {v∅ ← {v′]−∞,∞[ | v′ ∈ V} | v ∈ V}. The CLP P is consistent

and complete by construction. Like all CLPs,
∅
↪−→ P and there is no transition

in ∅ to match with the rules in P . In addition, by construction, the rules of P
dominate all CL rules. ut

Theorem 6 (Th. 2). Let T ⊆ S2 and (s, s′) ∈ S2. Prev(PO(T ), (s, s′)) is a
CLP suitable for T ∪ {(s, s′)}.

Proof. Let P = Prev(PO(T ), (s, s′)). Since PO(T ) is consistent, by Prop. 8, P
is also consistent. Since PO(T ) is complete, by the two first points of Th. 1, P
is also complete. By Th. 1, P is not in conflict with the rules of PO(T ), and

since P is also complete,
P
↪−→ T . In addition, since PO(T ) is complete, for each

v ∈ V, there exists a CL rule R ∈ PO(T ) such that vh(R) = v and R u s. By

Th. 1, it means that for each of these rules, s
Pgen(R,(s,s′))−−−−−−−−−→ s′, hence s

P−→ s′

and
P
↪−→ (T ∪ {(s, s′)}). Assume the existence of a rule R ∈ P with empty head

and matching a state s′′ where (s′′, s′′′) = t ∈ T ∪ {(s, s′)}. If R ∈ PO(T ) then
t = (s, s′) or PO(T ) is not suitable for T . In this case, since R u t and R has

not been revised, s
R−→ s′, a contradiction with the emptiness of the head of

R. Otherwise, there exists a CL rule R′ ∈ PO(T ) such that R ∈ Pspe(R
′, t)

because a generalization cannot produce rules with empty heads. Then by Th.
1, t 6= (s, s′) and since R u s′′, we also have R′ u s′′ by the definition of the
specialization operation. For the same reason, the head of R′ is empty. Thus,
PO(T ) is not suitable for T , a contradiction. To prove that P verifies the last
point of the definition of a suitable CLP, let R be a CL rule not conflicting with
T ∪ {(s, s′)}. Since R is also not conflicting with T , there exists R′ ∈ PO(T )
such that R ≤ R′. If R′ is not conflicting with (s, s′), then R′ ∈ P . Otherwise,
R ≤ R′ and R′ is in conflict with (s, s′) (but R is not). Thus there exists at
least one variable v ∈ V such that vI ∈ b(R), vI′ ∈ b(R′), v{x} ∈ s x ∈ I ′,
x 6∈ I and I ⊆ I ′. Then one of the intervals in avoid(I ′, {x}) contains I by
the definition of the function avoid. Let us denote this interval by I ′′. The rule
R′′ ∈ Pspe(R

′, (s, s′)) such that vI′′ ∈ b(R′′) verifies R ≤ R′′ because vI @ vI′′

and R′′ coincides with R′ on all other body and head variables. ut



B Appendix: proofs of Section 3

Theorem 7 (Th. 3: ACEDIA Termination, soundness, completeness,
optimality).

Let T ⊆ S2. The call ACEDIA(T ) terminates and ACEDIA(T )=PO(T )

Proof. Let T ⊆ S2. The call ACEDIA(T ) terminates because all loops iterate
on finite sets.

To prove that ACEDIA(T )=PO(T ), and is thus sound, complete and optimal,
it suffices to prove that the main loop (Alg. 1 line 7-20) preserves the invariant
P = PO(Ti) after the ith iteration where Ti is the set of transitions already
selected line 8 after the ith iteration for all i from 0 to |T |.

Lines 3-6 initialize P to {v∅ ← {v′]−∞,∞[ | v′ ∈ V} | v ∈ V}. Thus by Prop.
4, after line 6, P = PO(∅).

Let us assume that before the i+1th iteration of the main loop, P = PO(Ti).
Through the loop lines 11-14, P ′ = {R ∈ PO(Ti) | R does not conflict with (s, s′)}
is computed. Then the set P ′′ =

⋃
{Prev(R, (s, s′)) | R ∈ PO(Ti)\P ′} is itera-

tively build through the calls to least revision line 17 and the dominated rules
are pruned as they are detected by the loop lines 18-20. Thus by Th. 2 and Prop.
5, P = PO(Ti+1) after the i + 1th iteration of the main loop. ut

Theorem 8 (Th. 4: ACEDIA Complexity). Let T ⊆ S2 be a set of tran-
sitions and |V| = n. The worst-case time complexity of ACEDIA when learn-
ing from T belongs to O(|T |2n × n5) and its worst-case memory use belongs to
O(|T |2n × n2).

Proof. Let xi be the different values a variable vi takes in T . Each xi can
be the minimum or maximum value of a continuum. After the initialization of
P there is a rule with empty head for each xi. According to the definition of
the least generalization (Def. 11), those continuum will only be extended to
hull a xi, i.e. their min/max will always be a xi. Thus the number of possible
head continuums of a learned rule is 1 + |xi|2 which belongs to O(1 + |T |2).
Similarly for the rule body, according to the definition of the least specialization
(Def. 10), a continuum in a rule body is only reduced to avoid one of the xi.
The only other possible values are ∞ and −∞, thus the number of possible
continuums for each body variable belongs to O((|xi| + 2)2) ∼ O((|T | + 2)2).
The possible bodies of a rule are all the combinations of these continuums, thus
belong to O(((|T |+ 2)2)n). Hence, the total number of possible rules learned by
ACEDIA belongs to O(n × (1 + |T |2) × ((|T | + 2)2n)). The heads of rules are
represented by an integer that encodes the variable it refers to and a continuum
represented by two real numbers. The body of a rule is a vector of n pairs of
variable/continuum encoded in the same way. Thus the memory use of a rule
belongs to O(3 + 3×n). Conclusion: the memory use of ACEDIA belongs to
O(|P |) ∼ O(n×((1+|T |2)×((|T |+2)2)n)×(3+3×n)), i.e.O(|P |) ∼ O(|T |2n×n2).

ACEDIA starts with the generation of the logic program PO(∅), containing
n rules. A rule R has one head variable and its body contains each variable:
building a rule belongs to O(|R|) ∼ O(1+n). Thus the initialization of P belongs



toO(n×|R|). Afterward, the algorithm checks each transition of T iteratively and
extracts conflicting rules from P . Checking conflict between two rules requires
to compare their heads and all their body atoms: it belongs to O(|R|). Each
rule of P is checked, thus extracting conflicting rules belongs to O(|P | × |R|).
Each conflicting rule is revised using least revision (Def. 12). This operation
generates one rule by least generalization (one head continuum extension) and
2n rules by least revision (2 for each atom in the body: one that avoids the value
from below and the other that avoids it from the top), it belongs to O(|LR|) ∼
O((1 + 2n) × |R|). Each revision is then compared to the rules of P to check
domination (Def. 2). Checking domination requires to compare head continuum
and all body continuum: it belongs to O(|R|). Thus removing the dominated
revisions belongs to O(|LR| × |R| × |P |). This is repeated for each transition of
T , thus the complete process belongs to O(n × |R| + |T | × |LR| × |R| × |P |) ∼
O(n× (1 +n) + |T | × (1 + 2n)× (1 +n)× (1 +n)×n× (1 + |T |2)× (|T |+ 2)2n×
(3+3×n)) ∼ O(|T |× (1+ |T |2)× (|T |+2)2n×n5) Conclusion: the complexity
of ACEDIA when learning from T belongs to O(|T |2n × n5). ut
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