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The linear quantifier elimination algorithm for ordered fields in [15] is applicable
to a wide range of examples involving even non-linear parameters. The Skolem
sets of the original algorithm are generalized to elimination sets whose size is linear
in the number of atomic formulas, whereas the size of Skolem sets is quadratic
in this number. Elimination sets may contain non-standard terms which enter the
computation symbolically. Many cases can be treated by special methods improving
further the empirical computing times.
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1. INTRODUCTION

In [15] the second author presented a quantifier elimi­
nation algorithm for "linear" formulas in ordered fields
which is asymptotically worst case optimal up to a con­
stant. It achieves a worst-case computing time bound
which is polynomial in the length of the input formula,
exponential in the number of quantified variables, and
doubly exponential in the number of quantifier blocks
only. Until recently (compare [9]), research on the im­
plementation of quantifier elimination algorithms has
been concentrated on the full elementary theory of real
closed fields; there is a widespread belief [5] starting
with the original work of Tarski [13] that these algo­
rithms are of a rather academic nature and are not fea­
sible for any "realistic" applications.

On the other hand, it was known for some time,
that special cases of the general algorithm, like the sim­
plex algorithm, perform very well in practice, and have
even a polynomial average computing time. Recently
Colmerauer [2] has used the simplex algorithm in the
realm of logic programming with constraints and he in­
corporated it in the new programming language PRO­
LOG III.

In this paper we optimize the algorithm in [15] in vari­
ous respects and apply the optimized versions to a num­
ber of test problems. In sections 2 and 3 we introduce
definitions and theorems that allow us to use elimina­
tion sets that are considerably smaller than the Skolem
sets introduced in the original exposition. Based on a
variant of Tarski's principle for linear ordered fields we
introduce implicitly non-standard terms into the elim­
ination sets and the computation. This enables us to
reduce the size of the elimination sets from quadratic to
linear in the length of the input. Moreover, a number
of special cases can be handled even more efficiently.
In section 4 we apply the modified elimination algo­
rithms to several problems and study the empirical be­
havior and computing times. It turns out that in some

well-known test examples the algorithms perform sig­
nificantly better than the all-purpose CAD-algorithm
in [3], and comparable to the improved version of this
algorithm in [8]. Morover, we obtain for the first time a
(huge, in principle) solution of the 3-dimensional planar
transportation problem (see [14]). By way of contrast,
some linear test problems (such as the recursive defini­
tion of a sequence with period 9, or the perfect rectangle
problem, see[2]) that have been solved with PROLOG
III rather successfully, could not be solved so far by
our method due to storage limitations. This may be
partly explained by the fact that the PROLOG III pro­
grams are tailored specifically to the problems, while
our method is essentially a "general purpose" method
for linear real problems.

The bottleneck of our method is never the time re­
quired, but instead the size of the intermediate or final
results, that can be coped with only insufficiently by
the simplifiers in the present implementations (in RE­
DUCE in Passau and in ALDES/SAC-2 in Tiibingen).
What is needed in addition is a highly efficient sim­
plifier for quantifier-free formulas that combines both
'Boolean simplification and the simplification rules for
linear orders and ordered fields.

We acknowledge with pleasure the valuable con­
tributions of Thomas Sturm to the REDUCE­
implementation of our method at the University of Pas­
sau and the generous support of Dr. H. Melenk, ZIB,
Berlin, in connection with the 3-dimensional planar
transportation problem.

A corresponding REDUCE-implementation of the
linear quantifier elimination procedure for the domain
of integers in [16] has been carried out in [10].

2. ELIMINATION SETS AND SKOLEM
SETS

In this section, we describe the general logical principles
that underly the method of quantifier elimination by
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elimination sets.

We consider elementary languages L given by a fi­
nite set of constants and finitary operation and relation
symbols. From these symbols together with an infinite
supply V of variables x, y, . .. , the equality sign "=",
the logical symbols A, V, ..." 3, V and brackets (), the
terms and formulas of L are built up: terms t, t' , ... are
formed from constants and variables by superposition of
operation symbols; atomic formulas are Boolean con­
stants T (true), F (false), or equations (t = t' ) between
terms, or formal relations R(t1 , ••• ,tn ) between terms;
arbitrary formulas <p, t/J, ... are obtained from atomic
formulas by closure under A, V,"" and quantifiers 3x or
Vx, c.p ---+ t/J and c.p +-+ t/J are abbreviations for ""c.p V t/J
and (c.p ---+ t/J) A (t/J ---+ <p). An occurence of a variable
x in a formula c.p is bound, if it is in the scope of· a
quantifier 3x or Vx; otherwise, it is free. A formula
containing no quantifier is quantifier-free. A formula
containing no variable free is a sentence. A theory
T in L is a set of L-sentences. A L-structure A is a
non-empty set, where the constants, operation symbols
and relation symbols of L are interpreted as elements,
operations and relations of the appropriate arity. If <p
(x) is an L-formula with all free variables in the string
x, A is an L-structure and a is a string of elements of
A matching x, then A p c.p(a) means "c.p holds in A
for the parameters x = a". For a sentence <p the pa­
rameters are deleted. A is a model of an L-theory T,
if A P <p for all sentences r..p E T. A sentence r..p is a
consequence of T, T P r..p, if <p holds in all models of
T. Let T be a theory in L and ~ a set of L-formulas.
Then a decision procedure for ~, T is a procedure
that decides for any sentence r..p E ~ whether T p r..p or
not. A quantifier elimination for ~, T is a procedure
c.p t---t <p' assigning to any formula <p E ~ a quantifier-free
formula <p' E ~ such that <p and <p' are T-equivalent. If
in these definition ~ is the set Fo(L) of all L-formulas,
then the reference to ~ is omitted.

Let L be an elementary language and let T be a the­
ory in L. Let X c V be an infinite set of variables,
let Z be a set consisting of L-terms and possibly some
--improper" terms involving new symbols (such as e.g.
00), let e be a set of atomic L-formulas, and let ~ the
closure of e under A, V,"" and quantifiers 3x, 'Vx with
x E X. Assume, moreover that (), X, Z are related as
follows:

There is a modified substitution procedure assigning
to a variable x EX, a term t E Z, and an atomic
formula t9 E e a quantifier-free formula t9(xl It) E <P
such that whenever t is a proper L-term, then t9(xl It)
is equivalent in T to the formula t9(xlt) obtained from
t9 by substituting t for x in the usual sense.

For <p E ~, we let r..p(xlIt) denote the expression re­
sulting from <p by replacing each occurence of an atomic
subformula {) in <p, in which x is free, by {}(xl It). Then
c.p(xlIt) is a formula in ~.

If t is a term, <p is a formula, then X (t), X (<p) de-

note the set of variables x E X occurring in t and r..p
respectively.

DEFINITION 2.1. Let <p be a quantifier-free formula
in ~, let x EX, and let 5 be a set of teTf'!ls t E Z with
x ¢ X(t). Then we say 5 is an elimination set for
3xr..p (for Vx<p) with respect to T, if the equivalence

3x<p <==> V<p(xllt)
tES

(Vx<p <==> A<p(xlIt) )
tES

holds in T.

The following properties of elimination sets are obvi­
ous:

REMARK 2.1. (i) Let 5 be a set of L-terms t with
x ¢ X(t), and assume

3x<p ==> V<p(xlIt)
tES

(Vx<p <= A<p(xlIt) )
tES

holds in T. Then 5 is an elimination set for 3x<p (for
Vx<p).

(ii) Let 5 be an elimination set for 3x<p (for 'Vxr..p) and
let 5' 2 5 be a finite set of L-terms t with x ¢ X(t).
Then 5' is an elimination set for 3x<p (for VX'P) as
well.

(iii) Let 5 be an elimination set for 3x'P (for VX'P).
Then 5 is also an elimination set for VX""'P (for
3x...,'P).

Let us say T has quantifier elimination for ~ by
(proper) terms, if for every quantifier-free L-formula
r..p and every variable x E X one can compute an elimi­
nation set 5 for 3x<p (that consists of L-terms only).

A theory T with this property has a very strong
model theoretic property: Call a substructure A of an
L-structure B a ~-elementary substructure, if for
every formula <p(XI, . .. ,xn) E ~ and all al," . ,an E A,
<p(al" .. ,an) holds in A iff it holds in B. Then we can
assert:

THEOREM 2.1. (i) If T has quantifier elimina-
tion for <P by terms, then there exists an algorithm
that computes for every formula <p E ~ a quantifier­
free formula <p' E ~ such that r..p and <p' are equivalent
in T.

(ii) If T has quantifier elimination for ~ by proper
terms, then every substructure A of aT-model B is
a ~-elementary substructure of B.

Proof. (i) The algorithm is by an easy recursion on
the number of quantifiers in 'P.

(ii) Using part (i) of remark 2.1 in the proof of (i)
above, one finds that the equivalence between <p' and 'P
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is valid in every substructure A of some T-model B. So
if c.p = <p(x) and a E An, then

A t= <p(a) <=> A t= cp'(a) ¢:=}

B t= cp'(a) ¢:=} B t= cp(a) •

If wis a finite subset of 8, x EX, S is a finite set of
L-terms t E Z with x ¢ X(t), then we say, S is a set
of Skolem terms for x, W if

T t= Vx( V 1\ (t/J H t/J(xlIt)).
tES ,pEW

We call T a Skolem theory with respect to X, Z, 8, if
for every x E X and every finite W~ 8, x, 'Ii has a set
of Skolem terms.

LEMMA 2.2. Let cp be a quantifier-free formula in
<P, let x EX, let W be the set of all atomic subformulas
of cp containing the variable x, and let S be a set of
Skolem terms for x, w. Then S is an elimination set
for 3xcp and for "/xcp.

Proof. Let A be a model of T, let <p =
c.p(X,Yl' ,Yn), let a,b1 , ••• ,bn E A and assume A t=
<p(a, bl , ,bn). Then there exists t = t(YI, ... ,Yn) E S
such that for all t/J E \l1, A t= t/J (a, bl , .. · , bn ) ¢:=}

A t= t/J(x I /t)(b 1,. • • ,bn ). So A t= <p(t(b), b). By re­
mark 2.1, this shows that S is an elimination set for
3xcp. Since <p and -'<p have the same set \l1 of atomic
subformulas, the same argument shows that S is also
an elimination set for 3x(-,<p), and hence for Vxc.p. •

The converse to this lemma fails as the following sim­
ple example shows:

EXAMPLE 2.1. Let T be the theory of ordered fields
in L = {O, 1, +, -,., =, <}, let X = V, let Z be the set
of all L-terms and let 8 be the set of all atomic L­
formulas. Consider the L-formula c.p: x = 0 V x <
o V -x < o. Then S = {O} is an elimination set
for 3xcp and for "/xcp, but not a Skolem set for x and
\l1 = {x = 0, x < 0, -x < O}, since any such Skolem set
must contain at least 3 terms.

3. ELIMINATION SETS FOR LINEAR FOR­
MULAS IN ORDERED FIELDS

3.1. Rational Elimination Sets

In this section we restrict our attention to the the­
ory TOF of ordered fields in the language L OF =
{0,1,+,_,·,-1,=,#,~,<} with the convention that
0- 1 = o. The reason why we include # and ~ among
the atomic relations is technical and will become ap­
parent below. We let X be an arbitrary subset of V.
Z consists of all L-terms that can be written (prov­
ably in T) in the form ao + alXl + ... + anxn, where
x I, ... , Xn are distinct variables in X and ao, ... ,an are
arbitrary L-terms with X(ai) = 0. e consists of all

equations and inequalities between terms in 8. We re­
fer to X, Z, 8, <P as the set of linear variables, linear
terms, linear atomic formulas, linear formulas,
respectively (compare [15]). Modified substitution of a
linear term for a linear variable in a linear atomic for­
mula coincides with ordinary substitution. One verifies
easily that this does not lead outside the set 8 of linear
atomic formulas.

Let x EX. Then any linear atomic formula t/J that
involves x can be written equivalently in T in the form
ax = b or ax < b, where b is a linear term with x ¢ X(b)
and a is a linear term containing no variable linear vari­
able. If t/J is given in this form, we say t/J is normalized
with respect to x.

The following lemma (see [15], lemma 2.4 and 2.5)
shows that TOF is a Skolem theory with respect to
X,Z,f):

LEMMA 3.1. Let x E X and let \l1 = {ai x Pi bi : i E
I, Pi E {=, #, ~, <}} be a set of atomic linear formulas
that are normalized with respect to the linear variable x.
Then the following set S is a set of Skolem terms for
x,\l1:

S = {biail,biail ± 1: i E I} U

{1/2(biail + bjajl): i,j E I,i # j}

Moreover, if Pi E {=,#}, then

S' = {biail,biail ± 1: i E I}

is a set of Skolem terms for x, w.

COROLLARY 3.2. (LINEAR TARSKI PRINCIPLE)

(i) TOF has quantifier elimination by proper terms.
(ii) Let A be an ordered subfield of the ordered field
B. Then A is a <P-elementary substructure of B with
respect to the set <P of linear formulas.

For the rest of this section, our goal is to find elimi­
nation sets for 3cp and for "/xcp, that are smaller than
the Skolem set S for x, W specified above. This will
be achieved by taking into account the different atomic
relations =, #, ~, < occuring in the linear formula
cp. Further improvements are possible, if the formula <p
has a special Boolean structure. The resulting quanti­
fier elimination procedures will be considerably faster
in practice, as will be documented in section 4. By the
lower complexity bounds in [15], the asymptotic order
of growth of the complexity of quantifier elimination
in the worst case is doubly exponential in the num­
ber of quantifier-blocks of the (prenex) input formula.
So for an arbitrary linear formula cp, this growth rate
cannot be improved. We can, however, significantly re­
duce the multiplicative constant in the exponent of the
asymptotic complexity. This is achieved by replacing
the Skolem set above, whose size is quadratic in the
number atom(c.p) of atomic subformulas of cp by various
elimination sets of size linear in atom (<p).
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DEFINITION 3.1. A linear formula is positive, if
it contains no negation. Let 'P be a positive quantifier­
free linear formula, and let x E X be a linear vari­
able. Then A('P) denotes the set of all atomic sub­
formulas of 'P. Alin ('P) denotes the set of all atomic
subformulas of'P containing at least one linear variable
AI(x, 'P) [A2 (x, 'P), A 3 (x, 'P), A 4 (x, 'P)] denotes the set
of all atomic subformulas 't/J of 'P such that x E X('t/J)
and 'l/J is of the form t = t' [of the form t ~ t', of
the form t < t', of the form t 1= til. A(x, 'P) =
Al (x, 'P) u A2 (x, 'P) u A3 (x, 'P) U A 4 (x, 'P).

THEOREM 3.3. Let 'P be a positive quantifier-free
linear formula, and let x E X be a linear variable.
We assume without restriction that for k = 1,2,3,4,
Ak(x,'P) = {ai x Pk bi: i E Ik}, where Pk E {=,~,<

,#}. Let

8 = {bi
: i E II U I 2 } U

ai

{ 1(bi bj) "" I I "-/..}2 ai + aj : ~,J E 3 U 4, ~ r J U

{b i ± 1: i E 13 U I4 }.
ai

Then 8 is an elimination set for 3x'P.

The elimination set 8 specified above should be com­
pared with the corresponding Skolem set 8' described
above in lemma 3.1:

8' = {bi
: i E I} U

ai

{ I ( b; bj ). ". I "-I-"} { bi 1·· I}2 ai + aj · ~,J E , ~ r J U ai ± · ~ E ,

which is considerably larger, especially if II U 12 # 0.
Nevertheless, the set S is still quadratic in the size of
A 3 ( x, 'P) U A 4 ( x, 'P).

Moreover, in each subcase, ai, aj # O. In subcases 1 and

2, <pCx / / ~ ) holds in R; in subcase 3, <pCx / / !!;)holds in

R; finally in subcase 4, <pCx / / t(~ + ~ )) holds in R.
If 'P is an arbitrary positive quantifier-free linear for­

mula, one can first eliminate all relations "#" occuring
in 'P by replacing c # d by c < d V -c < -dc; then the
resulting formula is equivalent to a disjunction of con­
junctions 'Pj (j E J) of atomic formulas, where 14 =0.
As a consequence, 3x'P is equivalent to VjEJ 3x'Pj. So
by the proof above and remark 2.1 (ii), S is an elimina­
tion set for each 'Pi, and hence for 'P. •

COROLLARY 3.4. Let 'P be a positive quantifier-free
linear formula, and let x E X be a linear variable.
We assume without restriction that for k = 1,2,3,4,
Ak(X,'P) = {ai x Pk bi: i E Ik}, where Pk E {=,~,<

,#}. Let

8 = {b i
: i E 13 U I4 } U

ai

{ 1(b i bj ) .. IT· -I- .}2 ai + aj : ~,J E 1 U -'2, ~ r J U

b"{-!. ± 1: i E II U I 2 }.
ai

Then S is an elimination set for VX'P.

Proof. Let 'l/J be the quantifier-free linear formula re­
sulting from "''P by "pulling negations in front of atomic
subformulas" and .replacing negated atomic formulas
by their obvious unnegated equivalents in R. Then
AI(x,'t/J) = {ai x = bi : i E I4 }, A 2 (x,'t/J) = {(-ai)x ~

(-bi): i E I 3 }, A 3 (x,'t/J) = {(-ai)x < (-bi): i E
I 2 },A4 (x,'l/J) = {aix # bi : i E II}. So by the theorem
above, S is an elimination set for 3x't/J. Hence

VX'P ~ ..,3x..,'P ~

3.2. Elimination Sets with ±oo

..,3x'l/J ~ .., V 'l/J(xl It) ~
tES

.., V"''P(xl It) ~ A'P(xl It) •
tES tES

In order to further optimize the size of elimination sets,
we now introduce the substitution of the dummy sym­
bols 00 and -00 as improper terms for a linear variable
in a linear formula. For the case that the linear formula
in question contains no parameters, the method is due
to [6]. It suffices to define the substitution 'P( x II± 00)

of ±oo for x E X in an atomic formula 'P of the form
ax P b, where a, b are linear terms, p E {=, ~, <} and a
contains no linear variable. If a contains no parameters,
then a can be computed as a rational number. In this
case, the definition is as follows:

if a = 0
otherwise

a · (±oo) = b := {~= b

Proof. We assume to begin with that 'P is a con­
junction of atomic formulas and that 14 = 0. For fixed
values of all ai, bi in some ordered field F, we consider
the solution set M of 'P wrt x, Le. the set of all c E F
such that 'P(c) holds in F. Suppose that M # 0. Then
by our hypothesis, M is a non-empty interval (possibly
semi-infinite or infinite). We distinguish several cases:

Case 1. M is unbounded from above. Then M con­
tains one of the points ~ + 1 for i E 13 or one of the

points ~ for i E 12 •

Case 2. M is unbounded from below. Then M con­
tains one of the points ~ - 1 for i E 13 or one of the

points ~ for i E 12 •

Case 3. M is bounded. Then M is of one of the
following types:

1. [~, ~I with i,j E II U h
2. [~, ~) with i E h j E h
3. (~, ~1with i E h j E h
4 ( b· ~) • h"" I

• ~, aj Wit ~,J E 3·
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3.3. Elimination Sets with Inflnitesimals

this case, the definition is as follows:

( ± ) b {
O=b ifa=Oa· c € = :=
F otherwise

{
ac < b if a > 0 (if a < 0)

a · (c ± €) ~ b.- ac ~ b if a ~ 0 (if a 2:: 0)

{
ac < b if a ~ 0 (if a ~ 0)

a · (c ± €) < b:= ac ~ b if a < 0 (if a > 0)

.a.(c ± €)#b := {O;afb ifa=~
T otherWise

If a contains at least one parameter, a corresponding
case distinction is formulated as a linear formula; in
this case the definition is as follows:

a·(c ± €)=b:= (a=O 1\ O=b)

a· (c + €) ~ b := (a > 01\ ac < b) V (a ~ 01\ ac ~ b)

a·(c+€)<b:= (a<O 1\ ac~b) V (a~Ol\ac<b)

a· (c - €) ~ b := (a ~ 01\ ac ~ b) V (a < 01\ ac < b)

a·(c-€)<b:= (a~O 1\ ac<b) V (a>Ol\ac~b)

a·(c ± €);afb := O#b V a;afO

So in each case, this definition correctly simulates the
truth value of the linear formula ax p b for a value
c ± € of x in F', where a,b,c E F (F an arbi­
trary ordered field) and € E F' a positive infinitesi­
mal wrt F. If a quantifier-free linear formula <p con­
tains no parameters then <p(x I Ic ± €) has the same
"Boolean structure" as <po In particular, all the sets
A(<p), Ak(X, <p) (k = 1,2,3,4) are transformed into sets
of atomic linear formulas of the same number of ele­
ments under the substitution of c ± €. If <p does con­
tain parameters, this is not the case. Instead, the size of
Alin(<P) doubles. Notice, however, that each inequality
in A(x, <p) produces only one strict and one weak in­
equality involving linear variables, both of which have
the same right- and left-hand sides.

Using the substitution of these improper terms, the
size of elimination sets can now be decreased signifi­
cantly. In the following we use the set notation {oo, Cj :

j E J} to denote the set {co} U {Cj : j E J} in case
J ;af 0, and to denote 0 otherwise.

THEOREM 3.5. Let <p be a positive quantifier-free
linear formula, and let x E X be a linear variable.
We assume without restriction that for k = 1,2,3,4,
Ak(x, <p) = {ai x Pk bi : i Elk}, where Pk E
{=,~,<,;af}. LetS={~:iEIIUI2} U{oo, ~-€:
i E 13 U I4 }. Then S is a;" elimination set for 3x~.

Proof. As in the proof of 3.3, it suffices to consider
the case that <p is a conjunction of atomic formulas. Let
M be the non-empty interval defined in this proof, and
let € E F' ;2 F be positive infinitesimal wrt F. Suppose
to begin with that M is unbounded from above. If
13 U 14 ;af 0 then <p(xlloo); otherwise M contains some
point of the form ~ with i E II U 12 , and so <p(xlI~)
holds in F'.

if a = 0
if a > 0
if a < 0

if a = 0
if a > 0
if a < 0

a· (±oo) ~ b .- {~tr~
T(F)

{

O<b
a' (±oo) < b:= F(T)

T(F)

a.(±oo)#b := {~#b if a =0
otherwise

If a contains at least one parameter, a corresponding
case distinction is formulated as a linear formula; in this
the definition is as follows:

a'(±oo)=b := (a=O 1\ O=b)

<
a· (±oo) ~ b .- (a =0 1\ 0 ~ b) V (a > 0)

<
a· (±oo) < b .- (a = 0 1\ 0 < b) V (a > 0)

a· (±oo) # b := (a = 0 1\ 0 # b) V a # 0

So in each case, this definition correctly simulates the
truth value of the linear formula ax p b for sufficiently
large values of x in an arbitrary ordered field. If a
quantifier-free linear formula <p contains no parameters
then <p(x / / ± 00) has the same "Boolean structure" as
<po In particular, under the substitution of ±oo, all the
sets A(x,<p), Ak(X,<p) (k = 1,2,3,4) are transformed
into sets of atomic linear formulas of the same number
of elements. If <p does contain parameters, this is not
the case. Notice, however, that the additional atomic
formulas entering in <p(±oo) contain no linear variables.
So the number of elements in Alin (<p) is invariant under
the substitution of ±oo.

An easy inspection of the proof shows now that in
lemma 3.1, theorem 3.3 and corollary 3.4 the terms ~+
1 can be replaced by 00 and the terms ~ - 1 can be
replaced by -00 (compare also the proofs of theorem
3.5 and corollary 3.6 below).

An even greater reduction in size of elimination sets can
be achieved by introducing infinitesimals. Recall that
by the linear Tarski principle 3.2 the following holds:
Whenever 'F ~ F' are ordered fields, then F is a ~­
elementary substructure of F'. Moreover, every ordered
field F has an ordered extension field F' containing a
element €, that is positive and infinitesimal wrt F, Le.
o< € < c for every positive c E F.

In the following, we use € as a dummy symbol for such
a positive infinitesimal. We are going to formally substi­
tute improper terms of the form c ± € (c a linear term)
for a linear variable x in a quantifier-free linear formula.
It suffices again to define the substitution <p(xI Ie ± €)
of c ± € for x E X in an atomic formula <p of the form
ax p b, where a, b are linear terms, p E {=,~, <, ;af} and
a contains no linear variable. If a contains no parame­
ters, then a can be computed as a rational number. In
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If M is bounded from above, two cases can occur:
Case 1: M contains its upper endpoint, which is then

of the form ~ with i E II U 12 • Then <p(x / / !1: )holds in
P'.

Case 2: M does not contain its upper endpoint, which
is then of the form ~ with i E 13 UI4 • Then ~ -€ E M,

and so ep(x// ~ - €)' holds in P'. '.

Applying the proof of 3.4 to this theorem, we obtain the
corresponding elimination set for a universal quantifier:

COROLLARY 3.6. Let <p be a positive quantifier-free
linear formula, and let x E X be a linear variable.
We assume without restriction that for k = 1,2,3,4,
Ak(X, <p) = {ai x Pk bi: i Elk}, where Pk E
{=,~,<,,e}. LetS={~:iEI3UI4} U{oo, ~-€:
i E II U I2}. Then S is an elimination set for 'Vx<p.

REMARK 3.1. The elimination sets S in theorem 3.5
and corollary 3.6 appear to be asymmetric with respect
to 00 and -; an inspection of the proof of 3.5 shows,
however, that this is not the case: If one replaces 00

by -00 and ~ - € by ~ + € in the statement of 3.3 or
3.4, one obtains another elimination set for 3x<p or 'Vx<p,
respectively.

In order to compare the efficiency of the quanti­
fier elimination methods provided by 3.3 and 3.4 ver­
sus 3.5 and the elimination by a Skolem set, we ap­
ply these methods to the elimination of a block of ex­
istential or universal quantifiers. We use the follow­
ing complexity measures: at(<p) = ~A(<p), atlin(<P) =
~Alin(<P). For an n-tuple x = (Xl, ... ,Xn ) of linear vari­
ables, Ak (x, <p) k = 1, 2, 3, 4 and A(x, <p) are defined
similar as for a single linear variable X; so Al (x, <p),
A2(x, <p), A3(x, <p) A4 (x, <p) is the set of all equations,
weak inequalities, strict inequalities, inequations, re­
spectively, that contain at least one Xi. atk(X, <p) =
~Ak(X,<p) for k = 1,2,3,4, at(x,<p) = ~A(x,<p).

at' (<p) [at' (x, <p), at~in (cp)) is the number of atomic for­
mulas in At(cp) [in At(x,cp), in Atlin(CP)), where formu­
las that differ only in their relation symbols are counted
only once. So at(cp) ~ 4 · at' (<p), atlin (<p) ~ 4 . at~in (<p)
and at(x, cp) ~ 4· at'(x, <p).

THEOREM 3.7. Let <p be a positive quantifier-free
linear formula, let x = (Xl,' .. 'Xn) be an n-tuple of
linear variables. Then quantifier elimination for the lin­
ear formula 3x<p according to 3.3 or 3.5 or the use of
Skolem sets yield an equivalent linear formula <p' of the
form VjEJ <pj with the following respective complexity
bounds:

{

at(<p) for Skolem sets
at( '.) < at(ep) for theorem 3.3

<pJ - at(<p) for theorem 3.5
(<p without parameters)

at'(<pj) ~ at'(<p) + n· at'(x, <p) and at~in(<pj) ~ at~in(<P)

for theorem 9.5 (<p with parameters)

{

an for Skolem sets
/3n for theorem 3.3

~J :::; ')'n for theorem 3.5 (ep without parameters)
8n for theorem 3.5 (<p with parameters)

where

2 1
a = at(x, cp)) + 2. at(x, cp), /3 = /312 + '2/334 + 2/334,

with /312 = at1(X,CP) + at2(X,<p), /334 = at3(X,<p) +
at4 (x, <p),

,=at(x,<p)+1, 8=2.at'(x,<p)+1.

Corresponding results hold for blocks of universal quan­
tifiers.

Proof. Induction on n, taking into account that an
existential quantifier can be interchanged with a dis­
junction. •

So for arbitrary positive quantifier-free linear formu­
las <p the method of theorem 3.5 and corollary 3.6 pro­
vide elimination sets of size linear in at(x,<p), whereas
the corresponding Skolem sets, as well as the elimina­
tion sets described in theorem 3.3 and corollary 3.4,
have size quadratic in at(x, <p).

3.4. Taking the Boolean Structure into Ac­
count

So far, elimination sets were totally determined by the
set of atomic formulas and the quantifier to be elimi­
nated. Next, we consider linear formulas <p of special
Boolean structure that admit even smaller elimination
sets. Our first example is just a slight variant of [15],
lemma 2.3, case 1:

THEOREM 3.8. Let <p be a quantifier-free linear for­
mula (not necessarily positive), let X be a linear vari­
able, and let A(x,cp) = {aix = bi : i E I} = A 1(x,<p).
Then S = {~ : i E I} U {oo} is a Skolem set for
x, A(x, <p), and hence an elimination set for 3x<p and
for'Vx<p. Morover, if <p is positive, then S = {~ : i E I}
is an elimination set for 3x<p.

DEFINITION 3.2. Let <p be a positive quantifier-free
linear formula and x = (Xl, ... , x n) be an n-tuple of
linear variables. Then we say <p is an generalized

atk(X, <pj) ~ atk(X, <p)

for k = 1,2,3,4 in all cases except theorem 9.5, if <p
contains parameters; in this case,

at' (x, <pj) ~ at' (x, <p)

Proof. Easy. •
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or

The theorem can be used to eliminate a block of uni­
versal quantifiers or a block of existential quantifiers in
linear formulas of the form

3XI ••• 3Xr(qIxI = tl /\ ... /\ qrxr = t r /\ 'P(XI, ... , x r ))

where qI, ... qr are non-zero rational numbers.
Finally, we consider quantifier-free linear formulas 'P

of the form

•Proof. Trivial.

(**) 'PI ==> 'P2,

where 'PI is a positive quantifier-free linear formula with
Ak(x,<.p) = 0 for k = 1,2, and 'P2 is a conjunction of
generalized strict inequalities wrt x.

Using the same idea as in the proof of theorem 3.9,
one finds that the following set

S = {b; ± E : i E I}
aj

THEOREM 3.9. Let'P be a quantifier-free linear for­
mula of the form (1) wrt the linear variable x, and
assume that Al (x, 'PI) = {ai X = bi : i E II} and
A2(x, <PI) = {ajx :s; bj : i E I2}. Then

S = {b; : i E h U 12 } U { 00, -00}
aj

equation, generalized weak inequality, general­
ized strict inequality wrt x, if all atomic subformu­
las of 'P that contain some Xi are identical to a sin­
gle equation, weak inequality, strict inequality, respec­
tively. Typical examples of such formulas are the for­
mulas arising from the formal substitution of ±oo into
some atomic linear formula.

Next, we consider quantifier-free linear formulas of
the form

'PI ==> 'P2, (1)
where 'PI is a positive quantifier-free linear formula with
A 3 (x, 'P) = A 4 (x, 'P) = 0 and 'P2 is a conjunction of
generalized equations and generalized weak inequalities
wrt x.

is an elimination set for VX'P.

Proof. For fixed values of all linear variables and
parameters in 'P except x in some ordered field F, 'P2
defines a closed interval M 2 in F and <PI defines a finite
disjoint union M I of closed intervals in F. So Vx<p as­
serts that M I ~ M 2 • This is equivalent to the assertion
that all the endpoints of the closed intervals constitut­
ing M I are contained in M 2 • •

By induction on n this theorem can be generalized to
the elimination of a block of universal quantifiers. (This
uses essentially the assumption that 'P2 is a conjunction
of generalized equations and weak inequalities in order
to handle the formal substitution of ±oo.)

THEOREM 3.10. Let <P be a quantifier-free linear
formula of the form (1) wrt the n-tuple (Xl,"" x n )

of linear variables. Then quantifier elimination for
the linear formula Vx<p according to the preceeding
theorem yields an equivalent linear formula <p' of the
form !\jEJ 'Pj with the following respective complexity
bounds:

at~(x,'Pj) :5 atk(X,'P) for k = 1,2

at(<pj) :s; at( 'P) + 2n . at(x, 'PI)

~J ~ an, where a = at(X, 'PI) + 2

An even simpler case also has applications:

THEOREM 3.11. Let X be a linear variable, t a term
with X fI. X (t), 0 ~ q a rational number, and let 'P be
a quantifier-free formula (not necessarily positive nor
linear), Then S = {t} is an elimination set for the for­
mulas

VX{q· X = t ==> 'P(x)},

3x{q. X = t /\ 'P(x)},

since both formulas are equivalent to 'P(xi It. q-l).

is an elimination set for Vx<p, where A(x, 'PI) = {aiX <
bi : i E I}. By way of contrast, the elimination set
provided by the general method described in corollary
3.6 is of the form

S' {b i . I} {b i . I'}= -: z E U 00, - - € : z E ,
ai ai

where A(x, 'P2) = {aix < bi : i E I'}. So, the present
method is superior, if at(x, 'P2) 2: at(x, 'PI).

3.5. Avoiding Inverses that Involve Parameters

So far, we have made extensive use of inverses a-I in
elimination sets. By our convention that 0- 1 =0, there
is no need to introduce case distinctions a = 0, a ~ 0,
if a contains parameters. This has two effects: On the
one hand, it helps to keep the number of atomic formu­
las smaller during quantifier elimination; on the other
hand, the nesting of inverses prohibits simplification of
formulas by detection of trivially true or false atomic
subformulas or of trivial equivalences between atomic
subformulas. It turns out that in practice the second,
adverse effect may outweigh the advantages of the first
one. The reason for this fact is apparent at least when
the quantifier elimination is performed according to the­
orem 3.5 and corollary 3.6: Here, the modified substitu­
tion of the improper terms occuring in the elimination
sets require a corresponding case distinction anyway.

So we indicate now how to avoid the occurence of in­
verses involving parameters altogether by treating them
as improper terms. For this purpose, we replace the in­
verse a -1 formally by a syntactically different inverse
inv(a). Then the resulting terms in the elimination
sets provided be theorem 3.5 and corollary 3.6 are of the
form d·inv(c) and d.inv(c)+€, where c, d are linear LOF­

terms, X(c) = 0 and € is a positive infinitesimal. The
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modified substitution of these improper terms for x E X
in formulas of the form ax p b with p E {=,:S;, <, 1=} is
then defined as follows:

If c contains no parameters, modified substitution is
defined as before; otherwise:

a(d· inv(c)) p b .-

(c = 01\0 P b) V (c 1= 0 1\ ad p cb),

if p E {=, 1=};
a(d· inv(c)) p b :=

(c = 0 1\ 0 P b) V (0 < c 1\ ad p cb) V

(c < 0 1\ -ad p - cb),

if p E {:s;, <};

a(d· inv(c)) ± E) P b :=

(c = 0 1\ a (0 ± E) P b) V (c 1= 0 1\ a (d ± E') P cb),

if p E {=, 1=};
a(d· inv(c)) ± E) P b :=

(c = 0 1\ a(O ± E) P b) V (0 < c 1\ a(d ± E') P cb)V

(c<OI\-a(d±E')p -cb),

if p E {:s;, <};
In both cases, the occurence of the improper terms

O±E and d±E' is purely formal and explained as above in
the modified substitution, where E and (.' denote positive
infinitesimals.

The elimination of inverses achieved in this way is of
great importance for the simplification of the formulas
arising from quantifier elimination by terms.

Among the various simplification strategies that will
be employed in the examples are the following:

1. Replacing atomic formulas that are obviously true
or false by the elementary properties of equality and
order (as e.g. a = a, a :s; a, a < a, a 1= a) by their
respective truth values and logical simplification of the
resulting formula according to the rules (T V 'P {:::::}
T), (T 1\ 'P {:=} 'P), (F V 'P {:::::} 'P), (F 1\
'P {:::::} F). On a more sophisticated level, the system
may recognize sums of squares with positive rational
coefficients in formulas of the form a p 0 and simplify
accordingly.

2. Elimination of many multiple occurences of the
same atomic formula or of closely related atomic for­
mulas (as e.g. a = 0, a 1= 0, a :s; 0, a < 0, -a =
0, -a 1= 0, -a :s; 0, -a < 0) in a linear formula 'P.
This is achieved by a version of the semantic tableau
method that uses some very elementary properties of
ordered fields: We replace 'P by (a = 0 1\ 'PI) V (a <
o1\ 'P2) V (-a < 0 1\ 'P3), where <Pi results from 'P by
first replacing each of the atomic formulas listed above
by the truth values T of F they get from the respective
hypothesis a = 0, a < 0, -a < 0, and then applying
the logical simplification described above. In this way,
an arbitrary number of occurences of related formulas

is replaced by exactly three such occurences at the cost
of multiplying the number of occurences of all other
atomic formulas by three. This .procedure can be iter­
ated as long as atomic formulas with many occurences
are present. In case <p contains no order-inequalities, it
suffices to adjoin in a similar way the case distinction
a = 0 V a =I 0 instead of a = 0 V a < 0 Va> o.

3.6. Extensions by Linearly Defined Functions

In some applications (such as the recursive definition of
sequence with period 9 in [2]) it is useful to enrich the
language by terms involving function symbols, which
can be in principle defined in a simple manner by lin­
ear formulas. In many cases, however, the elimination
of such a function symbol by its definition leads to an
enormous increase in the length of the formula. Typi­
cal examples are the absolute value function, the sign
function, the max and the min function.

Consider e.g. the absolute value function 1.1. An oc­
curence of the function symbol 1.1 in an "extended" lin­
ear formula 'P( It!) can be eliminated by replacing <p( It!)
by

(0 :s; t 1\ <p(t)) V (t :s; 01\ <p(-t))

or equivalently by

(t < 0 V 'P(t)) 1\ (0 < tV <p(-t))

In either case, an elimination of k nested occurences of
the absolute value function symbol in an "extended"
linear formula will increase the number at(<p) of atomic
subformulas of <p to more than at(<p)2 k in the resulting
linear formula <p'. For the elimination of a quantifier
in an extended linear formula by this method one has
then to substitute all terms of a suitable elimination set
S for the resulting formula into the latter formula.

A good deal of the complexity arising from this
method can be avoided by substituting the terms of the
elimination set S obtained in this way directly into the
(much shorter) original "extended" formula. It is not
difficult to verify that S does indeed form a semantically
correct elimination set for the original formula.

4. APPLICATIONS

The following examples illustrate the scope of the
method in general and of a REDUCE-implementation
of the method in particular. The implementation is
based on the Diplomarbeit [1]. The following computa­
tions use a thoroughly revised, extended and optimized
version of these programs that is due to Thomas Sturm
at the University of Passau. For the 3-dimensional
planar transportation problem he was generously sup­
ported by Dr. H. Melenk, ZIB, Berlin. All the com­
putations in Passau were done on an IBM RS6000/520
with 16 megabyte main memory.
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Elimination of TRECIPs applied to these results yields:

After elimination of all TRECIP's, the results are in
fact identical for both types of elimination sets.

An automatic iterative tableau method with respect
to the term a - c yields the following simplified formula
containing only 56 atomic subformulas:
((s - tt > 0 1\ q - r - s + tt < 0 V s - tt < 0 1\ q - r - s + tt >
O)I\{b·s-b·tt+c·q-c·r-c·s+c·tt-d·q+d·r < Ol\q-r-s+tt <
OVb·s-b·tt+c·q-c·r-c·s+c·tt-d-q+d-r > Ol\q-r-s+tt >
OVc-d> Ol\q-r-s+tt =O)I\(s-tt =Ol\q-r-s+tt =
OVq-r-s+tt :F 0)I\(a-c-a-d-c2 +c-d = Ol\q-r-s+tt =
OVa-b-s-a-b-tt+a·c·q-a·c·r-a-c-s+a-c-tt-a-d-q+a-d­
r-b-c-s+b-c-tt-c2 _q+c2

• r+c2 -s _c2 ·tt+c-d·q-c- d- r =
Ol\q-r-s+tt :F O)V(b-d =Ol\c-d > OVb-d < O)l\s-tt =
Ol\q-r-s+tt =O)l\a-c > OV(b-d =Ol\c-d < OVb-d >

4.1. An Arithmetic Component in an Expert
System

The first application comes from Ph. Hanschke [7]. For
the production of the work plan for certain mechanical
parts (milling of metal parts) skeleton work plans incor­
porating geometrical and technological properties have
to be available in a knowledge base. From the query
consistency tests are generated automatically which are
handled by an arithmetical component of the knowledge
base. The formulas describe in parametrized form ge­
ometrical properties composed in a systematic fashion
from geometrical primitives relevant for the construc­
tion of the mechanical parts. The formulas are all lin­
ear but involve free parameters in the coefficients. The
formulas are in general quantified with both quantifiers
and include negation and disjunction. As it turns out,
already simple properties involve a large number of free
variables whereas the number of quantified variables is
small.

In the following example we describe the primi­
tive property "Einschnitt ohne Hinterschneidung" (cut
without undercutting) as a quantified formula. The
quantifier-free result contains 68 atomic subformulas if
no inverses containing variables (TRECIPs) are admit­
ted. Using TRECIPs the result contains only 32 atomic
subformulas. This is not surprising in view of the fact
that TRECIPs implicitly code case distinctions.

The input formula is

3x3y(0 < x A Y < 0 A x· r - x· tt + tt = q. x - s· x + s

Ax · b - x · d + d = a · y - c · y + c)

Quantifier elimination without infinitesimals (off
eps) and with infinitesimals (on eps) yields:

# Atomic formulas

142
66

# Atomic formulas

22
28

# Atomic formulasMethod
off eps
on eps

Input formula results from
off eps
on eps

Elimination of TRECIPs applied to these results yields:

al = (2-3r)(a2 +b2)+4ar-2a-r

a2 = (1 - 3r)(a2 + b2) + 2ar

Quantifier elimination yields:

4.2. The Collins/Johnson Problem

The input formula is

3r(0 < r A r < 1 A 0 < a2 A al < 0)

0) 1\ q - r - s + tt = 0 1\ s - tt = 0 1\ a - c < 0 V ((s - tt >
Ol\q-r-s+tt < OVs-tt < Ol\q-r-s+tt > O)A(s-tt =
Ol\q-r-s+tt =OVq-r-s+tt:F O)I\(b·s-b·tt+c·q­
c- r - c- s +c· tt - d -q +d· r = Ol\q- r - s +tt :F OV c- d =
Ol\q-r-s+tt = O)V(c-d < Ol\b-d < OVc-d > Ol\b-d >
O)I\{b-s-b·tt+c-q-c-r-c·s+c-tt-d·q+d·r = Ol\b-d #
oV s - tt = 01\ b - d = 0) 1\ (c - d = 01\ b - d = 0 V b - d #
O)Vs-tt = Ol\q-r-s+tt = Ol\c-d = Ol\b-d = O)l\a-c = 0
CPU-time:5 6 sec.

where

The shortest output without TRECIPs contains 66
atomic subformulas and reads:
(a2 -2-a+b2 +1 $ 01\3·a2 -4·a+3·b2 +1 < OVa2 -2-a+
b2 +1 ~ 01\3-a2 -4·a+3·b2 +1 > OV3·a2 -4-a+3·b2 +1 =
O)I\(a2 -a+b2 < 01\3·a2 -4·a+3·b2 +1 < OVa2 -a+b2 >
01\3·a2 -4-a+3-b2 +1 > 0)1\((a2 -a+b2 $ 01\3·a2 -4·a+3­
b2 +1 =OV3-a2 -4·a+3·b2 +1 # 0)1\3·a2 -4-a+3·b2 +1 <
OV3-a2 -4-a+3-b2 +1 = 0I\a2 -a+b2 < 0)1\((3·a4 -6·a3 +
6-a2 _b2 +3·a2 -6·a-b2 +3·b4 _b2 ~ OA3·a2 -4-a+3·b2 + 1 <
oV3 . a4

- 6 . a 3 + 6 . a2
- b2 + 3 . a2

- 6 · a . b2 + 3 . b4
- b2 $

OA3-a2 -4-a+3-b2+1 > OVa2 +b2 ~ OA3-a2 -4-a+3-b2+1 =
0)1\3-a2 -2·a+3-b2 > OV{3-a4 -6·a3 +6·a2 ·b2 +3·a2 -6'a'
b2 +3·b4 _b2 > 01\3-a2 -4-a+3-b2 + 1 < OV3·a4 -6·a3 +6­
a2 ·b2 +3· a2 -6· a·b2 +3 -b4

- b2 < OA3 ·a2 -4·a+3·b2 + 1 >
OVa2 +b2 > 01\3-a2 -4-a+3·b2 +1 = 0)1\3·a2 -2.a+3·b2 $
0) V (a2

- a + b2 $ 01\3 -a2
- 2· a + 3· b2 < 0 Va 2

- a + b2 ~

01\3-a2 -2·a+3-b2 > OV3·a2 -2-a+3·b2 = 0)I\(a2 +b2 <
OA3-a2 -2'a+3-b2 < OVa2 +b2 > OA3·a2 -2·a+3·b2 >
0) 1\ ({3 . a4

- 6 -a 3 + 6 . a 2
- b2 + 3 . a2

- 6 . a -b2 + 3 . b4
- b2 ~

01\3-a2 -2-a+3-b2 < OV3-a4 -6-a3 +6·a2 _b2 +3-a2 -6.
a -b2 + 3 -b4

- b2 :5 01\3 -a 2
- 2 . a + 3 -b2 > 0 Va 2

- a + b2 :5
01\3'a2 -2-a+3-b2 = 0)1\3-a2 -4-a+3-b2 +1 < OV(3'a4 -6­
a3 +6-a2 _b2 +3·a2 -6-a·b2 +3·b4 _b2 > 01\3·a2 -2-a+3-b2 <
oV 3 . a4

- 6 . a 3 + 6 -a 2
- b2 + 3 . a 2

- 6 . a . b2 + 3 -b4
- b2 <

OA3·a2 -2·a+3·b2 > OVa2 -a+b2 < 01\3·a2 -2·a+3·b2 =
0)1\3-a2 -4.a+3-b2 +1 ~ 0)1\((a2 +b2 ~ 01\3·a2 -2·a+3·b2 =
oV 3 . a 2

- 2 . a + 3 - b2 # 0) 1\ 3 . a2
- 2 . a + 3 . b2 >

OV3-a2 -2-a+3-b2 =Ol\a2 +b2 > 0)V(3·a2 -4·a+3·b2+1 <

68
68

# Atomic formulas

32
37

Method
off eps
on eps

Input formula results from
off eps
on eps
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o1\ a2
- 2 . a + b2 + 1 ~ 0 V 3 . a2

- 4 . a + 3 . b2 + 1 ~

Ol\a2 -2·a+b2 +1 > O)A(3·a2 -2·a+3·b2 > OAa2 -a+b2 :5
oV 3 . a2

- 2 . a + 3 . b2 :5 0 A a2
- a + b2 < 0)

The automatic iterative tableau method was not able
to reduce the size of this formula. An automatic simpli­
fier that recognizes explicit sums of squares (in this case
a2 + b2

) was able to cut down this formula to a formula
with only 63 atomic subformulas. It missed, however,
certain implicit sums of squares occuring in the formula
such as a2

- 2ab + b2 + 1.
CPU-time = 1 sec.
For comparison: The output formula obtained by

Collins' original CAD method contains 649 atomic sub­
formulas; the vastly improved version in [8] only 4
atomic subformulas. The respective timings are about
102 and 8 seconds (on a SUN Sparcstation SLC).

Elimination of the quantifier 'Vb using the last option
yields the formula

'Po := 3c'v'a(
« c - 1 :f; 0 V a - d :f; 0) /\ a - c ;= 0 V a 2

- 1 = 0)
/\ «c - 1 ;= 0 V a - c;= 0) /\ a - d:f; 0 V a 2

- c = 0)

In this formula, the variable a has two non-linear oc­
curences, viz. in the atomic formulas a2 - 1 = 0 and
a 2 - c = O. We replace the first occurence equivalently
by a = 1 Va = -1, the second by a = VC Va = -VC,
where the square root symbol is purely formal. Elimi­
nation of the linear quantifier Va can now be performed
separately for the two parts of the conjunction. For the
first part

'v'a«c;= 1 V a :f; d) /\ a ;= c V a = 1 Va = -1)

the resulting formula is

The input formula for real quantifier elimination is

is linear in b und equivalent to the positive formula

4.3. The Davenport/Heintz Example

3c'Va'Vb( (a =I d V b =I c) /\ (a =I c V b =I 1) Va· a = b)

'PI := (c - 1 =I 0/\ c - d =I 0 V d + 1 = 0 V d - 1 =0)

/\ (c+l=OVc-l=O)

For the second part

'v'a( (c =11 V a =I c) /\ a =I d V a = VC V a = -VC)
the result is

4.4. Multidimensional Planar Transportation
Problems

containing 12 atomic subformulas.
Application of an automatic iterative tableau­

simplifier (with respect to d2 - 1) yields the formula

(d + 1 = 0 V d - 1 = 0) /\ d2
- 1 = 0

The following linear formulas Ti,m describe the feasabil­
ity conditions for parametrized planar transportation
problems of dimension ~ 3. The problem in each case
is to find quantifier-free conditions on the parameters
that are necessary and sufficient for the feasability of

which is equivalent to the well-known solution d = 1 V
d= -1.

CPU-time is ~ 1 sec in this interactive quantifier
elimination compared to 217 sec for the automatic
quantifier elimination in [3].

'P2 := (c - 1 ;= 0/\ c - d =I 0 V VC + c = 0 V VC - c = 0)

/\ (VC + d =0 V VC - d = 0)

In order to eliminate the existential quantifier 3c we
have to eliminate the formal square root symbols. 'P2 is
replaced by the equivalent formula

'P2' := (c ;= 1 /\ c =I d V c = 0 V c = 1 V c = 0) /\ c = d2.

Elimination of the quantifier 3c in the formula 3c( 'PI /\
'P2 ') yields

(d - 1 = 0 V d + 1 = 0) /\ d2
- 1 = 0 V (d2

- d ;=
0/\ d2

- 1 ;= 0 V d - 1 = 0 V d + 1 = 0)
/\(d2 -d =I O/\d2 -1 =I OVd2 -1 = OVd = 0) /\ d2 -1 = 0

30
30
20
20

18
18
8
8

# Atomic formulas

# Atomic formulas

90
80
80
80

80
80
70
60

Time (ms)

Time (ms)

Elimination set

Elimination set

Skolem
Improved
With 00

With 00 and €

Skolem
Improved
With 00

With 00 and €

3c'Vb'Va((a = d /\ b = c) V (a = c /\ b = 1)) --+ a · a = b)

It was presented in [4] as an example, where the original
CAD method of Collins performed badly; the improved
method in [3] drastically reduced the computing time
to 228 seconds on a SUN3/50.

We proceed as follows: First
In the given input formula

3c'Vb'Va( (a = d /\ b = c) V (a = c /\ b = 1)) --+ a . a = b)

3c'Va'Vb((a = d /\ b = c) V (a = c /\ b = 1)) --+ a · a = b)

the universal quantifiers can be interchanged. The re­
sulting formula

The next table shows the results of the same elimination
procedures additionally calling a primitive simplifying
algorithm for propositional logic during elimination.

The following table shows the effect of eliminating the
quantifier 'Vb in this formula using different elimination
sets.
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the problem. For the communication of these problems
we are indebted to Prof. Milan Vlach ( compo [14]).

In dimension 1, the formula is

TI,m := 3XI ••. 3Xm (L Xi = a 1\ 1\ Xi ~ 0),
i i

where the sum and the conjunction ranges from 1 to m.
Obviously, this formula is equivalent to a ~ o.
In dimension 2, the formula is

T 2 ,m := 3{Xij}l~i,j~m(LXij = ai 1\ L Xij = bj 1\
j

1\ Xij ~ 0),
i,j

where the sums and the conjunction range from 1 to m.
Again it is known that T2 ,m is equivalent to the ob­

vious necessary condition:

1\ ai ~ 0 1\ 1\ bj ~ 0 1\ L ai = L bj
j j

In dimension 3 there are two possible feasability con­
ditions:

T 3,m := 3{Xijk}l~i,j,k~m(LXijk= ai 1\ LXijk = bj

j,k i,k

1\ L Xijk = Ck 1\ 1\ Xijk ~ 0),
i,j i,j,k

and

T 4 ,m := 3{Xijk}l~i,j,k~m(LXijk= ajk 1\
i

L Xijk = bik 1\ L Xijk =Cij 1\ 1\ Xijk ~ 0),
j k i,j,k

where the sums and the conjunction range from 1 to
m.

The first formula is known to be equivalent to

1\ ai ~ 0 1\ 1\ bj ~ 0 1\
j

I\ Ck ~o 1\ Lai = Lbj = LCk
k j k

The second formula obviously implies

1\ ajk ~ 0 1\ 1\ bik ~ 0 1\
j,k i,k

I\ Cij ~ 0 1\ Lajk = Lbik = LCij,
i,j j,k i,k i,j

but it is known that for m ~ 3, T4 ,m is not equivalent
to this condition (see [12, 14]).

A computer program for finding a quantifier-free
equivalent to T4 ,3 by a completely different specialized
method was developed in [11] but did not produce any
result after 50 hours computing time on an IBM 360/50.

As first input formula for linear quantifier elimina­
tion we take T2 ,3' Le. the two-dimensional transport
problem for m = 3.

T 2 ,3 := 3Xl13xl23xl33x213x223x233x313x323x33

(XII + XI2 + XI3 = al 1\ X21 + X22 + X23 = a2 1\
X31 + X32 + X33 = a3 1\ XII + X21 + X31 = b l 1\
Xl2 + X22 + X32 = b2 1\ Xl3 + X23 + X33 = b3 1\
o:5 XII 1\ 0 :5 Xl2 1\ 0 :5 XI3 1\ 0 :5 X21 1\ 0 :5 X22 1\ 0 :5
X23 1\ 0 :5 X31 1\ 0 :5 X32 1\ 0 :5 X33)

Linear quantifier elimination using infinitesimals yields
an output formula containing 486 atomic subformulas.
Application of an automatic iterative tableau method
reduces the number of atomic subformulas to 406. The
equation al + a2 + a3 - bl - b2 - b3 = 0 that appears as
a conjunctive part in the result admits the substitution
of b3 for the term al + a2 + a3 - bl - b2 in the re­
maining formula. Since the formula contains moreover
al ~ 0 1\ a2 ~ 0 1\ a3 ~ 0 1\ b l ~ 0 1\ b2 ~ 0 1\ b3 ~ 0 as a
conjunctive part, the remaining formula t/J is equivalent
to t/J[true/al ~ 0, true/a2 ~ 0, true/a3 ~ 0, true/b1 ~

0, true/b2 ~ 0, true/b3 ~ 0]. Automatic Boolean sim­
plification of the latter formula results in the following
final output formula containing 196 atomic subformu­
las.
at ~ OA a 2 ~ OA a 3 ~ OAbt ~ OAb2 ~ OAb3 ~ OA((a2- b2 ::5
OAbt - a 3 ~ OVa2-b2 ~ OAa2-bt-~+a3::5 OVa2-bt+a 3 ~

oA bt - a3 ~ 0 A a2 - bI - b2 + a3 ::5 0 V at - bt - ~ + a3 ~

oA bI - a3 ~ 0 V at - bt - b2 + a3 ::5 0 landat - b2 ~

OVa2-bI +a3 ~ OAbt - a 3 ~ OAaI-~ ~ OVaI-bt-~+a3 ::5

oA al - bI + a3 ~ 0 A bl - a3 ~ 0 V at - b2 :5 0 A bt - a3 ~

OVa2-b2 ~ OAal -bI +a3 ~ OAbt - a 3 ~ OVa2-bI-~+a3 ~

oA bt - a3 ~ 0 V ~ - a3 ~ 0 A a2 - bt ::5 0 V b2 - a3 ~

oA a2 - b2 + a3 ~ 0 A a2 - bt - ~ + a3 :5 0 V a2 - bl ~

oA a2 - bI - ~ + a3 ::5 0 V at - bt - b2 + a3 ~ 0 A~ - a3 ~

OVal - bI - ~ + a3 :5 0 A b2 - a3 ~ 0 A at - ~ + a3 ~

OVa2-bt ~ OAa l-b2+a3 ~ OA~-a3 ~ OVat-bl-b2+a3 ::5

oA at - bl ~ 0 V b2 - a3 ~ 0 A at - bI ::5 0 V a2 - b2 + a3 ~

oA~ - a3 ~ 0 A al - bt ~ 0 V a2 - bt - ~ + a3 ~ 0 A~ - a3 ~

OV~-a3:5 OAa2-bl- b2+a3:5 OVa 2-bt +a3 ~ OAa2-b1:5

oA a2 - bI - b2 + a3 :5 0 V b2 - a3 :5 0 A al - bl - b2 + a3 ~

oA bI + b2 - a3 ~ 0 V bI - a3 ::5 0 A at - bI - ~ + a3 ~

oA bI + ~ - a3 ~ 0 V b2 - a3 ~ 0 A al - bl - ~ + a3 :5
oV'al - b2 ::5 0 A al - ~ + a3 ~ 0 A al - bI - ~ + a3 :5
OV~ -a3 :5 OAa 2-bl -b2+a3 ~ OAbl +b2-a3 ~ OVa 2-b2 :5

oA a2 - b2 + a3 ~ 0 A a2 - bI - b2 + a3 :5 0 V bt - a3 :5
oA a2 - bl - ~ + a3 :5 0 V al - bl + a3 ~ 0 A al - bt :5

oA al - bl - b2 + a3 :5 0 V bl - a3 ::5 0 A at - bt - ~ + a3 ::5
oV bt - a3 :5 0 A a2 - bt - b2 + a3 ~ 0 A bt + b2 - a3 ~

oV at + a2 - bt - b2 ~ 0 A a2 - bt :5 0 V at + a2 - bt - ~ ~

OAa2-b2 :5 OVa2-b2 ~ OAal +a2-bl-b2 ~ OAa2-bl-b2 :5
oV a2 - bl ~ 0 A at + a2 - bt - b2 ~ 0 A a2 - bt - b2 :5

OVat +a2-bl-b2 ~ OAal -bt -b2 ::5 OAat-b2 ~ OVa2-bt ~

OAal -~ ~ OVal +a2 -bl -b2 ~ OAal -bt -b2 ::5 OAal -bt ~

oV at + a2 - bI - b2 ~ 0 A al - bl ::5 0 V al + a2 - bl - ~ ~

oAat - b2 :5 0 V a2 - b2 ~ 0 A at - bt ~ 0 Vat + a2 - bl - b2 :5

oA at - b2 ~ 0 V a2 - bt + a3 ~ 0 A a2 - bI :5 0 A at - b2 ~
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OVal +a2 -bt -b2 ~ Ol\a2 -b2 ~ Ol\at +a2 -b2 ~ OVbt -a3 ~

OAat +a2 -b2 ~ Ol\a2-~ ~ OVat +a2 -bt -b2 ~ OA a 2-b2 ~

OVal + a2 - bt - b2 ~ 0 1\ at - b2 ~ 0 1\ at + a2 - b2 ~

oV a2 - bt - b2 + a3 ~ 0 A a2 - bl - ~ ~ 0 A a2 - b2 ~

OVal-bl-b2+a3 ~ Ol\al-bl-~ ~ Ol\al-b2 ~ OVbl - a 3 ~

oA al - ~ ~ 0 V al - bl + a3 ~ 0 A al - bl ~ 01\ a2 - b2 ~

oV bl - a3 ~ 0 1\ al + a2 - b2 ~ 0 A al - b2 ~ 0 V bl - a3 ~

OAa2-b2 ~ OVal +a2-bl -b2 ~ Ol\al +a2-bl ~ 01\a2-bl ~

OVal + a2 - bl - ~ ~ 01\ al - bl ~ 0 V al + a2 - bl - ~ ~

Ol\al +a2-bl ~ Ol\at-bl ~ OVal +a2-bl-~ ~ 01\a2-bl ~

oV b2 - a3 ~ 01\ at + a2 - bl ~ 01\ a2 - bl ~ 0 V a2 - b2+ a3 ~

OAa2-~ ~ OAal -bt ~ OVa 2-bl -b2+a3 ~ Ol\a2 -bl -b2 ~

oA a2 - bt ~ 0 Vat - ~ ~ 01\ a2 - bl ~ 0 V a2 - bl - b2+ a3 ~

oA a2 - bl ~ 0 V a2 - b2 ~ 01\ al - bl ~ 0 V a2 - bl - b2+a3 ~

oA a2 - b2 ~ 0 V al - bl - b2 + a3 ~ 0 1\ al - bl - b2 ~

oA al - bl ~ 0 V ~ - a3 ~ 01\ at + a2 - bl ~ 01\ al - bl ~

oV at - b2 + a3 ~ 0 1\ at - b2 ~ 0 A a2 - bl ~ 0 V ~ - a3 ~

oAat - bt ~ 0 V b2 - a3 ~ 01\ a2 - bt ~ 0 Val - bl - b2+ a3 ~

Ol\al -bl ~ OVal -bl -~+a3 ~ Ol\al -b2 ~ OVa 2-bt +a3 ~

oV at - bt +a3 ~ 0 V a2 - b2+a3 ~ 0 V at - ~ +a3 ~ 0 Val ­

bt -b2 ~ OVa2-bl-b2 ~ OVal+a2-bl ~ OV al+a2- b2 ~

oV bt + b2 - a3 ~ 0) 1\ al + a2 - bl - ~ + a3 - b3 =0)

CPU-time = 13 sec.

Finally, we describe the result of our method for the
3-dimensional planar transportion problem with m =
3, T4 ,3, where no quantifier-free equivalent has been
known.

The input formula T4 ,3 contains 27 existential quan­
tifiers 3Xijk, 27 parameters ajk, bik , Cij and 54 atomic
subformulas.

Crucial for the success of our method is the extensive
use of theorem 3.11. We apply an automatic procedure
(developed by Th. Sturm) that searches for the inner­
most existential quantifier 3Xijk such that the corre­
sponding variable Xijk occurs in the given formula con­
junctively in an equation of the form qXijk = t with
o f:. q E Q and x ¢ X (t). If the search is success­
ful, the procedure moves the corresponding quantifier
to the innermost position and eliminates this quanti­
fier using theorem 3.11 (Le. essentially "Gauss' elimi­
nation" ). This simple method works for 19 of the 27
quantifiers (CPU-time = 6 sec). The resulting formula
1/J has only 54 - 19 = 35 atomic subformulas, 8 exis­
tential quantifiers, and contains no strict inequalities.
Moreover, 1/; is of the form 1/;0 1\ 1/;1, where 1/;0 is a
conjunction of 8 atomic subformulas that contain none
of the quantified variables Xijk and 1/;1 is a prenex ex­
istential formula with 8 quantifiers and 27 atomic sub­
formulas. So for the sake of the remaining quantifier
elimination 1/;0 can be discarded. Elimination of two
more quantifiers from 1/;1, using the elimination set of
theorem 3.5 (CPU-time = 12 sec) yields a disjunction
of 48 prenex existential formulas Pj, each with 6 quan­
tifiers and 25 atomic subformulas. So the elimination
of the remaining quantifiers can be done separately for
each of these disjunctive parts Pj. This is crucial for
the success of the method, since otherwise the space

requirement for the elimination would be exorbitant.
In view of the homogeneity of the problem in the Xijk,

it is no significant restriction to substitute the value 1
for one of the remaining quantified variables Xijk. De­
note the formulas obtained by this substitution by pj.

For two of the 48 formulas pj the elimination of the
remaining 5 existential quantifiers was carried out by
H. Melenk at the ZIB, Berlin, on an HP workstation.
It required less than 6000 seconds each and resulted in
quantifier-free output formulas containing 249318 and
238146 atomic subformulas, respectively.

Since the structure of all the 48 formulas pj is very
similar, a corresponding quantifier elimination for the
remaining 46 formulas should not raise any problems.
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