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Abstract

We present a new spatio-temporal method for markerless
motion capture. We reconstruct the pose and motion of a
character from a multi-view video sequence without requir-
ing the cameras to be synchronized and without aligning
captured frames in time. By formulating the model-to-image
similarity measure as a temporally continuous functional,
we are also able to reconstruct motion in much higher tem-
poral detail than was possible with previous synchronized
approaches. By purposefully running cameras unsynchro-
nized we can capture even very fast motion at speeds that
off-the-shelf but high quality cameras provide.

1. Introduction
Human pose estimation from videos is one of the fun-

damental problems in computer vision and has been re-
searched extensively in the past decades. Applications for
these methods can be found in a wide range of industries,
from entertainment (movies and games) to biomechanics,
in sports, and medical sciences. Real-time capture meth-
ods made possible through new sensors such as the Mi-
crosoft Kinect have opened up new possibilities for human-
computer interaction. However, even with all the develop-
ments in the past years, for accurate motion capture industry
and academia alike still rely on marker-based optical sys-
tems that require complex and expensive setups of cameras
and markers.

A significant amount of research has thus been devoted
to simplifying the setup and accuracy of markerless meth-
ods [18, 19, 22]. However, these methods often rely on
recording videos with synchronized cameras. These setups
require special hardware, and cannot make use of commod-
ity camera hardware with limited frame rates. They are also
often expensive and difficult to set up. Hasler et al. [11]
have introduced a method that performs markerless capture
with unsynchronized commodity cameras. Their approach
does not make use of sub-frame timing information and in-
stead aligns all frames to the nearest discrete time step. The

motion tracking is then performed in the same way as if the
cameras were synchronized. This in turn leads to inaccura-
cies and a reduction of quality in the final results.

Another limitation of markerless methods is that modern
video cameras still have a limited frame rate. Marker-based
systems often capture motion with over 120 frames per sec-
ond, allowing them to accurately capture fast and subtle mo-
tions alike. In contrast, most commodity video camera sys-
tems usually capture images with 30 Hz, with specialized
vision systems capturing up to 60 frames per second at rea-
sonable resolutions. This means that fast motion is harder to
capture accurately with a markerless setup. If the cameras
are run without enforcing synchronization, more samples
would be captured in the temporal domain, but spatial co-
herence will be lost, as in general no two cameras capture
at the same time instance.

To address these problems, we introduce a new spatio-
temporal marker-less motion capture algorithm that can
capture continuous human motion from unsynchronized
video streams. Our method allows cameras to capture
videos with different sub-frame time offsets and even vary-
ing frame-rates. At the same time, we are able to capture
faster motion more accurately as the time domain may be
sampled much more densely. The new formulation pre-
serves spatial and temporal coherency of the model.

Our main contribution is the introduction of a continuous
spatio-temporal energy functional that measures model-to-
image alignment at any point in time: Rather than estimat-
ing discrete pose parameters at each time step, we estimate
continuous temporal parameter curves that define the mo-
tion of the actor. By design, the energy functional is smooth
and accordingly the derivatives of any order can be com-
puted analytically, allowing effective optimization. Similar
to [23], we represent both the actors body as well as the in-
put images as Sums-of-Gaussians (SoG). We also present
a method to enforce joint limits in the continuous pose-
curve space. In the experiments we show that our approach
can simplify the capture setup in comparison to previous
marker-less approaches and that it enables reconstruction
of much higher temporal detail than synchronized capture



methods. Because of this, slow cameras can be used to cap-
ture very fast motion with only little aliasing.

2. Related Work
Human motion capture has been extensively studied in

the computer vision community. We refer the reader to the
surveys [18, 19, 22] for a detailed overview of the field.
The approaches can be roughly divided into methods that
rely on multi-view input and methods that try to infer pose
from a single view. Single view methods, such as [1, 13],
have gained more attention in the past few years. However,
the results do not reach the accuracy of multi-view methods
and usually do not use character models with many degrees
of freedom. Almost all multi-view methods to date rely on
synchronized multi-view input.

The majority of multi-view tracking approaches combine
a body model, usually represented as a triangle mesh or sim-
ple primitives, with silhouette and image features, such as
SIFT [16], for tracking. The methods differ in the type of
features used and the way optimization is performed. The
multi-layer framework proposed in [8] uses a particle-based
optimization related to [7] to estimate the pose from sil-
houette and color data in the first layer. The second layer
refines the pose and extracted silhouettes by local optimiza-
tion. The approaches in [15, 14, 3] require training data to
learn either motion models or a mapping from image fea-
tures to the 3D pose. The accuracy of these models is usu-
ally measured on the HumanEVA benchmark [22].

Tracking without silhouette information is typically ap-
proached by combining segmentation with a shape prior
and pose estimation. While [4] use graph-cut segmenta-
tion, [5, 9] rely on level set segmentation together with mo-
tion features or an analysis-by-synthesis approach. While
these approaches iterate over segmentation and pose estima-
tion, the energy functional commonly used for level-set seg-
mentation can be directly integrated in the pose estimation
scheme to speed-up the computation [20]. The approach
in [23] introduced an analytic formulation for calculating
model to image similarity based on a Sums-of-Gaussians
model. Both body model and images are represented as
collection of Gaussians with associated colors. The energy
functional is continuous in parameter space and allows for
near real-time tracking of complex scenes.

The only work addressing the necessity for complex and
expensive synchronized multi-view camera setups for track-
ing is [11]. There, the input sequences are recorded with
handheld video cameras. Multi-view calibration is per-
formed using a structure-from-motion approach, and sub-
frame accurate synchronization is achieved by optimizing
correlation of the audio channels of each video. However,
during the human pose estimation stage the sub-frame in-
formation is discarded and the videos are treated as syn-
chronized with one-frame accuracy (i.e. all images taken at
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Figure 1. Basic concept: (a) Synchronized cameras images dis-
tribution. (b) Image distribution of unsynchronized cameras after
mapping to a single time line. (c) The interval functions for a sin-
gle pose parameter. (d) After blending, we have reconstructed a
continuous pose function for the entire domain.

the same time instant) for further processing. The estima-
tion step creates silhouettes using a level-set segmentation
and uses these for pose optimization. As we show in the
following this approximation is not valid for fast motion.

3. Overview

Multi-view tracking methods usually capture the perfor-
mance of an actor with ncam synchronized video cameras
(Fig. 1a). The human body is modeled using a kinematic
skeleton and an approximation of the body geometry, us-
ing, for example, a triangle mesh from a scan [10], a sta-
tistical model [2], simple primitives like cylinders [21], or
a continuous function [12]. For each frame i at time ti of
the synchronized input video streams the parameters of the
kinematic skeleton Θti are optimized to maximize similar-
ity of the pose with the input images. This can be measured
with an energy functional Eti (Θti) that is minimized.

Our approach instead considers unsynchronized video
streams where each image is taken at a different time t
(Fig. 1b). Note that all cameras can run at different frame
rates as well. We assume that timestamps ti for each image
are given. These could be obtained using for example the
audio-synchronization method from [11] or by image based
methods such as [6, 17].

When recording unsynchronized video, it is possible to
sample more densely in time compared to synchronized
video. This comes at the cost of losing spatial information



Figure 2. SoG model overview. Left: Body model generated from
example input images. Right: Image SoG approximation gener-
ated from a quad-tree (each cell represents one Gaussian).

at each time instant (Fig. 1b). This poses a new challenge,
as for a given time step, only a single view will be available.
Exclusively fitting pose parameters to a single image at each
time step would lead to unstable tracking since the problem
is underdetermined due to ambiguities and occlusions. In-
stead of estimating the pose parameters Θ for each discrete
time step, we estimate a smooth function Θ(X(t)), which
for each given time instance t, represents the corresponding
vector of pose parameters. This representation enables us
to aggregate information collected from nearby images in
time, such that for each time step, the determination of pose
parameter becomes well-posed. Effectively, we are trading
spatial resolution for higher temporal resolution but we will
show that we only lose a little spatial resolution and gain a
lot in temporal accuracy.

As fitting a single continuous function to the whole se-
quence at once would require a very complex function and
be difficult to optimize, we instead divide the sequence into
overlapping segments Sj of length lseg and fit a set of sim-
ple polynomial functions to each segment (Fig. 1c). A glob-
ally continuous function is then computed by blending the
segments with a partition of unity method (Fig. 1d).

4. Spatio-Temporal Tracking

The proposed tracking algorithm adopts an energy-
minimization approach. We use an energy functional which
measures the dissimilarity between a human body model
and the input sequence. As described shortly, the energy
functional is continuous both in space and in time such that
the evaluation of the model (i.e. measuring the disagree-
ment from the input) is possible at any given time (c.f .
Sec. 4.2). To facilitate this, we represent the model based
on continuous functions. Specifically, we adopt the Sums-
of-Gaussians (SoG) representation as proposed by Stoll et
al. [23]. Human articulation is modeled by a kinematic
skeleton and its shape is represented using a 3D SoG, where
each 3D Gaussian is attached to exactly one bone in the ar-
ticulation hierarchy. The model is generated by fitting it to
a set of example images (Fig. 2 left). To reduce the compu-
tational cost, the input images are also approximated based

on 2D SoG using a fast quad-tree based clustering method
(Fig. 2 right). Each single Gaussian in the SoG sets is as-
sociated with a color c that can be used to measure color
similarity between two blobs. For each time step, measur-
ing the similarity between a 3D SoG and a 2D SoG is fa-
cilitated by projecting the 3D SoG of the body model into
the corresponding image plane and performing the compar-
ison in 2D (Sec. 4.1). Using this SoG-based formulation as
a basis has the advantage that the original formulation is al-
ready smooth in space. It does not rely on calculating and
updating any image features or silhouette correspondences.
As a result, extending the approach to the temporal domain
comes naturally. It can also handle tracking highly complex
articulated models.

The skeleton we use in our approach consists of 58
joints. Each joint is defined by an offset to its parent joint
and a rotation represented in axis-angle form. In total, the
model has 61 parameters Λ (58 rotational and 3 transla-
tional). The skeleton further features a separate degree of
freedom (DoF) hierarchy, consisting of the nDoF pose pa-
rameters Θ. The degrees of freedom are mapped to the joint
parameters using a 61×nDoF matrixM, where Λ =MΘ.
For all the results in this paper we used a DoF hierarchy
consisting of nDoF = 43 pose parameters. We also model
an allowable parameter range ll to lh for each DoF that pre-
vents anatomically implausible pose configurations.

4.1. Model to Image Similarity Measure

For two given 2D SoGs Ka and Kb provided with colors
c for each Gaussian blob, respectively, their similarity is
defined as [23]

E(Ka,Kb)

=

∫
Ω

∑
i∈Ka

∑
j∈Kb

d(ci, cj)Bi(x)Bj(x) dx

=
∑
i∈Ka

∑
j∈Kb

Eij , (1)

where B(x) is a Gaussian basis function

B(x) = exp

(
−‖x− µ‖

2

2σ2

)
. (2)

Eij is the similarity between a pair of Gaussians Bi and Bj
given their colors ci and cj :

Eij = d(ci, cj)

∫
Ω

Bi(x)Bj(x) dx

= d(ci, cj)2π
σi

2σj
2

σi2 + σj2
exp

(
−‖µi − µj‖

2

σi2 + σj2

)
. (3)

The color similarity function d(ci, cj) measures the Eu-
clidean distance between ci and cj in the HSV color space



and feeds the result into a Wendland function [24]. This ren-
ders d a smooth function bounded in [0, 1] (0 for dissimilar
input and 1 for similar input).

To measure the similarity between a given pose Θ of our
body model Km(Θ) and a given input image SoG KI , we
first need to project the body model into the respective cam-
era image plane using the projection operator Ψ. Given a
camera Cl with respective 3 × 4 camera projection matrix
Pl and focal length fl, we define the projected 2D Gaus-
sian B = Ψl(B̃) corresponding 3D Gaussian B̃ based on
the following operations:

µ =

(
[µ̃p]x/[µ̃

p]z
[µ̃p]y/[µ̃p]z

)
σ = σ̃fl/[µ̃

p]z (4)

with µ̃p = Plµ̃ being the perspective-transformed 3D Gaus-
sian mean.

Using this projection operator we define the model to
image similarity as

Esim(KI ,Km(Θ))

=
∑
i∈KI

min

 ∑
j∈Ψ(Km)

Eij

 , Eii

 . (5)

To prevent overlapping projected 3D SoGs from contribut-
ing multiple times in the above sum and distorting the sim-
ilarity function accordingly, we clamp the similarity to be
at most Eii, which is the similarity of the image Gaussian
with itself. This can be seen as a simple approximation of
an occlusion term (c.f . [23] for more details).

4.2. Spatio-Temporal Similarity Measure

As estimating a single continuous function for a whole
sequence quickly becomes intractable, we first divide the
sequence into overlapping time segments Sj of length lseg .
We represent each of the nDoF parameters of the kinematic
skeleton for each segment using a polynomial X(t, ψj) of
degree ndeg , where ψj =

[
χkl
]

with k ∈ 1 . . . nDoF and
l ∈ 1 . . . ndeg are the coefficients of the polynomial. We
call the function X(t, ψj) the motion function for time seg-
ment j (see Fig. 1c). Choosing a low degree polynomial as
local motion function presents a good compromise between
function smoothness and function complexity.

Given an input image SoG KiI with its respective times-
tamp ti and coefficients ψj of the current motion function
we can estimate the similarity between the two using equa-
tion 5 as

Esim(Km(X(ti, ψj)),KiI). (6)

We can now sum up the similarity of all nimg image SoGs
KI which belong to the segment Sj to get a spatio-temporal

Figure 3. Two limit violation examples. The red lines are the DoF
limits boundaries. We compute the DoF function in the interval
S=[0,3]. The proposed error measure is the integral of the gray
areas.

similarity measure over the the entire segment:

Esim(ψj) = (7)
1

nimg

∑
tl∈Sj

1

Esim(KtlI ,K
tl
I )
Esim(Km(X(ti, ψj)),KtlI ).

It should be noted that this similarity measure is smooth in
space and time and accordingly the analytical derivatives of
any order can be computed easily with respect to the coeffi-
cients ψj of the model’s motion functions.

4.3. Spatio-Temporal Joint Limits

An important component of articulated motion tracking
systems is enforcing anatomically correct joint motion. All
joints in the human body only have a limited amount of
articulation. To prevent anatomically implausible poses,
tracking systems usually penalize poses that exceed certain
joint limits. This happens either by adding a penalty to the
energy that is being optimized or by limiting the admissible
range of DoF parameters through box constraints. Model-
ing these limits in the discrete case is straightforward, but
becomes more involved in the spatio-temporal formulation
from Section 4.2.

We want to penalize motion functions X(t, ψj) where
parts of the functions lie outside an admissible limit range
[ll, lh] for t ∈ Sj (see Fig. 3 for examples). We can define
a penalty function Elim(j) that measures the area of the
functions that exceeds the limits within the segment as

Elim(ψj) =

(∫
t∈Sj∧X(t,ψj)<ll

ll −X(t, ψj) dt (8)

+

∫
t∈Sj∧X(t,ψj)>lh

X(t, ψj)− lh dt

)2

.

As can be seen in Figure 3, this penalty function has to han-
dle 10 different cases depending on the position of the curve
with respect to the limits and the segment boundaries. How-
ever, each case has a compact analytical solution and deriva-



Figure 4. Motion functions. Left: Initialization of new segment
(red) from previous segments functions (blue) . Right: Blended
global motion function (red) generated from three local motion
functions (blue).

tives with respect to the curve coefficients ψj (c.f . supple-
mentary material).

4.4. Segment Tracking

We combine the spatio-temporal similarity measure
Esim and the limit penalty term Elim into a single energy
functional

E(ψj) = −Esim(ψj) + αElim(ψj), (9)

where α is a weight factor which determines how strongly
we want to penalize non-anatomical pose configurations
during tracking. As we can calculate analytical derivatives
of both energy terms, we can calculate the gradient∇E(ψj)
efficiently. We find the minimum of E(ψj) using a simple
conditioned gradient descent method similar to [23] :

ψi+1
j = ψij + diag(σi)∇E(ψij). (10)

The conditioner σi is updated after every iteration according
to the rules:

σ
(l)
i+1 =

{
σ

(l)
i µ+ if ∇E(ψij)∇E(ψi−1

j ) > 0

σ
(l)
i µ− if ∇E(ψij)∇E(ψi−1

j ) ≤ 0.
(11)

Using the conditioner increases the convergence rate of the
gradient descent method in long and narrow valleys of the
objective function, as it effectively dampens oscillations and
increases step-size in the direction of the valley. We found
that this simple approach needs more iterations to converge
than higher order optimization schemes, but is still faster in
many cases as each iteration is simpler to calculate.

We assume that the actor in each sequence starts in a
known pose (for example T-Pose) and is not moving for a
brief moment. We find the parameters for the first segment
S0 by initializing the body model pose to the known pose
and only optimizing the constant coefficients χk0 of the mo-
tion function (Fig. 4). We ignore all linear and higher order
coefficients and set them to 0. This essentially optimizes for
a constant pose without any motion in the current segment.

Each following segment Sj is placed so that it overlaps
with the previous segment by loverlap, which is given as
percentage of the segment length (Fig. 4). We initialize the

coefficients of our current segment to be a linear extrapo-
lation of the motion in the previous segment (Fig. 4). We
then run the optimization for all parameters χkl until con-
vergence.

4.4.1 Motion Function Blending

The estimated continuous functions for each segment Sj
may not agree with each other in the overlapping regions
(Fig. 4b in blue). To generate a globally smooth motion
function we therefore blend all local motion functions to-
gether using a partition-of-unity approach (Fig. 4b in red).
We define a weight function wj(t) for each segment that is
1 at the center and falls off smoothly to 0 at the segments
boundaries, and is 0 everywhere else. Using the C2 smooth
Wendland radial basis function ϕ3,1(x) [24] the final global
motion function is defined as

Xglobal(t) =

∑
∀Sj wj(t)X(t, ψj)∑

∀Sj wj(t)
. (12)

Blending the motion function is a post-processing step and
is performed after all segments have been optimized. The
resulting motion function Xglobal(t) is C2 smooth in t and
represents the tracking result of our algorithm.

5. Experiments
We evaluated our method on 9 sequences recorded with

11 unsynchronized cameras at a resolution of 162 × 121
pixels with varying frame-rates between 45 and 70 frames
per second with a total of about ∼ 6000 frames of video.
The camera setup used for our experiments provides us with
accurate timestamps for each image. When using setups
without this possibility, we could estimate timestamps using
methods such as [11] or [6, 17]. This was not the focus
of our work however. We estimated kinematic skeletons
and Gaussian body models for 3 actors and used the quad-
tree based image conversion from [23] to convert the input
images to SoG models.

The recorded scenes cover a wide range of different mo-
tions, from simple walking/running, over fast acrobatic mo-
tions, to scenes with as many as 6 people featuring strong
occlusions. The tracking approach does not rely on an ex-
plicit background subtraction and implicitly separates ac-
tors from background using the colors of the SoG body
models. The green screen visible in part of the background
is not used for explicit segmentation.

Our non-optimized, single-threaded implementation of
the spatio-temporal tracker requires on average between 1
and 5 seconds to find the optimal parameters for each seg-
ment per actor. This depends mainly on the motion com-
plexity, i.e., fast motions take longer to track.

Figure 5 shows pose estimation results of our algorithm
for some of the sequences from different camera views. Our



Figure 5. Complex motion tracking. Tracking results of the proposed method on unsynchronized sequences shown as skeleton overlay over
the input images. We successfully tracked actors in several challenging scenarios, including sequences with multiple people interacting
closely, heavy occlusions, and fast motion from acrobatics and skateboarding.

method tracked all sequences successfully with the same
settings used for segment size lseg = 2.0 frames of the
slowest framerate, overlap of loverlap = 0.6, and joint limit
weight of α = 0.1. The figure also shows results for track-
ing multiple people in the same sequence. Here, we tracked
each actor separately without specifically modeling charac-
ter interactions (such as contact) or segmenting the input
images.

Compared to results created by aligning multiple images
to a single time-step and using a discrete tracking approach,
our spatio-temporal formulation creates more accurate re-
sults. The discrete tracker also fails to correctly track some
sequences with complex occlusions and fast motions.

Quantitative Evaluation: To evaluate our method quan-
titatively we recorded a sequence Sref with the actor walk-
ing with increasing speed with a synchronized camera setup
recording at 70 frames per second (Figure 6a ). We then cre-
ated an unsynchronized sequence Sunsync from this scene
by temporally subsampling the input video such that only a
single camera image is kept at each time instant (Figure 6b
) . The downsampled sequence effectively has each camera
recording at ∼ 7 frames per second, slightly offset to each
other. This represents an extreme case, as for all but the
slowest motions, the cameras will see vastly different poses
for the actor. Finally, we also created a synchronized low-
speed sequence Slow which contains only every 11th frame
for each camera (Figure 6d ) . All three downsampled se-
quences contain the same number of images.

We used the full sequence Sref to create a baseline syn-
chronized tracking results Tref using the method from [23].
We then tracked the actor from the unsynchronized se-
quence Sunsync with our spatio-temporal approach to gen-

(a) (b)

(c) (d)

Figure 6. Evaluation sequence: (a) Synchronized baseline se-
quence. (b) Subsampled unsynchronized sequence. (c) Aligned
sequence created from the unsynchronized sequence. (d) Low
framerate sequence.

erate a result Tcont. We also generated tracking results by
aligning all 11 cameras of Sunsync to the same time-step
(Figure 6c ) and using the synchronized tracker to generate
Taligned, and tracked sequence Slow to generate Tlow.

As can be seen in the supplementary video, both Taligned
and Tlow fail to track the sequence correctly until the end.
On the other hand, our spatio-temporal tracking result Tcont
successfully tracks the motion of the actor even when the
actor is moving extremely fast towards the end of the se-
quence. Figure 8 shows the per frame joint position error
compared to the baseline result Tref for the spatio-temporal
result (red), the aligned discrete tracker (blue), and the low
fps synchronized tracker (green). We used linear interpo-



Figure 7. Quantitative evaluation. From left to right: Baseline tracking result Tref , aligned tracking Taligned, subsampled tracking result
Tlow and our tracking result Tcont. Only our spatio-temporal tracking method is able to successfully track the whole sequence.
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Figure 8. Quantitative comparison between our spatio-temporal
tracking approach (red), synchronized tracking with unsynchro-
nized input images (blue), and synchronized tracking with 7fps
input (green). The vertical axis shows average joint position er-
ror in cm compared to the baseline result in the respective video
frame. All tracking approaches use the same number of input im-
ages. As the actors motion becomes faster towards the end of the
sequence, only our spatio-temporal approach is able to track the
sequence correctly.

lation to create parameters for all frames of the sequence
for the two discrete tracking approaches. Our approach has
a slightly higher joint position error in the beginning of the
sequence, where the motion of the actor is slow and aligning
all frames to a single time instant is still a good approxima-
tion. However, as soon as the motion of the actor becomes
faster, the discrete tracker’s error increases until it fails to
produce correct poses at around frame 1800 (c.f . supple-
mentary video).

Discussion: Our approach shows that using unsynchro-
nized cameras not only enables us to use lower frame rate
cameras for tracking, but also increases the tracking quality

for fast motion as our quantitative evaluation shows. De-
spite this simpler setup, by running the cameras purpose-
fully out-of-sync, the continuous tracker reconstructs fast
motion at much higher quality as Figure 8 shows. In practi-
cal situations, for example when capturing with camcorders,
it will not be possible to control the sub-frame alignment of
the camera shutters. Depending on the alignment the result
will have more spatial accuracy (when nearly synchronized)
or more temporal resolution (with unaligned input images).

As our method is using a simple local optimization ap-
proach, it may fail in complicated cases with many occlu-
sions and few cameras. Although our approach is more re-
liable than the synchronized implementation in [23] in our
experience, we may get stuck in a local minimum and not
recover. Using more advanced global optimization schemes
such as presented in [10], would enable us to detect these
errors and recover. We also rely on the color of the actor
being sufficiently different from the background in our er-
ror function, which could be improved upon by using more
advanced color models for each Gaussians, such as color
histograms. Despite these limitations, in most cases our al-
gorithm successfully tracked even complex motions under
severe occlusions.

To estimate a globally continuous function representing
the motion parameters, we firstly construct local polyno-
mials and then blended them using a partition of unity ap-
proach. This leads to a computationally efficient algorithm
since the optimization of each local polynomials can be
done independently. However, from a theoretical perspec-
tive, this approach is sub-optimal in the sense that the opti-
mization does not take advantage of all available observed
data (i.e. images). In the future, we will explore different
possibilities of trading the computational complexity and
the optimality of the parameter function in this context.



6. Conclusions
We have introduced a spatio-temporal approach to ar-

ticulated motion tracking from unsynchronized multi-view
video. Unlike previous approaches that rely on synchro-
nized input video, our method makes use of the additional
temporal resolution to successfully track fast moving ac-
tors with low frame-rate cameras. It also enables setting up
simpler and cheaper capture setups, as there is no need any-
more for hardware based synchronization and high frame
rate cameras.
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