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Abstract

We propose a method to automatically transform mesh animations into animation collages, i.e. moving assemblies

of shape primitives from a database given by an artist. An animation collage is a complete reassembly of the

original animation in a new abstract visual style that imitates the spatio-temporal shape and deformation of the

input. Our algorithm automatically decomposes input animations into plausible approximately rigid segments and

fits to each segment one shape from the database by means of a spatio-temporal matching procedure. The collage is

then animated in compliance with the original’s shape and motion. Apart from proposing solutions to a number of

spatio-temporal alignment problems, this work is an interesting add-on to the graphics artist’s toolbox with many

applications in arts, non-photorealistic rendering, and animated movie productions. We exemplify the beauty of

animation collages by showing results created with our software prototype.

Categories and Subject Descriptors (according to ACMCCS): J.5 [Arts and Humanities]: Fine arts I.3.7 [3D Graphics
and Realism]: Animation I.3.5 [Computational Geometry and Object Modeling]: Geometric algorithms

1. Introduction

The collage is an abstract and expressive visual style that
has found its way into many forms of visual arts, includ-
ing painting, photography and sculpturing. When creating a
collage (from the French word coller=glueing), the artist in-
tends to build a new whole by assembling different primitive
forms in a special way.

Many researchers in computer graphics have been in-
spired by the idea to develop algorithms that enable the com-
puter and even unexperienced users to reproduce the look of
certain styles of visual arts. This is also true for collages.
Kim et al. [KP02] have developed a system that can au-
tomatically turn arbitrary photographs into collage mosaics
that comprise of an arrangement of elementary image tiles.
Rother et al. [RBHB06] automatically arrange and blend
photographs from a database into a perceptually pleasing
way. Gal et al. [GSP∗07] present a recent method to approx-
imate static 3D shapes with other meshes, but they do not
handle the case of mesh animations.

In this paper, we introduce a new method that brings to-
gether the traditional art form of a collage with the most
prominent art form in computer graphics, namely 3D anima-
tion. Our algorithm allows the computer artist to automati-
cally convert her favorite mesh animation into a moving as-

sembly of 3D shape primitives in a database. This animation
collage is glued together in such a way that it approximates
the sequence of shapes of the original mesh animation, while
deforming in the same spatio-temporally consistent way as
the original. While the method can fully-automatically build
moving collages, our algorithm purposefully gives the artist
the possibility to postprocess and fine-tune the results ac-
cording to her imagination. To our knowledge, the proposed
method is the first of its kind in the literature.

Since to most people the term collage is synonymical with
a static piece of art, we had to firstly define what ought to
be the visual style of an animation collage. This particular
style eventually determines the new algorithmic contribu-
tions of our approach which are detailed in the remainder
of this paper. First, we decided to process mesh animations
since this makes our algorithm independent of the specific
way that was used to create the input in the first place. Sec-
ond, our method ought to not only approximate the shape
of meshes at single time steps individually. It rather decom-
poses and reassembles the mesh animations in such a way
that the time-varying shape and the spatio-temporal defor-
mation of the assembly is plausible. We concluded that the
most appropriate way to achieve this goal is to automati-
cally decompose the mesh animations into moving approx-
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Figure 1: Our method automatically generates moving 3D collages out of mesh animations by rebuilding them as moving

assemblies of shape primitives. In the example above the galloping horse has been transformed into two galloping sets of fruits.

imately rigid volume segments, henceforth called anima-
tion cells. This decomposition is learned from the moving
input meshes by means of a spectral clustering approach.
Our algorithm employs a spatio-temporal matching criterion
that analyzes the motion and deformation of each animation
cell and finds a shape primitive in the database that best
approximates its time-varying geometry. Shape primitives
and cells are spatio-temporally aligned and the fitted shapes
are moved and deformed according to the deformation of
the cells. The deformations are driven via spatio-temporally
consistent offset shapes that are automatically built from the
animation cells and whose tightness controls the deforma-
tion’s stiffness. Since it was our aim to develop new algo-
rithmic recipes for a novel artistic tool, we took care that
the animator can influence the final result at all stages of the
processing pipeline.

2. Related Work

While our idea was inspired by the work of visual artists,
our algorithmic approach was inspired by previous research
on mesh and animation decomposition, image mosaicing, as
well as shape matching and approximation.

Recently, researchers proposed to exploit temporal coher-
ence in mesh animation for compression [Len99]. Sattler
et al. [SSK05] propose to use Lloyd relaxation and clus-
tered principal component analysis to group vertices based
on their trajectories. Günther et al. [GFW∗06] also apply a
Lloyd relaxation to motion-decompose mesh animations for
fast ray-tracing. However, in contrast to our segmentation
approach, their method does not consider spatial coherence
of the clustered surface areas, their optimization may run
into local minima, and automatic determination of the num-
ber of clusters is difficult. James and Twigg [JT05] proposed
an algorithm to cluster triangles in mesh animations based
on their rotations using a mean shift approach. While their
segmentation yields statistically meaningful near rigid areas,
they neither correspond to underlying kinematic hierarchies
nor are they guaranteed to be spatially connected.

In contrast to prior work, our approach generates more

meaningful spatially and temporally consistent segmenta-
tions of mesh animations. In other words, they closely cor-
respond to the true kinematic skeleton hierarchy if the input
can be assumed to have one, as in the case of our moving
animals. Our decomposition approach is based on spectral
clustering, it is robust and produces plausible results even
for challenging motions. As an additional benefit, it can pro-
duce segmentations at different user-controlled levels of de-
tail, and it can also automatically detect the optimal number
of clusters [NJW02].

Our segmentation approach is related to recent meth-
ods from optical motion capture that automatically recon-
struct kinematic skeletons frommarker trajectories [KOF05,
HSDK05, YP06, dATS06]. They are based on the idea that
the segmentation of these marker-trajectories into rigid bod-
ies corresponds to finding an optimal clustering into mutu-
ally intersecting motion spaces, each of them corresponding
to one rigid body. To perform this segmentation, they typi-
cally cluster marker trajectories based on distance invariants
between points on the same segments. We capitalize on these
ideas, and exploit similar distance invariants, a spatial co-
herence criterion, and a volumetric decomposition approach
to subdivide mesh animations into plausible approximately
rigid segments using a robust spectral clustering approach.

Animation collages has also been inspired by the work on
automatic image mosaicing [KP02,Hau01]. In a similar line
of thinking, we developed a way to decompose mesh ani-
mations into spatio-temporally meaningful volume cells. By
this means, we can efficiently find approximating shapes for
each cell individually. Furthermore, the explicit cell decom-
position enables us to rebuild animations with a minimum
of overlap between shapes while only having to solve local
matching problems.

The approximation aspect of our pipeline is also related
to previous work on fitting of static shapes with ellipsoids
or general quadrics. Such fitting methods have been used
in geometry processing, e.g., for efficient data transmis-
sion [BK02], medical visualization [BJMR01], or segmenta-
tion and piecewise shape approximation [WK05] in reverse
engineering. In our application, we don’t have the freedom to
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construct best approximating shapes, but are bound to work
with given primitives from a database.

Therefore, we can also capitalize on previous work on
3D shape matching. Global shape matching approaches
compare different shapes based on numerical descriptors,
such as shape distributions [OFCD01], Fourier descrip-
tors [VSR01], moment invariants [ETA02,NK03], or spher-
ical harmonics [KFR03]. Local shape matchers can also
identify correspondences between subparts of shapes us-
ing artificial surface features [GCO06] or topology graph-
based alignment [HSKK01]. Since we are attacking a time-
dependent matching problem, we have developed a novel
spatio-temporal matching approach based on spherical har-
monic descriptors [KFR03].

Also related to our approach is the idea presented by Gal
et al. [GSP∗07]. They intend to rebuild static triangle meshes
from individual shapes in a database. Static shape approxi-
mation is a very challenging research problem in itself. In
building collages of animated scenes, we have to take on
challenges very different from the static setting.

We have combined a variety of algorithmic recipes to
rebuild mesh animations as sequences of approximating
shapes. To our best knowledge, this is the first paper in the
literature that takes on this problem. While we propose a so-
lution to an interesting spatio-temporal matching problem,
we also produced a tool that is fun to use. It enables easy
creation of an artistic visual style that has many applications
in non-photorealistic rendering, cartoon production and the
visual arts in general.

3. Overview

The input to our algorithm comprises of two elements. The
first is a triangle mesh animation of N time-steps, i.e. a mesh
structureM = (V ,T )with constant graph structure— here
denoted by vertices V and their triangulation T — and
time-dependent data: associated to every vertex v j ∈ V is a
sequence of 3D positions pt(v j) = (x j,y j,z j)t , 1≤ j ≤ #V ,
0≤ t < N. Then coordinate sets Pt = {pt(v j)} together with
M describe a time-varying surface. The second input ele-
ment is a database of K static shapes, each being represented
as a textured triangle mesh.

The first step in our pipeline is the motion-decomposition
of the mesh. To this end, we employ a segmentation based on
spectral clustering that analyzes the motion of the mesh and
delivers contingent triangle patches ofM ’s surface that rep-
resent approximately rigid elements, Sect. 4 and Fig. 2(a).
To enable the fitting of shape primitives, we transform the
rigid surface elements into approximately rigid volume cells,
so-called animation cells. To this end, a sequence of me-
dial axis meshes is computed from the animation which, in
conjunction with the previously identified rigid surface seg-
ments, is used to create these closed volume cells, Sect. 5

and Figs. 2(b),(c). Once the animation cells have been iden-
tified, we automatically fit to each of them a shape primitive
from the database. For each animation cell, an optimal shape
for fitting is selected based on spherical harmonic shape de-
scriptors and a spatio-temporal matching procedure, Sect. 6.
The final moving collages are generated by deforming the
fitted shapes according to the transformation of their respec-
tive animation cells, Fig. 2(d). To achieve this, we gener-
ate spatio-temporally consistent offset meshes from the an-
imation cells that drive the shape primitives’ deformations,
Sect. 7.

4. Rigid Body Segmentation

The first step in our pipeline segments the input animation
given byM and Pt into spatially coherent patches of trian-
gles that undergo approximately the same rigid transforma-
tions over time-steps 0 ≤ t < N. Our surface segmentation
examines the motion trajectories of the mesh’s vertices and
their mutual distance variation over time. Our motivation for
decomposing the mesh into approximately rigid patches is
that this seems intuitive and plausible to the viewer. Many
characters in cartoons and animation films, for instance the
main actors in 20-th century Fox’s “Robots” [Rob05], were
rendered in this particular style.

The deformations of general mesh animations can not be
described by rigid transformations alone. Animators often
purposefully combine rigid transformations with non-rigid
ones in order to create a lifelike look. In contrast to mo-
tion segmentation approaches that generate merely a statisti-
cally plausible segmentation, we intend to isolate the under-
lying rigid deformations from the non-rigid ones in a kine-
matically plausible way. By this we mean that in case there
exists a true kinematic segment hierarchy, our method ap-
proximates it as good as possible. For us it is also important
that regions on the surface are spatially connected, a require-
ment that is also not fulfilled by many related methods such
as [JT05,GFW∗06]. Only if this is assured, a faithful decom-
position into volume cells becomes feasible, Sect. 5.

We apply the spectral clustering method of Ng et
al. [NJW02] to a subset of sample vertices. Similar to
[dATS06] in the context of optical motion capture, we use an
affinity criterion to obtain clusters of similarly moving ver-
tices, which we then transform into rigidly moving coherent
triangle patches, Fig. 3.

Given is a meshM = (V ,T ). To initialize our segmen-
tation approach, we select a subset Vs ⊂ V of ℓ sample ver-
tices that are required to be distributed evenly on the mesh.
For sample selection we only consider a reference pose Ptr
(typically the first time step tr = 0 of the animation), and em-
ploy the curvature-based segmentation method of Yamauchi
et al. [YGZS05] to decompose M into ℓ surface patches.
The sample vertices are chosen as the vertices closest to the
patch centers. This subsampling enables reasonably fast de-
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(a) (b) (c) (d)

Figure 2: Important steps in our pipeline: the mesh is decomposed into rigidly moving surface patches (a), skeletons are

extracted (b), and animation cells assembled (c), here only some cells are shown. Shapes are spatio-temporally fitted to the

cells and deformed over time to build the animation collage (d).

composition of even large meshes. We typically choose ℓ to
be in the range of 1000−2000.

The motion trajectories of the sample vertices throughout
the whole animation form the input to our spectral clustering
approach which groups them into k approximately rigidly
moving groups. It exploits the invariant that mutual distances
between points on the same rigid patch should only exhibit
a small variance while the mesh is moving.

Spectral clustering commences by building a spatial affin-
ity matrix A. For our purpose, we define A with entries

ai, j = exp

(

−
σi, j

ρ2

)

, (1)

where σi, j is the standard deviation of the Euclidean distance
δ(i, j, t) between sample vertex i and sample vertex j over
time and ρ = 1

N2 ∑t δ(i, j, t) is a scaling term controlling con-
vergence behavior (where N is again the number of frames
in the sequence). The scaling term reduces the affinity values
of vertex pairs with large average mutual distance. Thereby,
we try to force spectral clustering to put spatially far apart
groups of vertices with similar motion into separate clusters.
Intuitively, the symmetric matrix A encodes the likelihood
that two samples lie on the same rigid body.

The clustering approach proceeds by rearranging the ℓ in-
put samples in k well-separated clusters on the surface of a
k-dimensional hypersphere. It achieves this by building a di-
agonal matrix D whose (i, i)-element is the sum of A’s i-th
row. Now the Laplacian matrix L = D−1/2A D−1/2 is built,
its k largest eigenvalues e1, . . . ,ek are computed and stacked
into columns to form the matrix X ∈ R

ℓ×k. The rows of X
are normalized and considered as points in R

k. Then the ℓ
row vectors are split into k clusters using standard k-means
clustering. Every original sample vertex vi ∈ VS is assigned
to a cluster j if and only if row i of X was assigned to cluster
j. We remind that k-means clustering is effective because in
the transformed data X clusters are well-separated.

The above procedure separates the sample vertices into
k distinct approximately rigidly moving clusters of vertices.
From this, we associate triangle clusters T0∪ . . .∪Tk−1 = T

by assigning each triangle ∆ = (w0,w1,w2) ∈ T to the
marker vertex v j whose average geodesic distance to w0,
w1, and w2 is minimal. ∆ is added to that triangle cluster

Figure 3: Segmentation into approximately rigid surface

patches – While with k = 13 patches (left) merely the larger
rigid segments are identified, but the feet are merged with the

lower legs, at k = 31 the full kinematic detail has been dis-
covered (each color used several times, adjacent segments

colored differently).

for which the sample v j is part of the associated vertex clus-
ter. The resulting clusters partition the mesh. Note that (a
discrete approximation to) geodesic distance is used here to
provide contiguous surface patches.

Spectral clustering has a number of intriguing advantages
over other clustering approaches. Conveniently, the optimal
number of clusters may be inferred from the eigen-gap of
X [NJW02]. However, the optimal segmentation is not al-
ways the one favored by the artist. Thus she also has the
opportunity to specify the number of rigid surface patches
that she would like to find. In Fig. 3, the segmentation of the
camel’s mesh is shown for two different values of k. At a
smaller k-value, the lower legs and the hoofs form one clus-
ter since the relative motion between these two was less sig-
nificant than the relative motion between other segments. For
a larger k-value, they have been split in two, which shows
that with increasing level k of detail, our segmentation intu-
itively produces plausible and more detailed segmentations.
Furthermore, spectral clustering is robust against outliers,
performs well on segmentation problems with a challenging
cluster structure on which other approaches, like standard
k-means, perform significantly worse [NJW02].

Generally, our affinity metric (1) in combination with
the triangle clustering procedure generates coherent surface
patches in all our test cases which is important for later steps
of our overall pipeline. In the rare case that we obtain dis-
connected patches nonetheless, we split them.
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5. Building Animation Cells

Approximately rigid surface patches are not yet the appro-
priate shape representation for building animation collages.
Although each patch is the outer boundary of a volumetric
subsegment that moves approximately rigidly, it does not
describe the spatial extent of this subsegment in the inte-
rior of the original mesh. To approximate these volumetric
subsegments, we extend each surface patch into a so-called
animation cell, i.e. a closed watertight triangle mesh that
bounds an approximately rigidly moving slice of the original
mesh’s volume. Fig. 2(c) shows some animation cells com-
puted from the horse animation. This volumetric decompo-
sition of input animations has a couple of advantages. First,
volumetric animation cells define 3D placeholders to which
approximating shapes are to be fitted in order to generate vi-
sually pleasing collages with decent shape and deformation
approximation. Thus, volumetric decomposition is a clever
way to break down the fitting problem for the whole mesh
into a set of fitting problems for individual cells. If we make
sure that a fitting shape approximates the outline of an an-
imation cell at each time step of the video, we implicitly
take care that mutual shape intersections remain in the range
that is anyway needed to prevent big holes in the collage.
Furthermore, by deforming approximating shapes like their
encompassing rigid cells, the deformation of the shapes re-
mains in visually pleasing bounds.

The input for building animation cells is the set of rigid
surface patches T0, . . . ,Tk−1 that was computed in the previ-
ous section. It is our goal to extend each surface patch into a
closed and watertight animation cell mesh. Looking only at
the graph structure of each patch, this is easily achieved by
inserting a new vertex for every boundary loop, triangulating
the arising fan, and thereby removing the boundary loop. Al-
though the principal idea is fairly easy, a proper way to insert
the additional vertex for the boundary loop is crucial. In the
remainder of this section, we discuss how we compute clos-
ing vertices based on skeleton meshes and describe how we
generate spatio-temporally consistent cells.

We firstly compute a sequence of medial axis meshes
S0, . . . ,SN−1 from the input animation, Fig. 2(b). We take
care that the number of vertices and the connectivity of each
Si match the properties of the respectiveMi that it was com-
puted from: for computing the skeletal meshSi, we employ
the Voronoi-based two-sided approximation of the medial
axis that has originally been proposed in [HBK02]. Every
vertex ofMi is associated with a Voronoi cell. One-to-one
correspondences between the vertices ofMi and the vertices
of Si are established by using the Voronoi poles as skeletal
mesh vertices [ABK98]. The connectivity of Si is copied
from Mi. In consequence, we have established one-to-one
correspondences between both vertices and triangles of the
outer and the skeleton mesh. In order to remove undesired
spikes in the skeletal mesh, we employ tangential Laplacian
smoothing.

Figure 4: An animation cell at a certain time-step for the

center segment of the horse (left), the strawberry fitted to it

(center), and the offset cell for the center segment (right).

As the skeletons share the graph structure of the anima-
tion meshes they can be partitioned into the same patches.
In the following, we describe how to build animation cells
for all patches at a single time step t. By applying the same
procedure to all time steps, we generate the appropriately
deformed versions of each cell. Consider a patch Tk and its
associated vertex positions taken from Pt . For all boundary
loops of Tk at time-step t, we compute the center of gravity of
associated vertex positions in the skeletonSt . The new ver-
tex for fan-triangulation of the boundary loop is positioned
at this center. Fig. 4 (left) illustrates this using a center seg-
ment of the horse animation as an example.

Note that a simple strategy like choosing the center of
gravity of the boundary loop’s vertices for fan-triangulation
would not have fulfilled our requirements. Our experiments
showed that in this case very flat animation cells may oc-
cur for extreme geometric configurations which would lead
to inappropriate volumes for the subsequent steps of our
method. Depending on the geometric setting, similar prob-
lems may occur if one tries to directly triangulate a hole
without inserting a vertex. Although our cell decomposition
does not strictly partition the volume, it generates volume
slices that are tailored to our purpose.

6. Assembling the Collage

As already outlined in the previous section, the sequence of
moving animation cells can be regarded as a sequence of vol-
umetric placeholders to which approximating shapes from
the database are fitted. In our opinion, it is the most reason-
able and visually most appealing way to approximate each
cell with a single shape. While by this means, it may not
be possible to exactly reproduce the true shape of each cell,
in particular its outer surface, the overall appearance of the
mesh animation is still very faithfully approximated. We al-
ready argued that the decomposition of the animation into
cells bears many further algorithmic advantages. The overall
fitting problem simplifies to a fitting problem between indi-
vidual shapes and segments. Furthermore, it becomes easier
to assure that the shapes which we fit not only match the
outlines of their respective animation cells at a single time
step. Since the animation cells undergo mainly rigid defor-
mations, the slight non-rigid deformations of the approxi-
mating shapes that may be necessary to assure good approx-
imation over the whole sequence can be kept in reasonable
bounds, Sect. 7.
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To put this into practice, a shape similarity measure is
needed, Sect. 6.1, that we apply in our spatio-temporal
matching and alignment approach to fit a database shape to
a deforming animation cell, Sect. 6.2.

6.1. Shape Similarity Measure

Due to the diversity of database shapes, and potential differ-
ences in orientation and uniform scaling, we require a simi-
larity measure that is rotation-, pose- and scale-independent.
Spherical harmonic descriptors fulfill all these requirements
and have proven to be superior to many other global de-
scriptors [KFR03]. Given a mesh K we compute its spher-
ical harmonic descriptor as follows: First, the spatial occu-
pancy function O(x,y,z) is sampled on a regular grid within
the mesh’s bounding box by rasterizing the mesh into a
voxel volume of dimension ℓ1 × ℓ2 × ℓ3 [NT03, Min03].
The voxel volume is intersected with q equidistant spheres
W0, . . . ,Wq−1 that are concentrically arranged around the
center of gravity of the voxel set. The discretized occupancy
function is resampled on the surface of each spherical shell,
yielding q spherical functions o0(θ,φ), . . . ,oq−1(θ,φ). Each
of these q spherical functions is decomposed into its har-
monic frequency components

fℓ(θ,φ) =
m=ℓ

∑
m=−ℓ

aℓmY
m
ℓ (θ,φ),

where ℓ is the frequency band, aℓm is the m-th coefficient on
band ℓ, and Ymℓ is the m-th spherical harmonic basis function
for band ℓ [Gre03]. For each spherical function, the norms
of its frequency components are computed as

SH(oh) = {‖ f0(θ,φ)‖,‖ f1(θ,φ)‖, . . . ,‖ fℓ−1(θ,φ)‖} .

The complete shape descriptor D(K ) is the two-
dimensional q× h-array that is indexed by the sphere ra-
dius and the frequency band. Four our purpose, we found
that descriptors with h = 20 and ℓ = 10 are sufficient. The
difference d(D1,D2) between two descriptors D1 and D2 is
obtained by interpreting each of them as (q ·h)-dimensional
vectors and computing the angle that they span.

6.2. Spatio-temporal Shape Fitting

Using the above shape descriptor and the associated distance
measure, we find a shape from the database that best matches
the time-varying shape of each animation cell throughout the
whole sequence. To keep processing times and memory con-
sumption in reasonable bounds while sampling the range of
deformations sufficiently densely, we propose the following
approach to fit a shape to one animation cell Z j:

At first, a set of representative time steps 0≤ t1, . . . , tr <N
is chosen in which the whole mesh undergoes a charac-
teristic range of deformations. Let the vertex positions of
Z j at the r time steps be Pt1(Z j), . . . ,Ptr (Z j). For each of
the r cell poses, a descriptor is computed, yielding a set
U = {Dt1(Z j), . . . ,Dtr (Z j)}. For each of the shapes in the

Figure 5: Effect of spatio-temporal fitting for the tail of the

camel (left): One frame of the result animation is shown with

a single (center) or three representative time steps (right)

used during spatio-temporal fitting.

database and their associated descriptors Di, a global dis-
tance to all descriptors inU is computed as

dglob(Di,U) = ∑
t∈t1,...,tr

d(Di,Dt(Z j)) for 0≤ i< K .

The above distance assesses the spatio-temporal goodness-
of-fit between a database shape and a cell over time. Ac-
cordingly, the index c of the database shape that matches the
shape of Z j at all representative time steps best is found as

c= argmin
i

dglob(Di,U)

Database shape c is fitted to the single pose Ptm(Z j) of Z j
out of all the representative poses which best matches the
shape of c, thus

tm = argmin
t∈{t1,...,tr}

dglob(Dc,Pt(Z j))

This way we guarantee that the shape is fitted to the opti-
mally matching configuration of the cell, and thus the re-
quired transformation of c during the fitting itself is minimal.
The effect of spatio-temporal fitting is compared against
single-time step fitting in Fig. 5.

The fitting itself first coarsely registers shape c and Z j

in pose Ptm(Z j) by aligning their centers of gravities and
principal components in orientation and scaling. Thereafter,
the initial fitting is refined by running an ICP-like align-
ment [BM92].

Although shape matching and fitting are fully automatic
processes, user interaction is possible to meet artistic pref-
erences. On the one hand, the user can restrict matching to
a subset of the database or even manually choose a collage
shape which will be fitted into the cell. On the other hand,
she can manually adjust the fitted shape’s position, scale and
orientation.

Finally, we note that while there are many applications
for partial shape matching, the use of a global approach is
essential to our method: our goal is to faithfully fill in the
whole cell. This way, self-intersections and artifacts during
the animation are minimized since the cell’s have a near-
rigid structure. Furthermore, bigger holes in the collage are
prevented. Consequently, we decided to fit only one shape
per cell to provide the most plausible results for the anima-
tion. Putting it another way, we first simplify the global
filling problem to a local one using cell decomposition and
cell matching, and only then individual collage shapes are
matched globally to cells.
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Figure 6: With larger offsets, the fruits in the horse’s leg

deform more stiffly (right) than with tighter ones (left).

7. Animating the 3D collage

In the final stage of our method we compute the animation
collage from the set of animation cells and associated col-
lage shapes. Remember that each of the collage shapes has
potentially been fitted to a different reference time step tm by
the procedure described in the previous section.

Our approach proceeds again cell-wise: per-frame trans-
formation of the animation cells is propagated to the fit-
ted shapes. We consider this transformation as a general
deformation of the cell, which is expected to be nearly
rigid. Among the many surface deformation methods which
are available in the literature we chose free-form deforma-
tion based on 3D mean-value coordinates [Flo03, FKR05,
JSW05], because it can directly process our input data, pro-
duces good results and is moreover robust and simple in im-
plementation. Using the standard approach, the triangulation
of the animation cell would serve directly as control mesh
for the deformation: the collage shape is rigidly fitted into
the geometry of the animation cell Ptm(Z ) at a reference
time step tm, and then mean value coordinates are used to
reconstruct shapes which deform like the geometry of cell
Pt(Z ) at any other time step 0 ≤ t < N. However, there are
two requirements which render this immediate deformation
impractical for our special animation collage setting: first,
we want to provide the user some additional global control
over the deformation, second we have to ensure numerical
robustness. Both requirements are related, and we apply a
two-step deformation with spatio-temporal offsets which is
described in the following.

The key idea of our deformation is to use certain morpho-
logical offsets of the animation cells as control meshes, i.e.,
roughly speaking, the cells’ geometry is extruded in direc-
tion of the surface normal (but avoiding self-intersections).
This way, we can control the stiffness of the deformation
by taking advantage the well-known behavior of the pseudo-
harmonic fields induced by mean value coordinates for the
new, enlarged boundary polyhedra, Fig. 6. One such off-
set cell for the torso segment of the horse is shown in
Fig. 4(right) At the same time we avoid numerical instabili-
ties resulting from evaluating the field in the vicinity of the
control mesh, a situation which cannot be generally avoided
when using the animation cells’ geometry directly. Now the
challenge is to efficiently compute offset cells which are
not only geometrically consistent but provide also consistent
control meshes for different time-steps similar to the original
animation cells.

Our offsets can be easily constructed in a volumetric rep-
resentation using level-sets. As accuracy is not crucial for
us here, we use an even simpler approach and compute a
discrete voxel model for each animation cell mesh (from
[Min03]) which is then dilated and converted back into a
triangle mesh using marching cubes. Here the voxel reso-
lution and dilation radius define the offset radius. This way
we compute an offset cell for each animation cell w.r.t. the
reference time step. The computation is efficient and guar-
antees watertightness and no self-intersections, however, we
lose control over the combinatorial structure of the offset
mesh, i.e., it does not share the animation cell’s connectivity.
Therefore we require an alternative mapping to the anima-
tion cell which is provided by a second deformation step.

The final animation of a single collage shape proceeds as
follows: first, the time-dependent geometry of the animation
cell is used as control mesh to compute a deformed offset
cell. Second, the offset cell is used as control mesh and its
deformation is propagated to the collage shape. Note that by
volumetric construction the genus of the offset cell might
differ from that of the respective animation cell. However,
using the free-form deformation approach influencing the
the cell’s volume this does not imply any problem.

The offset radius provides an additional parameter to con-
trol the effect of the deformation: the more distant the offset,
the stiffer the deformation. Fig. 6 shows an example. While
this parameter has no physically plausible meaning we find
it intuitive to use without asking too much of the user.

8. Results and Discussion

We have generated a variety of animation collages from
mesh sequences of a galloping and a collapsing horse,
a galloping camel, as well as two scanned humans per-
forming a motion captured jump and a cartwheel (video
only). For none of the sequences, ground truth kinematics,
e.g. in the form of animation skeletons, are available. Our
shape database comprises of 20 collage shapes, ranging from
fruits, over industrial shapes like screws, to barrels and bot-
tles (see additional material). Even the authors as unexpe-
rienced artists were able to create a variety of animation
collages with different appealing visual styles by restricting
the database to subsets of shapes, Fig. 7 shows a selection.
The collages do not only have very aesthetic looks at single-
time steps, but nicely approximate the spatio-temporal ap-
pearance of the input animation, see Fig. 1 and, in particu-
lar, the accompanying video. On all our test sequences, our
motion-based segmentation approach created plausible ani-
mation cells that closely correspond to the true kinematics of
the moving subjects, a prerequisite for appealing animation
collages, see Fig. 3.

The top row in Fig. 7 shows freeze-frames from the front
and the back of an animation collage showing a jumping hu-
man. For the original sequence motion capture data was used
to animate a laser-scan. With both fruits, as well as barrels,
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Seq. N #T k Seg Cell Fit Anim
jumping 216 26 312 25 416 401 46 171
gal. horse 48 16 843 35 297 190 64 134
camel 47 43 758 13 914 139 59 131
cartwheel 120 7 318 11 45 188 22 68

Table 1: Typical animation data: Shown are time-steps N, number
of triangles in mesh #T , and number of animation cells k. Further-
more, measured computation times (in seconds) are given for four

parts of the pipeline (see Sect. 8).

bottles and screws, the 25 computed animation cells are both
faithfully and sometimes funnily approximated. We particu-
larly liked the head being automatically approximated by a
strawberry or a pear. Please refer to the video to also see
that due to our offset-based deformation, the moving col-
lages maintain the subtle motion details of the input which
lends them a very human-like motion style.

The galloping horse is shown for fine and coarse segmen-
tations with 35 and 17 animation cells, respectively. In com-
parison one sees clearly the non-rigid transformation for the
coarse segmentations, for instance in the lower legs where
the hoofs are not covered by additional cells. However, even
these deformations appear rather natural due to stiffness pro-
vided by the offset cells. Of course the individual impression
depends on the viewers particular expectations and prefer-
ences, and spending more animation cells usually leads to
better approximations of rigid parts. Notably, many viewers
to who we presented our work particularly liked the slight
non-rigid deformations. Moreover, our choice of using a sin-
gle collage shape per cell is justified by the fact that the an-
imation looks plausible and there are hardly any holes and
only few self-intersections.

The galloping camel is shown for fine (left block) and
coarse segmentations (right block) with 31 and 13 anima-
tion cells, respectively. We would like to point out the nice
approximation of the hunch, e.g., by pears (coarse) and by
bananas (fine). Especially the arrangement of bananas in is
non-trivial and the impression of a sophisticated design is
given. Such arrangements are enabled by the partition in an-
imation cells, and the example thus nicely confirms our algo-
rithmic approach to break the fitting problem into cell-wise
problems.

The majority of results in Fig. 7 was generated fully-
automatically. Only in some cases, marked with a black dot
in the upper right, we changed the position or the kind of
at most two shapes to match personal preferences. Table 1
summarizes information on input animation complexity and
run-times measured on a Pentium IV 3.0 GHz. Our approach
is very efficient: run-times are dominated by rigid body seg-
mentation (Seg) and cell generation (Cell), both of which
need to be run just once per input sequence. In particular
for large meshes most of the processing time for segmenta-
tion is due to the geodesic distance computation when as-
sembling triangle patches. The most time-consuming part
during cell computation is the mean-value-coordinate-based
generation of offset segments. Shape fitting and alignment

(Fit), as well as the animation of the collage (Anim) are per-
formed once for each collage style created from an input se-
quence. Even for sequences with more than 200 frames, both
steps can be finished in less than four minutes. Run-times
could be further sped up by working with decimated input
or cell meshes, however we always worked on the originals.
In comparison to the rendering times of around 4 minutes per
frame (with POVRAY at 1600x1200 resolution), the overall
processing times are negligible. The same is true for any of
the manual corrections which were performed in only a cou-
ple of seconds.

Our approach is subject to a couple of limitations. While
our clustering algorithm provides excellent results for the
shown input animations, its output generally depends on
these inputs: a meaningful segmentation can only be ex-
pected if there is actual relative motion of all limbs in an
animation. We conclude that this approach works best for
animations with kinematic structure. For the melting horse
animation shown in the video this is not given. Therefore, the
galloping horse segmentation was used to generate it which
yields good results.

For our fitting we remark that the following limitations
apply: inherently, fitting is limited by the shapes available in
the database. If no proper shape is available, unnatural de-
formations may be necessary. As the database also defines
the visual style, we leave this as an artistic problem that has
to be considered by the user. From a more technical point
of view, our approach requires that segments span a vol-
ume. The approach is thus not able to fit collage shapes to,
e.g., nearly planar segments. Note that the spatio-temporal
segmentation (which provides the segments) is not at all af-
fected. In addition, for fitting we assume that the animation
cells are in motion and hence being transformed. This is dif-
ferent to considering a static fitting problem, where alterna-
tive approaches such as Gal et al. [GSP∗07] may show better
results, and where it may be advantageous to allow for more
shapes per cell.

Despite these limitations we presented a compendium of
spatio-temporal matching and segmentation techniques that
enable us to build beautiful animation collages from mesh
animations.

9. Conclusion

We defined the animation collage as a visual style which ex-
presses a time-variant input shape in terms of an arrange-
ment of shape primitives in space-time. While this is moti-
vated from static scenes, the processing of animations turns
out to be a setting of its own which reveals new and differ-
ent problems. With our novel approach to fully-automatic
creation of animation collages from animations we particu-
larly provide new solutions to a couple of geometric prob-
lems: automatic and kinematically plausible segmentation
of the animated mesh into near-rigid surface patches, spatio-
temporal matching and fitting of shapes from a database, and
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spatio-temporally consistent transfer of rigid transformation
and non-rigid deformation from the time-varying surface
to collage shapes. A key ingredient of our method is the
motion-based decomposition of the overall fitting problem
into smaller local ones. Our software prototype is fun to use
and allows also untrained people to produce high-quality re-
sults. For future work we see a variety of applications of our
algorithmic components in animation compression, spatio-
temporal matching and fitting. Furthermore, color and tex-
ture harmony could be incorporated as matching criteria.
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Figure 7: Different visual styles for distinct frames of jumping human, galloping horse, and galloping camel sequences. Black

dots in the upper right mark animations including manual changes of position or kind of at most two shape primitives.
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