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T
hree-dimensional (3-D) video processing is currently an active area of research that
attracts scientists from many disciplines, including computer graphics, computer
vision, electrical engineering, and video processing. They join their expertise to
attack the very hard problem of reconstructing dynamic representations of real-
world scenes from a sparse set of synchronized video streams. To put this idea into

practice, a variety of challenging engineering and algorithmic problems have to be efficiently
solved, ranging from acquisition, over reconstruction in itself, to realistic rendering.

The complexity of the task originates from the fact that a variety of aspects of the real-world
scene have to be faithfully mapped to a digital model. Most importantly, the dynamic shape and
motion as well as the dynamic appearance and material properties of a real-world scene have to
be captured, reconstructed, and displayed in high quality. Among the most difficult scenes to
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reconstruct are scenes involving human actors. The eye of the
human observer is unforgiving and will immediately unmask
even slightest inaccuracies in a virtual human’s appearance or
motion, and therefore a faithful estimation of either of these
aspects is a necessity.

This article is a tutorial style review of methods from the lit-
erature aiming at reconstruction of 3-D humans as well as of a
variety of model-based approaches that we developed to recon-
struct, render, and encode free-viewpoint videos of human
actors. We will show that the commitment to an a priori shape
representation of a person in the real world allows us to solve
many of the previously described reconstruction problems in an
efficient way.

The article continues with a review of important categories
of alternative dynamic scene reconstruction methods. We also
analyze their advantages and disadvantages and discuss their
suitability for reconstructing virtual human actors. Thereafter,
we review important related approaches for reconstructing
dynamic reflectance properties.

Subsequently, we detail our model-based paradigm to free-
viewpoint video of human actors. First, we describe the multi-
camera system that we employ to capture input video
streams. Thereafter, we describe a shape-adaptable human
template model serving as our dynamic geometry and motion
representation. A core component of our 3-D video approach
is a model-based analysis-through-synthesis algorithm
enabling us to capture the time-varying shape and motion of
an actor from input video streams without the use of optical
markings. In a first algorithmic variant, we create free-view-
point videos by applying a real-time dynamic surface textur-
ing approach to our dynamic scene models, thereby
reproducing the actor’s appearance from any viewpoint and
under fixed lighting conditions. An efficient encoding for the
data streams is also illustrated. In a second algorithmic vari-
ant, we not only reproduce dynamic surface appearance under
fixed lighting positions but, rather, estimate a complete
dynamic reflectance model of the recorded individual. By this
means, free-viewpoint videos can also be displayed in real
time under arbitrary virtual lighting conditions. The model-
based framework allows for an efficient compaction of even
relightable dynamic scene representations, which lends itself
to real-time visualization on consumer-grade hardware.
Finally, we present a variety of results obtained with the dif-
ferent algorithms, and we give an outlook to ongoing and
future work along with a conclusion.

RELATED WORK
Since the dynamic scene reconstruction methods that we pro-
pose to capture virtual actors simultaneously solve a variety of
problems, there is an immense body of related work that we can
capitalize on, ranging from previous work in markerless motion
capture to work on image-based and real-time rendering.
However, in this article, we intend to give an overview of the
most related methods that also address dynamic scene recon-
struction as a whole and not only an algorithmic subaspect.

Therefore, we focus on the most important literature in 3-D
video reconstruction as well as recent work on dynamic
reflectance estimation.

3-D VIDEO
Early research that paved the way for free-viewpoint video was
presented in the field of image-based rendering (IBR). Shape-
from-silhouette methods reconstruct geometry models of a
scene from multiview silhouette images or video streams [17],
[18]. Starting from the silhouettes extracted from the camera
pictures, a conservative shell enveloping the true geometry of
the object is computed by reprojecting the silhouette cones into
the 3-D scene and intersecting them. This generated shell is
called the visual hull. For two-dimensional (2-D) scenes, the
visual hull is equal to the convex hull of the object, and for 3-D
scenes, the visual hull is contained in the convex hull, where
concavities are not removed but hyperbolic regions are. While
the visual hull algorithms are efficient and many systems allow
for real-time reconstruction and rendering performance, the
geometry models they reconstruct are often not accurate
enough for high-quality reconstruction of human actors. As
such, when observed by only a few cameras, the scene’s visual
hull is often much larger than the true scene and disturbing
phantom volumes due to undersampling lead to a deterioration
of the overall appearance. When rendering new views, one can
partially compensate for such geometric inaccuracies by view-
dependent texture-mapping.

Strictly, the visual hull is the maximal volume constructed
from all possible silhouettes. In almost any practical setting, the
visual hull of an object is computed with respect to a finite
number of silhouettes, which is called the inferred visual hull.
There exist two classes of methods to compute the visual hull: 1)
voxel carving methods, which carve away all voxels that are not
contained in the silhouettes of the acquisition cameras and 2)
image-based methods that exploit epipolar geometry and store
so-called occupancy intervals at every pixel. Some examples are
image-based [18] or polyhedral visual hull methods [17] as well
as approaches performing point-based reconstruction [10].
Despite quality limitations of the measured shape models, visual
hull reconstruction methods are still the algorithms of choice
when real-time performance is the primary goal.

To overcome some of the principal limitations of visual hull
methods, researchers tried to combine visual hull and stereo
reconstruction approaches. These hybrid methods typically
employ the visual hull surface as a shape prior and use a stereo
method to locally refine the shape estimates to accurately recov-
er convex surface areas also [15], [24].

In contrast to the previously mentioned hybrid approaches,
purely stereo-based 3-D video reconstruction methods don’t
require separable image silhouettes for the foreground objects
to be reconstructed and can, therefore, directly be applied to
estimate the dynamic shape of foreground and background. On
the other hand, the latter category of methods often requires a
much denser camera arrangement, which leads to restrictions
in the range of virtual viewpoints that can be handled.



A stereo-based method to reconstruct and render complete
dynamic scenes comprising of dynamic foreground and back-
ground is presented in [34] (Figure 1). It combines a novel seg-
mentation-based stereo algorithm with a multilayered
representation, which can then be used to generate intermediate
viewpoints along a one-dimensional (1-D) rail of recording cam-
eras. A segmentation-based approach to stereo tries to overcome
some of the limitations of the pixel-based algorithms. Pixels are
inherently hard to match, and by correlating entire segments,
the algorithm produces much better depth maps. However, it
relies on the assumption that all pixels of a segment belong to
the same surface—so there are no discontinuities. Hence, a fine
over-segmentation has to be performed during a preprocess step
(Figure 1). Although the range of virtual viewpoints is limited,
the achieved reconstruction and rendering quality is very high.

To overcome some of the limitations inherent to purely pas-
sive stereo-based 3-D video methods, [29] proposes an approach
supported by active illumination in the scene. Multiple video
projectors simultaneously project random noise patterns into
the scene to increase the robustness of the geometry recon-
struction. Further geometry enhancements are achieved by
employing a space-time stereo method. Pattern projection is
performed in synchronization with the camera system in such a
way that the illumination patterns add up to white light in the
texture cameras. This way, appearance estimation in conjunc-
tion with texture estimation is possible.

While the algorithms that were described so far rely on
dynamic geometry reconstruction to create novel viewpoint ren-
derings, ray-space techniques explicitly abstain from shape esti-
mation. In contrast, they generate novel views by appropriately
combining light rays of a scene captured with multiple cameras.
Looking at it from a different perspective, ray-space methods
aim at locally reconstructing a simplified version of the full
plenoptic function (which describes the light transport at each
point and in each direction of space)  to create novel virtual
views, however at the cost of increased memory consumption.
One exemplary method is light field rendering [14], which has,
in an extended form, been employed in the 3-D TV system [19]
to enable simultaneous scene acquisition and rendering in real-
time; [8] also uses light field rendering for novel viewpoint gen-
eration in dynamic scenes. Being purely data-driven approaches,
ray-space techniques have the big advantage that they are capa-
ble of reproducing any local or global lighting and appearance
effect visible in the real-world, given that the scene has been
sampled densely enough with
recording cameras. At the same
time, the high required sampling
density is also the main drawback of
these approaches since the huge
amount of captured data makes it
difficult to handle larger scenes,
large image resolutions, and, in par-
ticular, dynamic scenes.

As opposed to the above meth-
ods, we take a model-based

approach to free-viewpoint video [4], [27] of human actors. By
applying a shape and motion prior, we can efficiently circum-
vent many of the drawbacks of related approaches described
previously. Eventually, the commitment to a strong prior
makes it possible to realistically reproduce the omnidirectional
appearance of captured human actors even though we only use
eight recording cameras.

With the increasing availability of reconstruction approach-
es, the issue of efficient content encoding has become more
important. To name just exemplary work, [19] described effi-
cient multiview video encoding, and [34] developed a framework
for multiview depth video encoding. An extension to the MPEG
framework for encoding multiview video and geometry content
has been proposed in [31]. Methods for efficient encoding of
model-based free-viewpoint videos are described in [32] and [33]
and will be addressed  briefly in the following.

All of the algorithms mentioned so far can visualize a record-
ed scene only under the same illumination conditions that it
was captured in. For implanting 3-D video footage, in particular
virtual actors, into novel virtual surroundings—a problem that
often needs to be solved in movie and game productions—infor-
mation on dynamic surface reflectance is needed.

REFLECTANCE ESTIMATION 
IN STATIC AND DYNAMIC SCENES
Until today, the problem of measuring reflectance properties of
real objects from image data has been mainly addressed for the
case of static scenes. Typically, a single-point light source is used
to illuminate an object of known 3-D geometry consisting of
only one material. One common approach is to take high-
dynamic range (HDR) images of a curved object, yielding a dif-
ferent incident and outgoing directions per pixel and thus
capturing a vast number of reflectance samples in parallel.
Often, the parameters of an analytic bidirectional reflectance
distribution function (BRDF) model are fit to the measured data
[13], or a data-driven model is used [20]. Reflectance measure-
ments of scenes with more complex incident illumination can
be derived by either a full-blown inverse global illumination
approach [2] or by representing the incident light field as an
environment map and solving for the direct illumination com-
ponent only [22]. In a method that we will explain later, we
approximate the incident illumination by multiple point light
sources and estimate BRDF model parameters taking only direct
illumination into account.

[FIG1] Results from the stereo reconstruction approach of Zitnick et. al. [34]. From left: The
segmented input image is used to estimate the initial disparity, which is then refined using an
iterative scheme.

(a) (b) (c) (d)
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Rushmeier et al. estimate diffuse albedo and normal map
from photographs with varied incident light directions [23]. In
[9], reflectance and shape of static scenes are simultaneously
refined using a single light source in each photograph.

All the approaches mentioned in the preceding paragraphs
were tailored to handle static scene. Only very few methods so far
have tried to attack the even more difficult problem of estimating
the time-varying reflectance properties of dynamic scenes.

In one line of research, a data-driven approach to dynamic
reflectance measurement is taken. Here, instead of explicitly
reconstructing a parametric reflectance model, novel views
under novel lighting conditions are generated by weightedly
blending captured input images. An early approach to data-driv-
en reflectance measurement is proposed in [11], where a special
device called lightstage, comprising of light sources and imaging
sensors, is used to capture the reflectance field of a human face.

Wenger et al. [30] extend the static light stage device such
that it enables capturing of dynamic reflectance fields, in this
particular case the time-varying reflectance of an actor’s face.
This novel light stage comprises a dome of LED light sources
that can reproduce basic lighting conditions at several hundred
frames per second (fps), as well as a high-speed video camera. By
having such a fast illumination and recording apparatus, it
becomes feasible to record a full set of images of the face under
all basic lighting conditions for each frame of a regular 30 fps
video clip. The visual results achieved with this method are
impressive, however it is not possible to change the viewpoint in
the scene.

Einarsson et al. [8] extend this approach even further by
using a much larger light stage (light stage 6) that enables them
to capture a seven-dimensional (7-D) full dynamic reflectance
field. The novel light stage features a treadmill in the center,
where the person walks. Eventually, this setup enables us to cap-
ture a complete set of images for periodically moving humans
that spans two dimensions for the images themselves, two

dimensions (directions) for the incident lighting, two dimen-
sions for the viewpoints (directions) and one dimension for time
(Figure 2). When rendering a novel viewpoint of a particular
captured moment under novel lighting conditions, the novel
lighting conditions are projected into the employed lighting
basis and the images in the 7-D data set are combined appropri-
ately to generate the output view. This way, human performanc-
es can be rendered from novel perspectives and relit.
Unfortunately, their method can only capture periodic walking
and only reproduces low-frequency lighting effects. Also, the
required hardware setup makes this method infeasible for many
practical applications.

Carceroni and Kutulakos present a surfel-based method for
simultaneous motion and reflectance capture for nonrigid
objects [3], producing nice results for confined scenes. Their
method was the first one aiming at reconstruction of parametric
reflectance models for dynamic scenes from multiview video
footage. Relighting was not their main application focus. The
BRDF estimation was rather part of an involved multistage opti-
mization process producing a reliable time-varying shape
model. Although reflectance reconstruction was not their pri-
mary goal, the proposed algorithms served as a motivation for
our model-based dynamic relighting method.

In our work, we decided to employ a parametric reflectance
model to estimate dynamic surface reflectance of human actors.
Having a good prior shape model, this enables us to reconstruct
high-quality dynamic reflectance properties and normal maps
using only a handful of recording cameras. Furthermore, our
reflectance description allows for arbitrary viewpoint changes as
well as high-frequency relighting [25].

ACQUISITION—A STUDIO 
FOR MULTIVIEW VIDEO RECORDING
The input to our system are multiple synchronized video
streams of a moving person [multiview video texture (MVV)

sequences] that we capture in
our free-viewpoint video stu-
dio. The studio features a mul-
ticamera system that enables
us to capture a volume of
approximately 4 × 4 × 3 m
with eight externally synchro-
nized video cameras. The
imaging sensors can be placed
in arbitrary positions, but typi-
cally, we resort to an approxi-
mately circular arrangement
around the center of the
scene. Optionally, one of the
cameras is placed in an over-
head position [Figure 3(b)].
Each of our eight Imperx MDC
1004 video cameras features a
1004 × 1004 pixel image sen-
sor with 12-b color depth and[FIG2] A schematic diagram of the acquisition system used by Einarsson et al. [8].

Lighting
Apparatus

Equator

Virtual
Floor

M
at

te
 B

ac
ki

ng Working
Volume

Ring
Light

Camera
Array

Floor Lights

Foam
Treadmill
Turntable

Lights

Lighting
Apparatus

M
atte Lights

IEEE SIGNAL PROCESSING MAGAZINE [48] NOVEMBER 2007



IEEE SIGNAL PROCESSING MAGAZINE [49] NOVEMBER 2007

runs at a frame rate of 25 fps. Prior to recording,
the cameras are calibrated, and intercamera
color consistency is ensured by applying a color-
space transformation to each video stream. The
lighting conditions in the studio are fully con-
trollable, and the scene background optionally
can be draped with black molleton. We have a
set of different light setups at our disposal.
While for the free-viewpoint video with dynam-
ics textures, we prefer a diffuse illumination, our
work on relighting requires spotlight illumina-
tion. For capturing reflectance estimation
sequences, we employ two spotlights. The spot-
lights are placed on the either side of the room,
ensuring maximal illumination while also mini-
mizing the interference. The light sources are
fully calibrated, and their position and photo-
metric properties are determined. The use of
this calibrated lighting setup for dynamic
reflectance estimation is explained in the following.

THE ADAPTABLE HUMAN BODY MODEL
We employ a triangle mesh representation because it offers a
closed and detailed surface description and it can be rendered
very fast on graphics hardware. Since the model must be able to
perform the same complex motion as its real-world counterpart,
it is composed of multiple rigid-body parts that are linked by a
hierarchical kinematic chain. The joints between segments are
suitably parameterized to reflect the object’s kinematic degrees
of freedom (DoF). Besides object pose, the dimensions of the
separate body parts also must be kept adaptable as to be able to
match the model to the object’s individual stature.

A publicly available virtual reality modeling language
(VRML) geometry model of a human body is used [Figure 3(a)].
The model consists of 16 rigid body segments, one each for the
upper and lower torso, neck, and head; and pairs for the upper
arms, lower arms, hands, upper legs, lower legs, and feet. In
total, more than 21,000 triangles make up the human body
model. A hierarchical kinematic chain connects all body seg-
ments, resembling the anatomy of the human skeleton.
Seventeen joints with a total of 35 joint parameters define the
pose of the virtual character.

In addition to the pose parameters, the model provides 17
anthropomorphic shape parameters per segment to scale and
deform each of them. One parameter is a global scaling parame-
ter, the 16 remaining anthropomorphic DoF control the defor-
mation of each segment by means of a simple free-form
deformation scheme using Bézier curves for scaling.

SILHOUETTE-BASED ANALYSIS-THROUGH-SYNTHESIS
The challenge in applying model-based analysis for free-
viewpoint video reconstruction is to find a way to adapt the
geometry model automatically and robustly to the subject’s
appearance as it was recorded by the video cameras. Since the
geometry model is suitably parameterized to alter its shape

and pose, the problem reduces to determining the parameter
values that achieve the best match between the model and the
video images. This task is regarded as an optimization prob-
lem. The subject’s silhouettes, as seen from the different cam-
era viewpoints, are used to match the model to the video
images: The model is rendered from all camera viewpoints,
and the rendered images are thresholded to yield binary
masks of the model’s silhouettes. The rendered model silhou-
ettes are then compared to the corresponding image silhou-
ettes [4], [27]. As a comparison measure, the number of
silhouette pixels that do not overlap is determined.
Conveniently, the exclusive-or (XOR) operation between the
rendered model silhouette and the segmented video-image sil-
houette yields those pixels that are not overlapping.
Fortunately, an energy function based on XOR operation can
be evaluated very efficiently in graphics hardware (Figure 4).
With eight cameras, a 3.0 GHz Pentium IV with a GeForce
6800 graphics board easily performs more than 250 of such
matching function evaluations per second.

The silhouette-based analysis-through-synthesis approach
is employed for two purposes: the initialization or shape adap-
tation of the model’s geometry and the computation of the
body pose at each time step. For the shape adaptation, the sil-
houette-based analysis-through-synthesis algorithm is used to
optimize the anthropomorphic parameters of the model.
During model initialization, the actor stands still for a brief
moment in a pre-defined pose to have his silhouettes recorded
from all cameras. The generic model is rendered for this
known initialization pose, and without user intervention, the
model proportions are optimized automatically to match the
individual’s silhouettes. Shape adaptation commences by
roughly aligning the model globally. Thereafter, it iterates
between segment scaling and pose parameter computation.
Shape customization is finalized by finding an optimal set of
Bézier scaling parameters such that the silhouette outlines
are reproduced as closely as possible.

[FIG3] (a) Surface model and the underlying skeletal structure. Spheres indicate
joints and the different parameterizations used; blue sphere—3 DOF ball joint,
green sphere—1 DOF hinge joint, red spheres (two per limb)—4 DOF limb
parameterization. (b) Typical camera and light arrangement during recording.

(a) (b)



Thanks to advanced rendering techniques, an exact match
is neither needed for convincing dynamic texturing nor for
reflectance estimation (see following sections). The initializa-
tion procedure takes only a few seconds. From now on, the
anthropomorphic shape parameters remain fixed. Shape adap-
tation can be extended to reconstruct not only a spatiotempo-
rally consistent shape model but also smaller-scale per-time
step deformations [5].

The individualized geometry model automatically tracks the
motion of the human actor by optimizing the 35 joint parame-
ters for each time step. The analysis-through-synthesis frame-
work enables us to capture these pose parameters without
having the actor wear any specialized apparel. This is a neces-
sary precondition for free-viewpoint video reconstruction, since
only if motion is captured completely passively can the video
imagery be used for texturing. The model silhouettes are
matched to the segmented image silhouettes of the actor so
that the model performs the same movements as the human in
front of the cameras (Figure 4). At each time step, an optimal
set of pose parameters is found by performing a numerical min-
imization of the silhouette XOR energy functional in the space
of pose parameters. The performance of the silhouette-based
pose tracker can be further improved by capitalizing on the
structural properties of the optimization problem, in particular,
the kinematic hierarchy [28]. Tracking can also be augmented
by additionally considering texture and 3-D scene flow [27].

FREE-VIEWPOINT VIDEO WITH DYNAMIC TEXTURES
By combining the silhouette-based analysis-through synthesis
method with a dynamic texture generation, we can reconstruct
and render free-viewpoint videos of human actors that repro-
duce the omnidirectional appearance of the actor under fixed
lighting conditions. A high-quality 3-D geometry model is now

available that closely matches the dynamic object in the scene
over the entire length of the sequence. To display the object
photo-realistically, the recorded video images are used for GPU-
based projective texturing of the model’s surface. We can also
capitalize on spatiotemporal coherence to encode efficiently
image and geometry data.

DYNAMIC PROJECTIVE TEXTURING
Prior to display, the geometry model as well as the video cam-
eras’ calibration data is transferred to the graphics board.
During rendering, the user’s viewpoint information, the
model’s updated pose parameter values, the current video
images, as well as the visibility and blending coefficients νi, ωi

for all vertices and cameras i are continuously transferred to
the graphics card.

The color of each rendered pixel c ( j) is determined by
blending all l video images Ii according to

c ( j) =
l∑

i=1

νi ( j) ∗ ρi ( j) ∗ ωi ( j) ∗ Ii ( j), (1)

where ωi ( j) denotes the blending weight of camera i, ρi ( j) is
the optional view-dependent rescaling factor, and
νi ( j) = {0, 1} is the local visibility. During texture preprocess-
ing, the weight products νi ( j)ρi ( j)ωi ( j) have been normal-
ized to ensure energy conservation. Technically, (1) is evaluated
for each fragment by a fragment program on the graphics
board. By this means, time-varying cloth folds and creases,
shadows, and facial expressions are faithfully reproduced in tex-
ture, lending a very natural, dynamic appearance to the ren-
dered object, Figure 5(a).

Given approximate geometry and Lambertian surface
reflectance assumption, high-quality, detailed model texture can

[FIG4] Hardware-based analysis-through-synthesis for free-viewpoint video: To match the geometry model to the multi-video
recordings of the actor, the image foreground is segmented and binarized. The boolean XOR operation is executed between the
foreground images and the corresponding model renderings. The numerical minimization algorithm runs on the CPU while the energy
function evaluation is implemented on the GPU.

Background Subtraction

CPU GPU

Optimization Silhouette XOR
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be obtained by blending the video images cleverly. A visually
convincing weight assignment has been found to be

ωi = 1
(1 + maxj (1/θ j) − 1/θi)

α
, (2)

where θi denotes the angle between a vertex
normal and the optical axis of camera i and
the weights ωi additionally are normalized to
sum up to unity. The parameter α deter-
mines the influence of vertex orientation
with respect to camera viewing direction and
the impact of the most head-on camera view
per vertex [4].

Due to the use of a parameterized geome-
try model, the silhouette outlines in the
images do not correspond exactly to the out-
line of the model. When projecting video
images onto the model, a texture seam
belonging to some frontal body segment may
fall onto another body segment farther back.
To avoid such artifacts, extended soft shad-
owing is applied, which makes sure that a tri-
angle is textured by a camera image only if
all of its three vertices are completely visible
from that camera.

ENCODING
Conveniently, time-varying geometry is
represented compactly as a stream of pose
parameters for the model. To encode the
multiview video stream efficiently, it turns
out to be advantageous to convert each
input video frame into a texture, thereby
creating eight so-called MVV textures for
each time step, Figure 6. MVV textures
actually comprise correlated four-dimen-
sional (4-D) data volumes, since the texture
changes only slightly with the viewing
angle over time. We have developed two
approaches to exploit this correlation for
texture stream encoding.

The first approach employs predictive
texture encoding [32]. It generates a two-
step average (first over all camera angles,
then over all time steps) and subsequently
computes differential textures with respect
to the average textures. All resulting tex-
tures are then compressed using a shape-
adaptive wavelet algorithm. The format
grants random access over two differential
image additions.

The second compaction scheme is based on
4-D-SPIHT [33], and we have a closer look at
its individual processing steps in the following.

DATA GROUPING AND FILLING
Compression of a data block commences when all necessary
camera images are available as textures. After resampling, we
group the texture maps into blocks of spatial and temporal
coherency, yielding 4-D data blocks of YUV samples. The block

[FIG5] Conventional video systems cannot offer moving viewpoints of scenes frozen
in time. However, with our free-viewpoint video system freeze-and-rotate camera
shots of body poses are possible. (a) Novel viewpoints of scenes frozen in time for
different subjects and different types of motion. (b) Disco-type lighting condition. (c)
Environment setting typical for a computer game. (d) 3-D videos rendered under
different real-world lighting conditions stored in an HDR environment map of Grace
Cathedral (courtesy of Paul Debevec). In either case, the actors appear very lifelike and
subtle surface details are faithfully reproduced. Also shadows and mirroring effects
can be rendered in real-time. 

(a)

(c)(b)

(d)
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division corresponds to the group of picture (GOP) block
structure commonly used in MPEG video formats and allows
for limited random access as long as the whole 4-D block con-
taining a certain texture is decoded. U and V values can
optionally be subsampled, but we
currently work with reduced bitrates
for these color components (see the
SPIHT encoder below).

Unused texels (currently: black pix-
els) in these 4-D blocks are now filled
with averages of the surrounding valid
texels see Figure 6 for an example. This
ensures best possible data compression
under the subsequently applied algorithm, as described in [16].

To serve this purpose, the whole 4-D data block is first down-
sampled in a Laplacian 4-D pyramid, all the way to the lowest

resolution of 1 × 1, taking the different dimension extents into
consideration (a division by two remains one if the result would
be smaller than one). Afterwards, the pyramid is traversed back-
ward from the lowest to the highest resolution, and each unused

(black) texel receives the color of its
associated, average parent in the previ-
ous level. This way, it is ensured that
all unused texels are filled with a color
value that corresponds to the average
of all valid texels in its support region.

WAVELET ENCODING
The following 4-D wavelet transforma-

tion uses Haar wavelets. We take the 4-D data block that was
filled in the previous step and sequentially apply a 1-D Haar
wavelet transform in all four dimensions until even the texture
dimension sizes have been reduced to two. Finally, compression
commences. The compression algorithm is based on the widely
used SPIHT algorithm, although in a new adaptation, making it
suitable for 4-D data. It is based on work done in [16]. The
encoder is currently able to handle a 4-D data block with pairs of
equal dimensions (e.g., max(s, t, u, v) = {8, 8, 1024, 1024}, i.e.,
eight timesteps of eight cameras at 1024 × 1024 resolution).

DECODING
Most decoders will probably extract several time steps at once,
since time steps are usually read sequentially. The bit mask can
only be applied if it has been transmitted to the decoder. If this is
not the case, shadow casting must be applied for masking if mul-
tiview interpolation is intended (as noted in the next section).

Figure 7 shows example output from the reference decoder.
Notice the typical wash-out effect of wavelet compression. The
outer contours were transmitted in an additional shape-mask.

RELIGHTABLE FREE-VIEWPOINT VIDEO
In the previous section, we introduced an approach to realisti-
cally render human actors for all possible synthetic viewpoints.
However, this algorithm can only reproduce the appearance of
the actor under the lighting conditions that prevailed at the
time of acquisition. To implant a real-world actor into surround-
ings different from the recording environment, his appearance
must be adapted to the new illumination situation. To this end,
a description of the actors surface reflectance is required. We
have enhanced our original free-viewpoint video pipeline such
that we are able to reconstruct such dynamic surface reflectance
descriptions. The guiding idea behind this process that we call
dynamic reflectometry is that, when letting a person move in
front of a calibrated static setup of spot lights and video cam-
eras, the cameras are not only texture sensors but actually
reflectance sensors. Due to the motion of the person, each point
on the body’s surface is seen under many of different incoming
light and outgoing viewing directions. Thus, we can fit a dynam-
ic surface reflectance model to each point on the body surface
that consists of a per-texel parametric bidirectional reflectance
distribution function and a per-texel normal with time-varying

[FIG6] (a) Input texture map. (b) Same map after filling
operation. 

(a)

(b)
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direction. We now review the algorith-
mic steps needed to generate
relightable free-viewpoint videos. See
[25] and [26] for in depth details.

MODIFICATIONS TO THE RECONSTRUCTION PIPELINE
During recording, we employ two calibrated spotlights, i.e., we
know their positions and photometric properties. For each per-
son and each type of apparel, we record one sequence, hence-
forth termed reflectance sequence (RS), in which the person
performs a rather simple in-place rotation while attaining
approximately a static posture. The RS will be used to estimate
the surface reflectance properties. The actual relightable free-
viewpoint videos, as well as the time-varying normal map are
reconstructed from the so-called dynamic sequences (DS) in
which the actor can move arbitrarily.

Reflectance estimation causes more strict requirements to
the quality of the employed body model. To prevent rendering
artifacts at body segment boundaries and to facilitate spatio-
temporal texture registration, we transform the shape-adapted
segmented body model into a single-skin model by means of an
interactive procedure.

Prior to reflectance estimation, we transform each input
video frame into a 2-D surface texture. Textural representation
of surface attributes facilitates rendering of the relightable free-
viewpoint videos and also enables us to take measures to
enhance spatio-temporal multiview texture registration.
Incorrect multiview registration would eventually lead to erro-
neous reflectance estimates. There are two primary reasons for
inaccurate texture registration, first the fact that we use only an
approximate model, and second, transversal shift of the apparel
while the person is moving. We counter the first problem by
warping the multiview input images such that they comply with
the geometry model at each time step of video. The motion of
textiles is identified and compensated by optical flow computa-
tion and texture warping [26].

BRDF ESTIMATION
The BRDF part of our reflectance model is estimated for each
subject and each type of apparel from the RS, in which the
approximately static body is seen under different lighting and
viewing directions. We employ a parametric BRDF representa-
tion, because it allows us to represent the complex reflectance
function in terms of a few coefficients of a predefined functional
skeleton. The BRDF thus compactly represents surface
reflectance in terms of four direction parameters, the incoming
light direction and the outgoing viewing direction, as well as the
model parameters. In our approach, we can employ any arbi-
trary BRDF representation, but we mainly used the Phong [21]
and Lafortune [12] models.

In the dynamic sequence, we collect several samples of the
BRDF for each surface point or, in GPU terminology, for each texel.
The goal is to find optimal model parameters for each texel that
reproduce the collected reflectance samples best. We formulate
this as the solution to a least-squares problem in the difference

between collected samples and predicted
appearance according to the current
estimate. In general, our estimation of
BRDF parameters and later, the estima-
tion of the time-varying normals, is

based on minimizing for each surface point �x the error E(�x, ρ(�x))
between the current model ρ(�x) and the measurements for this
point from all cameras i at all time steps t :

E(�x, ρ(�x)) =
N∑
t

8∑
i

κi(t)

×
(

Si(t) −
[ J∑

j

λ j(t)( fr(l̂(t), v̂i(t), ρ(�x))

· Ij(n̂(t) · l̂(t)))
])2

. (3)

The term is evaluated separately in the red, green, and blue
color channel. Si(t) denotes the measured color samples at �x
from camera i, and Ij denotes the intensity of light source j.
The viewing directions v̂i(t) and light source directions l̂j(t)
are expressed in the point’s local coordinate frame based on
the surface normal n̂(t). Visibility of the surface point with
respect to each camera is given by κi(t) and with respect to
the light sources by λ j(t), both being either 0 or 1. fr finally
evaluates the BRDF.

By minimizing (3) in the respective parameter sets, we com-
pute optimal estimates for the BRDF parameters, ρbest, as well

[FIG7] The texture map patches. Decoding was performed with
equal Y, U, V datarate, and using the fill feature. (a) 0.05 bpp. (b)
0.25 bpp. (c) Encoder input.

(a)

(b)

(c)
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as optimal normal estimates for the
body in the initialization posture. The
procedure alternates between BRDF
estimation and normal refinement,
and works as follows (Figure 8).

Assuming that there is little varia-
tion between per-pixel specular BRDF
within a same material, we first clus-
ter the model into different material. A first BRDF estimate is
computed by using the template model’s surface normals. Note
that specular BRDF components are estimated per-material to
collect enough samples for this high-frequency signal. Diffuse
components are estimated on a per-texel basis to capture saptial
variation. After the first reflectance estimate, refined surface
normal fields are estimated by means of the procedure described
in the following section. The final set of BRDF parameters is
estimated with the refined normal field.

We acquire the data for BRDF estimation under a fixed
setup of cameras and light sources. This may lead to a biased
sampling of surface reflectance since each surface point is
only seen under a limited number of half-vector directions.
We thus propose a spatio-temporal reflectance sharing
method that reduces this bias by taking into account
reflectance samples from other surface locations made of
similar material .  For details on the spatio-temporal
reflectance sharing method, see [1].

NORMAL ESTIMATION
Knowing the BRDF parameters, one
can also refine the surface normal
field by looking at the reflectance
samples. During normal estimation
we minimize the following extended
version of the energy functional (3)
in the local surface normal direction

n̂(�x) of each surface point �x :

Enormal(�x, n̂(�x)) = αE(�x, ρ(�x)) + β�(n̂(�x))γ . (4)

The additional regularization term �(n̂(�x)) penalizes angular
deviation from the default normal of the body model. This
way, we also enforce convergence to a plausible local mini-
mum of the nonconvex energy functional. The coefficients α
and β are weighting factors summing to one, the exponent γ
controls the penalty’s impact. Appropriate values are found
through experiments.

The above procedure forms a part of the actual BRDF estima-
tion, but it is also used to estimate the time-varying normal field
for each frame of a DS. In the latter case, we enforce temporal
smoothness in the normal field. Figure 9 shows several close-up
views of rendered relighatble free-viewpoint videos. Subtle time-
varying surface details, such as wrinkles, are encoded in the
completely passively captured surface normal fields.

RENDERING AND ENCODING
At rendering time, the body model is
displayed in the sequence of cap-
tured body poses and the illumina-
tion equation is, in graphics
hardware, evaluated for each ren-
dered fragment of the model (Figure
10). We can render and relight free-
viewpoint videos in real-time on
commodity graphics hardware. For
illumination, it is feasible to use
both normal point or directional
light sources, or even captured real-
world illumination from HDR envi-
ronment maps. Example renderings
of actors under novel virtual light-
ing conditions can be seen in Figure
5(b) and (c). Even subtle surface
details are faithfully reproduced in
the synthetic lighting environment
(Figure 9).

As before, time-varying scene
geometry is encoded as a stream of
pose parameters, triangle mesh
geometry has to be uploaded to the
renderer just once. The static BRDF
coefficients are stored in parameter
textures. The time-varying normal

[FIG9] (a) Comparison between an input frame and the corresponding normal map that we
reconstructed. For rendering, the three components of the surface normals were encoded in
the three color channels. One can see that subtle surface details have been captured at high
accuracy. This level of accuracy also enables us to (b) faithfully reproduce time-varying
geometric details, such as the wrinkles in the trousers around the knee.

(a) (b)
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maps are encoded as a stream of tex-
tures. To correctly reproduce shifting
apparel despite a fixed set of material
parameters, cloth shifting informa-
tion is provided to the renderer as a
stream of warped texture coordinates.
Figure 10 shows the working princi-
ple of our renderer, illustrating the rendering process and the
underlying scene representation.

We make use of the OpenEXR format to encode our
1024 × 1024 pixel texture images. Conveniently, OpenEXR
allows us to store images in floating point format, and pro-
vides us with efficient methods for lossless compression.
Furthermore, we can store the full dynamic range of the cap-
tured reflectance data and also display it by capitalizing on the
floating point pipelines of state-of-the art graphics processors.
Compared to streaming eight images for for each frame of the
original free-viewpoint video method, only streaming two tex-
ture images per frame makes a big difference. While a
sequence with 330 frames requires 1.6 GB of storage space in
the original framework, the new encoding reduces it to
around 800 MB (including geometry). 

RESULTS
We have tested our free-viewpoint video method with dynamic
texture generation on a variety of input sequences showing
several motions ranging from simple gestures to ballet danc-
ing. The sequences are typically 100–400 frames long. Our
reconstructed videos reproduce both motion and appearance
of the actors faithfully [4].
Subtle time-varying surface
details are nicely repro-
duced. Figure 5(a) shows
several screen shots of
freeze-frame visualizations,
i.e., the animation was held,
and the user can freely fly
around the scene. Even on a
comparably old XEON 1.8
GHz GPU featuring a
GeForce 3 GPU, a frame rate
of 30 fps easily can be
achieved. On a state-of-the
art machine, motion estima-
tion times of 1 fps are feasi-
ble. Fitting times below one
second can be reached by
employing a parallel imple-
mentation [28].

The data for relightable
free-viewpoint video were
capture with our new camera
setup. We recorded a large
database of subjects, apparel
types, and motion styles. The

typical length of a RS sequence is
around 300 frames, the length of the
employed motion sequences is
300–500 frames. All the results shown
in this article were created with the
Phong reflectance model.

Our dynamic scene description
allows us to render photorealistically human actors under
both artificial and real-world illumination that has been cap-
tured in high-dynamic range environment maps [see Figure
5(d)]. Even with realistically cast shadows, relightable 3-D
videos can be displayed in real-time on state-of-the-art com-
modity graphics hardware. We can also implant actors into
virtual environments as they are commonly used in comput-
er games, such as a little pavilion with mirroring floor,
Figure 5(c). Our dynamic reflectometry method faithfully
captures time-varying surface details, Figure 9(a). By this
means, they can be displayed realistically under varying arti-
ficial lighting conditions, Figure 9(b).

Reflectance estimation typically takes one hour on a
Pentium IV 3.0 GHz. Normal estimation takes approximately
50 s per time step, and it can be parallelized to bring the com-
putation time down. Optional input frame warping takes
around 10 s for one pair of reference image and reprojected
image. Cloth shift compensation accounts for an additional 35 s
of computation time for one time step of video.

We have validated our dynamic reflectometry method
both visually and quantitatively via comparison to ground
truth image data and reflectance descriptions obtained with

[FIG10] Rendering pipeline: At each time step, the template model is deformed and brought into the
correct pose. The deformed model along with BRDF parameters, normal map and warped texture
coordinates is used to render the human actor under novel lighting conditions.
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laser-scanned geometry. Material parameters can be recov-
ered with reconstruction errors of less than 2%. For a
detailed elaboration on these evaluations, see [26].

All of the presented model-based algorithms are subject to
a couple of limitations. General restrictions are that we can-
not easily reproduce background scenes and need a separate
model for each type of subject to be captured. Furthermore,
although we can handle normal every-day apparel, we can not
account for loose apparel whose surface can deviate almost
arbitrarily from the body model. Sometimes, we observe small
rendering artifacts due to undersampling (e.g., on the under-
neath of the arms). However, for the relighting pipeline, we
have verified that the application of an RS sequence showing
several rotation motions with different body postures almost
completely solves this problem. For a more detailed discus-
sion on individual techniques, see the referenced papers.

Despite these limitations, we have presented an effective
combination of algorithmic tools that allows for the creation of
realistic dynamic scene descriptions with both nonrelighatble
and relightable surface appearance.

FUTURE DIRECTIONS
The commitment to a parameterized body model enables us
to make the inverse problems of motion estimation and
appearance reconstruction tractable. However, a model-based
approach also implies a couple of limitations. Firstly, a tem-
plate model is needed for each type of object that we want to
record. Secondly, we currently can not handle people wearing
very loose apparel. Furthermore, while a relatively smooth
template model enables easy fitting to a wide range of body
shapes, more detailed geometry specific to each actor would
improve rendering quality even more. For instance, it would
be intriguing to have a method at hand that enables us to
make a high-quality laser scan follow the motion of the actor
in each video frame without having to manually design skele-
ton models or surface skinning parameters.

To achieve this goal, we have developed a method that
enables us to make our moving template model drive the
motion of a high-quality laser scan of the same person. The
user only needs to mark a handful of correspondences between
triangles on the moving template and triangles on the target
mesh, Figure 11(a). The transformations of the marked trian-
gles on the source are mapped to their counterparts on the
high-quality scan. Deformations for all the other triangles are
interpolated on the surface by means of a harmonic field. The
surface of the appropriately deformed scan at each time step is
computed by solving a Poisson system. Our framework is based
on the principle of differential mesh editing and only requires
the solution of simple linear systems to map poses of the tem-
plate to the target mesh. As an additional benefit, our algo-
rithm implicitly solves the motion retargeting problem and
automatically generates convincing nonrigid surface deforma-
tions. Figure 11(b) shows an example where we mapped the
motion of our moving template model onto a high-quality
static laser scan. This way, we can easily use detailed dynamic
scene geometry as our underlying shape representation. For
details on the correspondence specification and the mesh-
deformation framework, see [7].

Recently, we extended the approach mentioned above
such that we now are able to track the motion of laser scans
in a marker-free manner directly from video streams. By this
means, we will be able in future to reconstruct model-based
3-D videos even of people wearing wide apparel and of sub-
jects other than humans [6].

CONCLUSIONS
We presented a tutorial-like compendium of approachs to cap-
ture, reconstruct, render and encode high-quality 3-D videos of
human actors. The commitment to an a priori body model
enables us to find efficient solutions to the above problem areas,
even if only a handful of input cameras is used. Our free-view-
point video approach with dynamic textures is among the first

methods in the literature
capable of such high-quality
real-time renderings of virtu-
al humans. Similarly, we have
developed the first completely
passive approach to capture
dynamic and fully relighat-
ble representations of such
complex real-world scenes.
In the future, we plan to fur-
ther investigate improved
geometry and appearance
reconstruction approaches
from unmodified input video
footage. For instance, we
plan to investigate new ways
to incoporate high-quality
static laser-scans into our
dynamic framework.

[FIG11] (a) The motion of the template model (l) is mapped onto target (r) by only specifying
correspondences between individual triangles. (b) We can now use the moving laser scan instead of
the moving template model in our free-viewpoint video pipeline. The image on the left is an input
frame, the image on the right the free-viewpoint video with laser-scanned geometry.

(a) (b)
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