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Abstract

This paper describes the design and calibration of a sys-
tem that enables simultaneous recording of dynamic scenes
with multiple high-resolution video and low-resolution
Swissranger time-of-flight (TOF) depth cameras. The sys-
tem shall serve as a testbed for the development of new
algorithms for high-quality multi-view dynamic scene re-
construction and 3D video. The paper also provides a
detailed analysis of random and systematic depth camera
noise which is important for reliable fusion of video and
depth data. Finally, the paper describes how to compensate
systematic depth errors and calibrate all dynamic depth and
video data into a common frame.

1. Introduction

The advancement of computing and camera technology
in recent years has rendered it feasible to attack the prob-
lem of dynamic scene reconstruction with the goal of novel
viewpoint rendering or 3D video. In order to provide high-
quality 3D video renderings, several aspects of a dynamic
scene have to be reliably reconstructed, including geome-
try and textural appearance. Simultaneous reconstruction
of all these scene aspects is only feasible if the measure-
ment principle of the sensors does not visually interfere
with the real world. In the past, purely camera-based or
simple active measurement algorithms have been proposed
to meet these requirements. Shape-from-silhouette meth-
ods [9] and model-based approaches [2] are suitable for
3D videos of foreground objects, but either, like the for-
mer, suffer from mediocre shape reconstruction, or, like
the latter, are limited to certain types of scenes. Stereo-
based [16] or light-field-based methods [15] can reconstruct
entire scenes, albeit at a more limited virtual viewpoint
range. Despite their greater flexibility, the latter two ap-
proaches are also confronted with the difficult multi-view
correspondence problem, which makes unambiguous depth
reconstruction a challenging task.

Recently, the measurement quality of time-of-flight flash

LIDARS, such as the MESATM Swissranger 3000 [10, 11],
has dramatically improved. This new type of sensor mea-
sures scene depth at video rate by analyzing the phase shift
between an emitted and a returned infrared light wavefront.
In contrast to stereo, depth accuracy is independent of tex-
tural appearance. Sadly, the current camera models feature
only sensors with a comparably low pixel resolution. Also,
the depth readings are starkly influenced by random and
systematic noise. We therefore built a multi-view record-
ing system that simultaneously captures scenes from mul-
tiple depth and vision cameras. The system is intended to
be a test-bed for developing new multi-view sensor fusion
methods which join the forces of vision and depth sensors
to recover high-quality geometry and texture. This paper
addresses the two first challenges we are facing, namely
the analysis of TOF camera noise and the development of
a multi-view sensor fusion calibration procedure. The main
contributions of this paper are:

• the design of a multi-view TOF sensor fusion system
(Sect. 3);

• an analysis of random and systematic measurement er-
rors of the SR-3000 (Sect. 4);

• a simple and efficient calibration to compensate sys-
tematic depth errors and accurately align dynamic
depth and video data in a common frame (Sect. 5).

2. Related Work

Most previous multi-view 3D video recording systems
employed synchronized video cameras only, such as [2, 9,
16, 15] to name a few. Waschbuesch et al. [14] proposed
to use several DLP projectors throwing noise patterns into
a scene to improve multi-view stereo. To our knowledge,
we present here the first system to combine several video
and time-of-flight depth cameras. It enables us to jointly
acquire shape and multi-view texture at video rate, and re-
quires neither visual interference with the scene, nor any
form of segmentation or highly textured surfaces.
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Figure 1. Calibration result: Data captured with 3 depth cam-
eras (different colors) registered into a common world frame. The
scene shows a person standing in front of the corner of the room.
Overall, the depth maps almost perfectly align. The inter-twisted
color pattern on the back wall is due to the random noise level in
the data. The arrows show positions of the 3 depth and 5 addi-
tional video cameras (25 frames of static scene averaged to mini-
mize random noise; depth maps rendered as triangle meshes with
filtered elongated triangles at boundaries)

Due to the complex noise characteristics of the
SwissrangerTM depth camera, calibration of all captured
data into a common world frame is a non-trivial task. Some
previous work has primarily looked at the random noise
characteristics of earlier TOF camera models [1, 3]. In our
research we capitalize on their insights and extend them into
a generative noise model parametrized in actual sensor read-
ings. The most problematic property of the Swissranger,
however, is its systematic measurement bias that yields con-
sistent measurement inaccuracies. Previous work has char-
acterized and compensated systematic depth errors for a
different camera, the PMD photonic mixer device [6, 7].
Kahlman et al. [5] computed look-up tables for the Swis-
sranger to compensate integration time-dependent biases.
Rapp [12] conducted theoretical and experimental analysis
on the noise characteristics of single TOF sensors. In this
work, we derive detailed models of both random and sys-
tematic bias under fixed measurement conditions and show
how to calibrate multiple depth cameras into a common
world frame.

3. System Architecture

The building block of our multi-view depth and video
system is a so-called fusion-unit, Fig. 2. The computing
power of a fusion unit is provided by a Dual Core Athlon 64
5600+ computer featuring 4 GB of memory. The computer
is connected to up to two Point Grey Flea2 FireWireTM B
cameras that we typically run at 22 fps and 1024x768 pix-
els frame resolution. In addition, each unit can control one
Swissranger SR 3000 time-of-flight camera that typically
records at a 30 ms integration time which turned out to be

Figure 2. The architecture of our hybrid multi-view video and
depth camera system. The building blocks of the system are con-
nected fusion units, each of which controls up to two video and
one depth cameras.

a good compromise between frame rate and data fidelity.
The X/Y resolution of the TOF camera is 176 × 144 pix-
els. Each fusion unit runs our MVFusionRecorder software
which enables sensor adjustment, on-the-fly-preview, syn-
chronization of sensors and different recording modes.

A complete fusion recording setup connects several fu-
sion units. It is of utmost importance that all employed sen-
sors synchronously capture frames. Since the Swissranger
cameras provide no means to feed in an external hardware
synchronization pulse, we resort to the following hybrid
hardware and software solution to synchronize all types of
sensors across multiple fusion units.

All video cameras are hardware synchronized to an accu-
racy of 0.125 ms via a second FireWireTM bus that links all
fusion units in the system. To ensure that all Swissrangers
capture a frame at the same time instant, and in order to be
certain that this time instant coincides with the integration
window of the video cameras, the depth camera integration
is started simultaneously in software with the sync pulse
that triggers video frame capture.

To prevent I/O streaming bottlenecks, data are captured
to memory and stored to hard disk after recording is fin-
ished. Since infrared-based time-of-flight cameras show in-
terference errors if multiple infrared emitters with the same
modulation rate illuminate the scene, we set the modula-
tion frequency of each camera to a different value (19 MHz,
20 MHz, 21 MHz or 30 MHz). As this range of frequencies
is hardware-limited to four specific values, we can currently
run at most four depth cameras simultaneously in one setup,
Fig. 2. We are now flexible in placing our cameras through-
out the scene. A typical converging camera arrangement
with overlapping view frustra is illustrated in Fig. 1.

4. Depth Sensor Characteristics

The Swissranger is a so-called amplitude-modulated
continuous wave (AMCW) measurement device that infers
3D scene structure by measuring scene depth along the
rays through all sensor pixels (u, v). Depth along mea-
surement rays is computed from the phase shift between a



sinusoidally-modulated wave-front emitted from IR diodes
on the sensor, and the returning light wavefront reflected
from the scene. One important feature of AMCW sen-
sors is that, in contrast to triangulation sensors, measure-
ment uncertainty only exists along the viewing ray from the
depth camera to a point in 3D. This measurement uncer-
tainty comprises of two components, a random component
dr(u, v) and a systematic bias ds(u, v). While the random
component accounts for the random per-frame deviation of
the measured depth dm(u, v) from the ground truth depth
dg(u, v), the systematic bias models discrepancies that are
consistent over time. The measurement model for the dis-
tance along a ray through pixel (u, v) can therefore be rep-
resented as:

dm(u, v) = dg(u, v) + dr(u, v) + ds(u, v) . (1)

In the following, we provide models for random noise and,
most importantly, systematic bias.

4.1. Random Noise

Motivated by earlier work of Hebert et al. [3], Anderson
et al. [1] conclude that the standard deviation of the ran-
dom distance variations along measurement rays σr can be
approximated by:

σr ∝ λd2
g

ρ cos α
. (2)

Here, λ is the wavelength, ρ the reflectance of the target,
and α the angle of incidence. While important from a func-
tional point of view, this formulation is less suited as a gen-
erative model since it incorporates dependencies that are not
immediately measurable. In our practical setting, the wave-
length dependency can be ignored as the LEDs emit a fixed
wavelength. Furthermore, it is fair to assume that the mea-
sured distance is reasonably close to the ground truth dis-
tance and hence dg can be approximated by dm. Finally, it
can be assumed that reflectance and orientation dependency
correlate with actual amplitude variations. Low amplitude
typically leads to a low signal-to-noise ratio which results
in a higher standard deviation. Experiments with gray cards
of different albedo that were recorded under different angles
showed that the effect of reflectance and orientation on ran-
dom noise under typical lab conditions is insignificant and
can in practice be ignored. Note that currently we also ig-
nore dependencies on temperature and integration time as
we hardly vary them in practice. We would also like to
note that the above model does not account for the increased
noise variance in mixed pixels, i.e. pixels that integrate over
a depth discontinuity. In practice, we can discard these un-
reliable measurements from recorded data by enforcing a
depth difference threshold around depth discontinuities.

4.2. Systematic Bias

The systematic measurement bias ds(u, v) leads to depth
inaccuracies that are consistent over time. In order to under-
stand and eventually correct the systematic measurement er-
rors, we need to acquire ground truth 3D measurements that
we compare against the sensor output. To this end, it is fea-
sible to employ the off-the-shelf MATLAB calibration tool-
box for normal vision cameras [13] since the depth sensor,
in addition to 3D depth measurements, provides an ampli-
tude image at each frame. Similar to [8], a depth camera can
thus be treated as a normal optical camera for now. We can
therefore record images of a checkerboard pattern to com-
pute an intrinsic matrix K, lens distortion coefficients, and
extrinsic parameters R and T – henceforth we will refer to
this model of a depth camera as the model in space I.

The Swissranger also provides for each pixel (u, v) a
point in metric 3D space p(u, v) = (x, y, z) whose loca-
tion is determined via time-of-flight. Henceforth, we refer
to this time-of-flight measurement space as space II.

Due to the systematic bias, 3D depth point clouds of
checkerboard corners according to space I do not exactly
align with the checkerboard corners measured in space
II. Physical origins of this bias are manifold, but include
inaccuracies in the measurement model assumed by the
manufacturer which may, for instance, not correctly cater
for lens aberrations, amplitude effects, mixed pixels etc.
Our experiments show that the systematic measurement
bias can be modeled by the following factors: Rigid
misalignment R, ray-space misalignment D, a distance
bias along the measurement ray B, and the subtle influence
of orientation and translation that we can implicitly model
as dependencies on ratios of normalized amplitudes. The
first three types of misalignment are depicted in Fig. 3. Our
calibration procedure described in Sect. 5 will eventually
estimate and compensate exactly those effects in the range
measurements.

Rigid misalignment, R, means that the 3D point clouds
in space I and space II are off by a rigid transformation.
Ray-space misalignment, D, means that, even after rigid
correction, viewing rays (or measurement rays) towards
corresponding 3D points in space I and space II do not point
exactly in the same direction but are angularly misaligned.
By far the strongest misalignments originate from the bias
B in distances along measurement rays, Fig. 5(a). Finally,
variations in surface orientation and reflectance are likely
to have an influence on the systematic error as they lead to
changes in measured amplitude.

Overall, our model of systematic measurement bias takes
the following form:

ds(u, v) = Ke−brd′s(u, v) , (3)

where d′s(u, v) is the systematic measurement bias due to



Figure 3. Steps to compensate the systematic bias in the depth data and align them with an optical camera model (space I) of the sensor.
For clarity, steps are illustrated in 2D. Red shows the measured TOF data, blue the ground truth data in space I; circles represent points in
3D, lines represent measurement rays.

rigid, ray and distance misalignment. The exponential term
preceding d′s(u, v) models the influence of the orientation
and reflectance by reducing them to changes in measured
normalized amplitude. This formulation originates from the
fact that, even though the depth measurements along the
rays that have smaller amplitude values are biased to be far-
ther away compared to the true depth, we found no obvious
direct relationship between the measured amplitude and the
systematic error in practice (also reported in [7]). Instead,
ratios of normalized amplitude are used based on two exper-
imental observations: (1) The systematic bias is dependent
on the relative amplitude value of the particular pixel com-
pared to the other pixels within the same frame. (2) The
relationship between the systematic bias and the amplitude
value is affected by the image plane location of a pixel. For
example, when one measures against a planar white wall,
one will see a radial amplitude pattern, Fig. 4, but the depth
measurements nonetheless correctly show the flat surface of
the wall.

In Eq. (3) Ā(u, v) = A(u,v)∑
u′,v′ A(u′,v′) denotes the nor-

malized amplitude at pixel location (u, v). The normalized
reference amplitude Ār(u, v) = Ar(u,v)∑

u′,v′ Ar(u′,v′) , is the ra-

dial amplitude pattern seen whenever the sensor is look-
ing at a flat surface perpendicular to the viewing angle,
Fig. 4. This pattern is almost independent of overall dis-
tance to the wall and thus serves as our baseline. Given this,
r(u, v) = Ā(u,v)

Ār(u,v)
is the ratio of normalized amplitudes at

pixel location (u, v). This way, we can implicitly model sur-
face orientation and reflectance dependencies as they relate
to measurable variations in normalized amplitude ratios.

Figure 4. Normalized intensity amplitude Ar(u, v) plotted as
height field (left). Corresponding amplitude image recorded by
the sensor (right).

The exponential formulation in Eq. (3) was found by
recording gray cards of 10%, 50% and 90% reflectance un-
der inclination angles ranging from 10◦ to 70◦ in 10◦ in-
crements. K = −4.6428 and b = 18.8410 are typical co-
efficients obtained by fitting the above exponential to our
Swissranger data. Fig. 5(b) shows that the error was ex-
plained by Eq. (3). In practice, the amplitude ratio effect
only plays a role for samples with r ≤ 0.3, which are only
very few samples with an extremely dim signal return, e.g.
at points seen under grazing angles. This threshold thus en-
ables us to filter out unreliable samples. If this is done, we
can in practice simplify Eq. (3) and approximate ds(u, v)
by d′s(u, v).

5. System Calibration

Based on the insights on systematic depth errors, we can
derive a practical calibration procedure that aligns all depth
maps in 3D without discontinuities and that calibrates the
video cameras into the same world frame. Our method does
not require special calibration objects for the depth cam-
eras and works with the same checkerboard pattern used for
video camera calibration.

The calibration procedure comprises of three stages.
First, the intrinsic parameters of each video camera are
computed using a checkerboard and the MATLAB cali-
bration toolbox. The intrinsics of each depth camera d ∈
1, . . . , Nd are found as well by analyzing amplitude images
of the checkerboard. Secondly, the extrinsics of both depth
and video cameras are found by placing the checkerboard
in the center of the scene and computing rotation and trans-
lation matrices with respect to a common world frame.

The third step is the estimation and compensation of each
depth camera’s systematic measurement error, Sect. 4.2,
which is performed as follows: To obtain ground truth mea-
surements, the checkerboard is placed at k = 25 − 35 dif-
ferent locations in the viewing frustum of a Swissranger.
At each position k, 50 frames of the static checkerboard
are recorded. It is important that over the whole set of
measurements the checkerboard positions cover the depth
range of the camera. Moreover, the checkerboard corners
should reproject to as many different sensor pixel locations
as possible. At each position k, an extrinsic calibration
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Figure 5. (a) Error in distance along ray in dependence of ground truth distance only: the data is approximated by a 6-degree polynomial
(red). (b) Full model of distance bias: a 10%, 50%, and 90% reflective grey cards were (at a constant distance) recorded under different
inclinations (10◦ - 70◦); the plot shows the ratio of normalized amplitude against systematic distance error; the red curve is the exponential
factor in Eq. (3).

is performed yielding k · NB ground truth 3D positions
G = {gi|gi = (x, y, z)i, i ∈ 1, . . . , k · NB} in the Swis-
sranger’s eye space. Here, NB denotes the number of cor-
ners in the checkerboard. Following the terminology from
Sect. 4.2, we refer to these data as the measurements in
space I.

Corresponding space II measurements Z = {zi|zi =
(x, y, z)i, i = 1, . . . , k · NB} of the same data are obtained
by averaging the set of 50 measurements taken at each k. By
averaging all 50 depth measurements at each k, space II 3D
measurements Z = {zi|zi = (x, y, z)i, i = 1, . . . , k · NB}
of the same data set are obtained in which the influence of
random noise is minimized.

The goal of depth calibration now is the computation of
a warping function W that maps the elements of Z onto the
elements of G, gi = W(zi). Following the analysis of the
systematic bias in Sect. 4, we propose that W should be of
the form (see also Fig. 3):

gi = W(zi) = B ◦ D ◦ R(zi) (4)

In the following, we take a closer look at each component
of W .

Rigid Compensation R(zi) applies a rigid body trans-
formation that aligns Z and G. Since correspondences are
given, the optimal rigid body transformation can be esti-
mated from the data in closed form using the method of
Horn [4].

Directional Compensation The second component, D,
corrects directional misalignments between the viewing
rays from the camera to the 3D points G and Z. To esti-
mate D from the data, we compute for each pair of gi ∈ G
and zi ∈ Z the corresponding pair of viewing ray direc-
tions from the coordinate origin, δ(gi) and δ(zi). For each
pair δ(gi) and δ(zi), we can derive polar angular correc-
tions Ω(ui, vi) and Φ(ui, vi) to bring δ(zi) into alignment

Figure 6. Impact of bias correction: (left) three synchronously
recorded depth maps of a person that do not line up if only ex-
trinsics are computed and no systematic bias is corrected. (right)
correctly aligned depth maps after extrinsic calibration and bias
correction (OpenGL rendering of each depth map as triangle mesh:
triangles at occlusion boundaries were only partly filtered and are
still visible in the green map captured from a lateral viewpoint).

with δ(gi), (ui, vi) being the reprojected pixel locations of
points i. Unfortunately, in practice only for a subset of
pixels (u, v) will there be corresponding 3D points in G
and Z, and thus the angular correction fields Ω(ui, vi) and
Φ(ui, vi) are not fully defined. In order to obtain a direc-
tional compensation estimate for the rays through al pixels,
we therefore interpolate the per-ray estimates Ω(ui, vi) and
Φ(ui, vi) across the entire image plane to yield dense angu-
lar correction fields Ω(u, v) and Φ(u, v).

Correction of Distance Along Ray After rigid and direc-
tional alignment, the measurement ray directions of space I
and space II closely match. However, due to the systematic
measurement bias along the ray (Sect. 4.2), the lengths of
the rays may not correspond. To compensate this we ap-
ply a transform B which adds to each ray distance a depth
offset, τ(dm(u, v)). As shown in Fig. 5(a), we can approx-



Figure 7. Sequence recorded with 2 depth and 3 video cameras: (left) color-coded depth maps aligned in common world space; camera
arrangement shown in foreground (data were median filtered,depth shadow of person seen on distant geometry) - (middle) same time step
now showing entire geometry projectively textured from all video camera views (triangles at depth boundaries removed) - (right) one video
input frame for comparison.

imate τ(dm(u, v)) by a 6-degree polynomial which yields
a faithful yet easy-to-compute model for correcting system-
atic depth inaccuracies.

Given the above generative compensation model we can
correct the measured depth data from all Swissrangers and
align them in world space using the extrinsic parameters
obtained via traditional optical calibration (space I), Fig. 1
and Fig. 7.

6. Results and Discussion

We have applied our multi-view calibration procedure to
different setups of 2-3 depth cameras and 3-5 video cam-
eras. In both the 2-depth camera, Fig. 7, and 3-depth cam-
era case, Fig. 1, the dynamic depth maps nicely align and
the frames from the calibrated video cameras can simulta-
neously be back-projected onto the 3D geometry. Fig. 8
shows an overhead rendering of the reconstructed scene
with 2 depth sensors. From this perspective one can see that
both the geometry on the back wall and the geometry of the
person in the foreground align well. For visualization, we
slightly filter the depth maps to minimize random noise im-
pact. For rendering, we employ OpenGL and display each
depth map as individual triangle mesh after filtering elon-
gated triangles at occlusion boundaries. The inter-twisted

min max mean stddv
Raw 0.0031 0.0977 0.0494 0.0202
Rigid 0.00033 0.1249 0.0353 0.0176

Rigid + dir 0.00048 0.1247 0.0314 0.0191
full 4.8422e-04 0.0647 0.0136 0.0088

Table 1. Depth measurement accuracy (3D Euclidean dis-
tance in m) before compensation, after rigid alignment, af-
ter rigid+directional alignment, and after the full compensation
pipeline. In total, around 2500 corresponding points in space I
and space II were analyzed. The first two columns show the mini-
mal and maximal error observed in the whole data set. Columns 3
and 4 show the error mean and standard deviation after each step
which illustrates the significant improvement in accuracy achieved
with our approach.

color pattern in overlapping depth maps which is visible
in Fig. 1 and Fig. 7(a) is due to random noise in the data.
Therefore, this pattern should not be mistaken for a sign of
incorrect alignment.

As shown in Fig. 6 our proposed TOF bias compensation
is an essential step without which 3D depth maps would
never properly align in 3D. In this figure, we set the back
clipping planes such that the background of the room is dis-
carded during rendering.

We also performed a quantitative evaluation of the re-
duction of 3D Euclidean error relative to the ground truth
measurements. Tab. 1 illustrates the high impact of our
method for one depth camera by showing the mean er-
ror reduction, minimal and maximal errors, as well as er-
ror standard deviations after each step in the bias correc-
tion procedure. For this data set, roughly 2500 ground
truth points were measured. Overall, a reduction from
over 6 cm average error to around 1 cm average error is
achieved which is the typical range observed for all depth

Figure 8. Aligned depth maps captured with two depth cameras
shown from an overhead view. The maps of the walls in the back-
ground and the person in the foreground are well aligned (the
isolated geometry in-between stems from boxes standing in the
scene’s background).
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Figure 9. Visual illustration of the 3D error between space II mea-
surements (red spheres) and space I ground truth (blue spheres).
The arrows illustrate the size of the Euclidean error and the direc-
tion of the offset. (a) shows the significant misalignment between
ground truth checkerboard data and sensor output without system-
atic bias correction. (b) shows the strongly reduced error after our
compensation method has been applied.

cameras. Please note that ground truth data are always cap-
tured with all sensors switched on. Fig. 9 also shows vi-
sually the achieved error reduction relative to ground truth
data captured at one checkerboard position. While the ar-
rows in Fig. 9(a) show that the unprocessed measurements
of the Swissranger strongly deviate from ground truth, after
full correction the 3D error has been significantly reduced,
Fig. 9(b).

We would like to note that currently, our calibration is
only valid for one fix set of recording conditions. Since
we are working under fixed indoor conditions and focus on
scenes of similar speed, we have not extensively examined
dependencies on different sensor integration times, sensor
temperature or changing external lighting conditions.

Furthermore, the core of this paper is not the algorithmic
solution of the multi-view sensor fusion problem, i.e. the
development of algorithms to improve the quality of depth
maps at individual time steps after alignment and bias cor-
rection. The investigation of this problem is planned as part
of future work. Therefore, currently all renderings shown
are from largely unprocessed data coming out of the sen-
sors. We only performed simple median and small kernel
Gaussian filtering to remove the most severe random noise
peaks and better visualize the bias compensation effect. In
the future, we plan to further refine our model of random
noise and its dependencies which will play a more impor-
tant role during multi-view fusion and quality improvement
of individual frames.

7. Conclusion

We have presented the design of a multi-view time-of-
flight sensor fusion recording system. Detailed analysis of
depth measurement inaccuracies enabled us to compensate
systematic TOF measurement errors and calibrate all depth
and video data into a common frame. Our calibration proce-

dure for depth cameras is highly practical and easily ties in
with standard optical camera calibration procedures. Start-
ing from the now aligned data, we will in future investigate
new ways for improved dynamic shape and texture recon-
struction of arbitrary dynamic scenes.
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