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Abstract

Passive optical motion capture is able to provide authentically animated,
photo-realistically and view-dependently textured models of real people. To
import real-world characters into virtual environments, however, also surface
reflectance properties must be known. We describe a video-based modeling
approach that captures human motion as well as reflectance characteristics
from a handful of synchronized video recordings. The presented method is
able to recover spatially varying reflectance properties of clothes by exploiting
the time-varying orientation of each surface point with respect to camera and
light direction. The resulting model description enables us to match animated
subject appearance to different lighting conditions, as well as to interchange
surface attributes among different people, e.g. for virtual dressing. Our
contribution allows creating realistic 3D renditions of real-world people under
arbitrary novel lighting conditions on standard graphics hardware.
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Seeing People in Different Light:
Joint Motion and Reflectance Capture

Abstract
Passive optical motion capture is able to provide authentically animated, photo-realistically and view-dependently
textured models of real people. To import real-world characters into virtual environments, however, also surface
reflectance properties must be known. We describe a video-based modeling approach that captures human motion
as well as reflectance characteristics from a handful of synchronized video recordings. The presented method is
able to recover spatially varying reflectance properties of clothes by exploiting the time-varying orientation of
each surface point with respect to camera and light direction. The resulting model description enables us to match
animated subject appearance to different lighting conditions, as well as to interchange surface attributes among
different people, e.g. for virtual dressing. Our contribution allows creating realistic 3D renditions of real-world
people under arbitrary novel lighting conditions on standard graphics hardware.

Categories and Subject Descriptors (according to ACM CCS): I.4.1 [Image Processing and Computer Vision]: Dig-
itization and Image Capture, I.4.8 [Image Processing and Computer Vision]: Scene Analysis, I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism

1. Introduction

Rendering realistic images in real-time is solved, or at least
that may be the impression after having sampled the lat-
est generation of computer games. Higher and higher hard-
ware polygon throughput, steadily increasing fill-rates, more
and more programming flexibility in the rendering pipeline,
and state-of-the-art rendering algorithms enable creating im-
ages of unprecedented realism at interactive frame rates. To
convert ongoing advances in graphics hardware and soft-
ware into attainable visual realism, however, ever more de-
tailed and accurate scene descriptions must be available. The
price to pay can be measured in working hours spent to cre-
ate detailed geometry meshes, complex textures, convincing
shaders, and authentic animations: Apparently, scene mod-
eling is becoming a limiting factor in realistic rendering.

One alternative to avoid excessive modeling times con-
sists of capturing suitable models directly from “the real
thing”. Image- and video-based rendering (IBR/VBR) ap-
proaches pursue this notion, aiming at automatically gener-
ating visually authentic computer models from real world-
recorded objects and events [KRN97]. In recent years, a
number of IBR/VBR researchers have demonstrated how
to successfully recover approximate geometry [MBM01],
animation sequences [CTMS03], and view-dependent tex-

tures [DTM96] from multi-image or multi-video data. These
(and many more) techniques show how to interactively ren-
der photo-realistic views from real world-captured, dynamic
scenes [MP04, ZKU∗04].

While the ability to realistically display dynamic events
from novel viewpoints has already a number of intriguing
applications, the next step is to use such real world-captured
objects for augmenting virtual scenes. To import a real-
world object into surroundings different from the recording
environment, however, its appearance must be adapted to the
new illumination situation. To do so, the bi-directional re-
flectance distribution function (BRDF) must be known for
all object surface points. Data-driven [DHT∗00, MPBM03]
as well as model-based [Mar98, LKG∗03] methods have
been proposed to recover and represent the BRDF of real-
world materials. Unfortunately, these methods cannot be di-
rectly applied to dynamic objects exhibiting time-varying
surface geometry and constantly changing local illumina-
tion.

We present a joint motion capture and BRDF recon-
struction approach to acquire animation parameters and sur-
face reflectance properties of people. As input to our algo-
rithm we require only a handful of calibrated and synchro-
nized video recordings. The algorithm automatically returns



subject-adapted 3D geometry, animation parameters, diffuse
texture, per-texel BRDF model parameter values, as well
as time-varying surface normals. PC graphics hardware-
assisted rendering then allows us to photo-realistically vi-
sualize recorded people at interactive frame rates in chang-
ing lighting conditions and from arbitrary perspective. We
present results for several subjects wearing different clothes
made of non-lambertian fabrics.

The following Section highlights related work on free-
viewpoint video and BRDF estimation. An overview of our
approach is provided in Sect. 3. Input data acquisition issues
are considered in Sect. 4, before model-based motion cap-
ture and multi-view texture generation is outlined in Sect. 5.
The heart of the paper is presented in Sect. 6, where we
describe in detail our BRDF estimation and time-varying
normal map reconstruction algorithm. The employed real-
time rendering technique on off-the-shelf graphics hardware
is detailed in Sect. 7. Results for different people wearing
different apparel follow in Sect. 8, before we conclude with
Sect. 9.

2. Related Work

In our research we pick up and extend ideas that have been
published in the fields of marker-less human motion cap-
ture, image-based reflectance estimation and free-viewpoint
video. As the nuts and bolts of motion estimation are not
the focus of this work, for the sake of brevity, we refer the
interested reader to overview articles on human motion esti-
mation [MG01]. In the following, we review relevant work
from the other two fields.

2.1. Free-Viewpoint Video

Research in free-viewpoint video aims at developing meth-
ods for photo-realistic, real-time rendering of previously
captured real-world scenes. The goal is to give the user
the freedom to interactively navigate his or her view-
point freely through the rendered scene. Early research
that paved the trail for free-viewpoint video was presented
in the field of image-based rendering (IBR). Shape-from-
silhouette methods reconstruct geometry models of a scene
from multi-view silhouette images or video streams. Ex-
amples are image-based [MBR∗00, WLSG02] or polyhe-
dral visual hull [MT02] methods, as well as approaches per-
forming voxel-based [MTG97] or point-based [GWN∗03]
reconstruction. The combination of stereo reconstruction
with visual hull rendering leads to a more faithful recon-
struction of surface concavities [LSMS02]. Stereo methods
have also been applied to reconstruct and render dynamic
scenes [ZKU∗04,KRN97]. Alternatively, a complete param-
eterized geometry model can be used to pursue a model-
based approach towards free-viewpoint video [CTMS03].
On the other hand, light field rendering [LH96] is employed
in the 3D TV system [MP04] to enable simultaneous scene
acquisition and rendering in real-time.

IBR methods can visualize a recorded scene only for the
same illumination conditions that it was captured in. For cor-
rect relighting, it is inevitable to recover complete surface
reflectance characteristics.

2.2. Image-based Reflectance Estimation

The estimation of reflection properties from still images
has been addressed in many different ways. Typically, a
single point light source is used to illuminate an object
of known 3D geometry. One common approach is to take
HDR images of a curved object, yielding a different in-
cident and outgoing directions per pixel and thus captur-
ing a vast number of reflectance samples in parallel. Quite
often the parameters of an analytic BRDF model are fit
to the measured data [SWI97, LKG∗03] or a data-driven
model [MPBM03] is used. Reflectance measurements of
scenes with more complex incident illumination can be de-
rived by either a full-blown inverse global illumination ap-
proach [YDMH99,GHH01,BG01] or by representing the in-
cident light field as an environment map and solving for the
direct illumination component only [YM98, RH01, NSI01].
In our approach we will approximate the incident illumi-
nation by multiple point light sources and estimate BRDF
model parameters taking only direct illumination into ac-
count.

Reflection properties together with measured photomet-
ric data can also be used to derive geometric information
of the original object [ZTCS99]. Rushmeier et al. estimate
diffuse albedo and normal map from photographs with var-
ied incident light directions [RTG97,BMR01]. A linear light
source is employed by Gardner et al. [GTHD03] to estimate
BRDF properties and surface normal. In [Geo03, GCHS04],
reflectance and shape of static scenes are simultaneously re-
fined using a single light source in each photograph.

Instead of explicitly reconstructing a mathematical re-
flectance model it has also been tried to take an image-based
approach to relighting. In [HWT∗04] a method to generate
animatable and relightable face models from images taken
with a special light stage is described. Using deformable ge-
ometry, the face is rendered under novel illumination by re-
constructing from a large database of images that show the
face under different incident illumination directions, differ-
ent viewing directions and with different expressions. For
our 3D video scenario, we prefer a more compact scene
description based on parametric BRDFs that can be recon-
structed in a fairly simple acquisition facility.

Carceroni and Kutulakos present a volumetric method for
simultaneous motion and reflectance capture for non-rigid
objects [CK01]. In contrast to their work, we propose a
model-based approach that captures shape, motion param-
eters and reflectance of the whole human body at high accu-
racy.



Figure 1: Algorithmic workflow of our method.

3. Overview

Fig. 1 illustrates the workflow between the components that
make up our joint motion and reflectance capture approach.
The input to our system consists of multi-view video se-
quences that are recorded using eight synchronized color
video cameras (Sect. 4). The reflectance estimation sequence
(RES) is used to estimate surface reflectance properties. Ar-
bitrary human motion is captured in the dynamic scene se-
quences (DSS), and these sequences are later visualized and
relit. In both types of sequences, the person wears identical
clothes. The respective data paths for both input sequences
are shown in Fig. 1. A generic body model is adapted to
match the shape and proportions of the recorded person.
Subsequently, human pose parameters are computed for all
time frames by means of a silhouette-based marker-free mo-
tion capture approach (Sect. 5.1). To store all per-surface el-
ement data needed during reflectance estimation in texture
space, we make use of a texture atlas as surface parame-
terization of the body model. Multi-view video (MVV) tex-
tures are generated by transforming each input video image
into the texture domain (Sect. 5.2). To correct for photo-
inconsistencies due to inexact body geometry, the input im-
ages can be warp-corrected prior to MVV texture generation
(Sect. 5.3). From the RES video data, BRDF model param-
eter values are estimated for each surface element (texel)
of the geometry model individually (Sect. 6.1). The recov-
ered local reflectance properties then allow us to estimate
the time-varying surface normal field in the DSS sequences
(Sect. 6.2). The moving body model, its spatially-varying
reflectance, and the time-varying normal field enable us to
interactively render and instantaneously relight the DSS se-
quences from arbitrary viewpoint and illumination direction.
(Sect. 7 and Sect. 8). Contributions of our paper are:

• An algorithm to warp-correct input video images in order
to guarantee multi-view photo-consistency in conjunction
with inexact object geometry,

• dynamic reflectometry, i.e., per-texel, per-time step BRDF
parameter estimation from multi-view video footage,

• reconstruction of time-varying normal maps to capture
small, variable detail of surface geometry (e.g., wrinkles
in clothing), and

• the integration of the recording facilities, the motion cap-
ture method, the reflectance estimation aproach and the
renderer into one working system.

4. Acquisition

As input to our system, we record multi-view video (MVV)
sequences. A multi-view recording setup enables us to cap-
ture an area of approx. 4×4×3 m with eight externally syn-
chronized video cameras. The cameras are placed in a semi-
circular arrangement around the center of the stage. Since
we estimate both motion and reflectance properties, we have
strict requirements concerning the spatial, temporal, and
color resolution of our imaging devices. Only recently, suit-
able production-line video cameras have become available
that meet our requirements. We employ ImperxTMMDC-
1004 cameras that feature a 1004x1004 CCD sensor with lin-
ear 12 bits-per-pixel resolution. The CCD features a Bayer
mosaic to record red, green, and blue channel information.
With two on-board processors, the cameras deliver 48 fps at
full resolution. Compromising between high speed motion
capture and data volume, the sequences used throughout the
paper are recorded at 25 fps. The video data is captured in
parallel by eight frame grabber cards to be streamed in real-
time to a RAID system consisting of eight hard drives. The
cameras are calibrated, and radial and tangential lens dis-
tortions are corrected up to second order. Color-consistency
across cameras is ensured by applying a color-space trans-
formation to each camera stream. This transformation has
been derived from recordings of a reference color pattern.

The lighting conditions in our studio are fully control-
lable. No exterior light can enter the recording area, and
the influence of indirect illumination is minimized by cov-
ering up all the walls and the studio floor with black cloth
and carpet. Two different lighting setups are used. Light-
ing setup 1 (LS1) illuminates the scene with only one
K5600TMJokerbug 400 spot light. In lighting setup 2 (LS2),
additional light sources on the ceiling are used in order to
illuminate the set more evenly. In our simulations we ap-
proximate the contribution of the single spot light with one
point light source and the illumination from the ceiling light
with two additional point light sources, Fig.2. Light source



Figure 2: Illustration of camera arrangement (red), lighting
setup 1 (white) and lighting setup 2 (white+yellow).

positions, intensities and color response of the cameras are
calibrated off-line.

We successively record three MVV sequences for each
person and each type of apparel. A short sequence of the
scene background recorded with illumination setup LS2 later
facilitates color-based background subtraction of the mo-
tion sequences. The second sequence, referred to as the re-
flectance estimation sequence (RES), serves as input to the
BRDF estimation algorithm. While BRDF parameter value
estimation works best if the scene is illuminated by only one
light source (LS1), robust motion capture is practically im-
possible if large parts of the subject are in shadow. To re-
solve the conflict, the RES is acquired in single-shot mode.
The person strikes an initialization pose and turns between
shots by approximately 5◦ until having completed a full
360◦-circle. At each orientation step, a set of eight images
is captured for lighting setup 1, and a second set of images
is recorded for setup 2. The first set is used for BRDF esti-
mation, the second set for recovering body pose. Prior to re-
flectance estimation we fit our geometry model to each body
pose in the RES (Sect. 5.1). For each point on the model’s
surface, the RES contains as many different appearance sam-
ples as there are images depicting the repective point. Over
time, the surface element normal points in various directions,
and we obtain a large number of reflection samples for our
large-scale moving object. While surface normal orientation
varies freely, our static camera and lighting setup allows for
only a limited number of half vector directions~h = l̂ · v̂ j/2,
i.e., angular separations between spot light l̂ and camera di-
rections v̂ j . By placing the cameras non-symmetrically with
respect to the spot light, we gather samples for up to eight
different light-to-camera angles, which we found sufficient
to robustly fit our isotropic BRDF models (Sect. 6).

Finally, the dynamic scene sequences (DSS) capture the
motion sequences from which the actual relightable 3D
videos are generated. The scene is now illuminated using
lighting setup 2. From the DSS we also reconstruct a time-
varying surface normal field (Sect. 6.2).

5. Motion Capture and Texture Generation

We use a model-based approach to represent the time-
varying geometry in a 3D video. To estimate the geome-
try model and merge the video data from multiple view-
points we perform model-based motion capture, precompute
a static texture parameterization, and resample and align the
input streams using a novel warp-correction technique.

5.1. Model-based Motion Capture

To simultaneously recover dynamic 3D surface geometry as
well as animation parameters, we make use of the model-
based, passive optical motion capture approach proposed
in [CTMS03]. The method relies on a parameterized generic
body model that is adapted to the proportions and pose of the
recorded individual. The model consists of sixteen individ-
ual body segments. The surface of each segment is modeled
as a closed triangle mesh. Each segment can be uniformly
scaled and its surface geometry deformed. The segments are
connected by 17 joints which define the hierarchical skeleton
structure. 35 translation and joint rotation parameters then
specify any body pose.

To match the rendered model to all video image silhou-
ettes at one time step, model parameters are automatically
adapted by a non-linear optimization scheme. As error mea-
sure, the overlap between rendered model and image silhou-
ettes is evaluated by employing the pixel-wise XOR oper-
ation on graphics hardware and summing up the resulting
set pixels. The same criterion is employed to customize the
model such that it matches its real world counterpart in shape
and proportions.

5.2. Texture Parameterization

As surface parameterization, each body segment is param-
eterized separately over a planar rectangular domain using
patches of minimal distortion. The sixteen planar patch lay-
outs are finally assembled into one texture atlas for the com-
plete model. This way, we obtain a pose-independent bi-
jective 3D-to-2D mapping between a surface element and
a texel in the texture domain. All data related to surface ele-
ments (normals, light vectors, visibility etc.) can now be con-
veniently stored as textures. Throughout our experiments,
we use 1024x1024-texel texture maps.

The graphics hardware is used to transform each video
camera image into the texture domain. For each video time
step, eight so-called multi-view video textures (MVV tex-
tures) are created.

5.3. Warp Correction

Although the body model initialization procedure yields a
faithful representation of the person’s true geometry, small



Figure 3: MVV texture generation for camera 0: The color information for each surface point on the body model is not looked
up in the original input video frame recorded from camera 0. Instead the texel color is taken from an image that has been
obtained by reprojecting the model that has been textured with camera image 0 into the camera view that sees the surface point
most head-on.

inaccuracies between the real human and its digital counter-
part are inevitable. Due to these geometry inaccuracies, pix-
els from different input views may get mapped to the same
texel position in different MVV textures, even though they
do not correspond to the same surface element of the true
body geometry.

One common strategy to enhance model-to-texture con-
sistency is to deform the geometry until an overall photo-
consistency measure is maximized. Geometry deformation-
based optimization, however, tends to give unstable results,
e.g., due to sudden visibility changes. We take an alternative
approach. Instead of moving surface elements to their cor-
rect locations in 3D, we move the image pixels within the 2D
input image planes until they all become photo-consistent
given the available geometry. The following example illus-
trates our modified MVV texture generation scheme, Fig.3:

Let’s assume we want to assemble an MVV texture from
the video image Iy(t) seen by camera Y at time t. For texel K
in the MVV texture, we find out which camera sees it best by
searching for the minimal deviation between camera view-
ing vectors and the surface element normal. If the camera
that sees the surface point best is Y , the texel color is taken
from IY (t). In case camera X 6= Y sees the point best and it
is not occluded, we regard the video image Ix(t) as the refer-
ence image. The model at time t is projectively textured with
IY (t) and rendered into camera view X . The image of the re-
projected textured model is warped such that it is optimally
aligned with the reference image. The color of K is taken
from the warped image. This way, all texel color values stem
from the same physical camera image. The texel color, how-
ever, is always taken from a version of that camera image
that has been brought into optimal registration with the cam-
era view that sees the corresponding surface element most
head-on.

Warped images are precomputed for all possible combi-
nations of X and Y . In our case this corresponds to 56 warp-
ing computations for each time step (Fig. 3). To establish

per-pixel correspondences, the warping operation itself is
based on the optical flow [LK81] between the reference im-
age and the image of the reprojected textured model, Fig.4.
A regular 2D triangle mesh is superimposed on the repro-
jected model image, and per-vertex displacements are de-
rived from the optical flow values in the immediate neighbor-
hood of each vertex. The triangle mesh is deformed to adapt
to these displacements by means of a thin-plate spline in-
terpolation [Far99]. The new mesh configuration minimizes
the thin-plate bending energy in a least-squares sense. Fi-
nally, the warped image is created on the GPU by rendering
the textured deformed mesh into a floating point buffer.

The warping-based MVV texture assembly is an optional
step that is activated if geometry inaccuracies are apparent.
Optical flow is based on the assumption that all surfaces
in the scene are diffuse. For reflectance estimation, though,
we deliberately generate specular highlights in the images.
Our experiments show that the method nonetheless produces
good results since for the majority of garments the diffuse
reflectance is predominant.

6. Dynamic Reflectometry

Our reflectance estimation approach consists of two steps.
In the first step we determine BRDF parameter values per
pixel from the reflectance estimation sequence. An iterative
estimation process enables us to handle geometry inconsis-
tencies between the real object and the much smoother hu-
man body model. In the second step we compute even time-
varying normal maps per frame to capture surface detail such
as wrinkles in clothing whose shape and extend depend on
the current pose of the person. The underlying technique
is similar to [LKG∗03] which we have extended in order
to cope with multiple light sources, time-varying data, and
inter-frame consistency.



6.1. BRDF Estimation

We estimate a set of spatially-varying BRDFs for each per-
son and each outfit from the respective reflectance estimation
sequence (RES) explained in Sect. 4. The pose parameters
for the RES have been determined beforehand. The goal is
to estimate a separate parametric reflectance model for each
surface element that is able to faithfully reproduce the ap-
pearance in each camera view and at each time step of the
multi-video sequence. For each surface element, the BRDF
representation consists of an individual diffuse color compo-
nent that is specific to the surface point, and a set of specu-
lar parameters that are shared by all surface points belong-
ing to the same material. Our framework is flexible enough
to incorporate any parametric reflectance model. However,
in the majority of our experiments we employ the para-
metric BRDF model proposed by Phong [Pho75]. We have
also tested our method with the model proposed by Lafor-
tune [LFTG97], using two specular lobes.

In general, our estimation of BRDF parameters and later
the estimation of the time-varying normals is based on mini-
mizing for each surface point~x the error E(~x,ρ(~x)) between
the current model ρ(~x) and the measurements for this point
from all cameras c at all time steps t:

E(~x,ρ(~x)) =

N

∑
t

8

∑
c

κc(t)
(

Sc(t)− [
J

∑
j

λ j(t)( fr(l̂(t), v̂c(t),ρ(~x)) (1)

· I j(n̂(t) · l̂(t)))]
)2

,

The term is evaluated separately in the red, green and blue
color channel. Sc(t) denotes the measured color samples at

Figure 4: Warp-correction via texture re-projection to
achieve photo-consistency among all camera images. The
inlay shows optical flow and warped mesh for the marked
face region.

~x from camera c, and I j denotes the intensity of light source
j. For BRDF estimation the number of light sources equals
one (lighting setup 1). More light sources are used when
the same energy functional is employed during time-varying
normal estimation (Sect. 6.2). The viewing directions v̂c(t)
and light source directions l̂ j(t) are expressed in the point’s
local coordinate frame based on the surface normal n̂(t). Vis-
ibility of the surface point with respect to each camera is
given by κc(t) and with respect to the light sources by λ j ,
both being either 0 or 1. fr finally evaluates the BRDF. All
information that is relevant for one texel thus can be grouped
into an implicit data structure we called dynamic texel or
dyxel:

Dyx(~x, t) =[S1(t), . . . ,S8(t), v̂1(t), . . . , v̂8(t),

n̂(t), l̂(t),κ1(t), . . . ,κ8(t),λ1(t), . . . ,λJ(t)].

Using a non-linear optimization this formula in principle
could be used to determine a full BRDF and the surface nor-
mal at the same time. However, we applied an iterative ap-
proach and carefully designed the reflectance estimation se-
quence to obtain a much more stable optimization. For ex-
ample we use only a single light source during the RES. The
subsequent steps of our iterative BRDF estimation scheme
are material clustering, first BRDF estimation, normal esti-
mation and refined BRDF estimation as depicted in Fig. 5.

Instead of determining the specular part of the BRDF per
pixel we assume that there is only very little variation of the
specular part within the same material, e.g. skin, hair or the
different fabrics. By combining the measurements of multi-
ple surface points exhibiting the same material we increase
the number of samples and more importantly the variation
in viewing and lighting directions in order to obtain a more
faithful specular estimate. The clustering step determines to
what material a surface element, i.e., each texel in the tex-
ture atlas, belongs. The number of materials is determined a
priori. We employ a straightforward color-based clustering
approach that considers the raw texel color values. The clus-
tering output is a material texture map in which each texel is
assigned a material label, Fig. 5.

During the first BRDF estimation, an optimal set of per-
texel BRDF parameters is determined while the normals are
taken from the default geometry. The estimation itself con-
sists of a non-linear minimization of Eq. 1 in the BRDF pa-
rameters. For optimization, we make use of a Levenberg-
Marquardt minimization scheme [PTVF02] in the same
manner as [LKG∗03]. Firtst, we find an optimal set of pa-
rameter values for each material cluster of texels. To quan-
tify the estimation error per material cluster, we sum the
error term in Eq.1 for all surface elements that belong to
the cluster. Given the average BRDF for each material, we
can render the model by applying only average specular
reflectances. By subtracting this specular component from
each sample, we generate new dyxels that contain purely
diffuse reflectance samples. Using these purely diffuse sam-



Figure 5: Subsequent steps to derive per-texel BRDF.

ples, an individual diffuse component is estimated for each
surface element (texel) by minimizing Eq.1 over the diffuse
color parameter. The output of the first BRDF estimation is
then a set of spatially-varying BRDF parameters ρ f irst .

The default normals of the human body model cannot rep-
resent subtle details in surface geometry, such as wrinkles in
clothing. In a normal estimation step, we make use of the
first set of estimated BRDF parameters ρ f irst in order to re-
construct a refined normal field via photometric stereo. In
order to make this reconstruction tractable, we implicitly as-
sume that the local normal directions do not change while
the person is rotating in place. We found that normal estima-
tion robustness is improved if the error function (Eq. 1) is
extended into

Enormal(~x,ρ(~x)) = αE(~x,ρ(~x))+β∆(n̂)γ . (2)

The additional term ∆(n̂) penalizes angular deviation from
the default normal of the body model. The terms α and β are
weighting factors summing to one, the exponent γ controls
the penalty impact. Appropriate values are found through ex-
periments. Normal estimation robustness is further improved
if only those color samples in a dyxel are used that come
from the two best camera views. For each texel, the mod-
ified error function is now minimized by varying the local
normal direction n̂.

The refined normal field is used for a second BRDF esti-
mation. The same computations as for the first BRDF esti-
mation, ρ f irst , are performed, but now with the more accu-
rate normal field. By this means, we obtain the final set of
per-texel BRDF parameters ρ f inal .

The results are stored in parameter texture maps. For the
Phong model, we obtain one texture map containing the per-
texel diffuse component, and two texture maps that store the
per-material specular colors and exponents. In case of the
Lafortune model, the number of specular parameter maps
depends on the number of specular lobes.

6.2. Time-varying Normal Map Estimation

The BRDF reconstructed in the previous step enables us to
relight any dynamic scene in which the person wears the
same apparel as in the respective RES. To generate a visu-
ally compelling rendition, however, we found that we need
not only accurate reflectance, but also a representation of

the small surface geometry details that appear and disappear
while a person is moving. We are able to capture these ge-
ometry details by estimating a time-varying surface normal
field for each DSS via photometric stereo.

Motion parameters for the DSS are found by means of
our silhouette-based tracking approach (Sect. 5). The video
frames show the scene illuminated by lighting setup 2. Dur-
ing the estimation, we approximate the incident illumination
with three point light sources,

The Time-varying normal direction is estimated for each
surface point individually. We assume that the transverse
motion of the cloth on the body is negligible, and, in con-
sequence, that over time an MVV texel always corresponds
to the exact same cloth surface point. The estimation pro-
cedure is a non-linear minimization of the regularized en-
ergy function, Eq. 2, in the normal direction. During opti-
mization, the BRDF parameters for each surface element are
taken from the parameter textures estimated from the corre-
sponding RES.

In order to robustly perform photometric stereo and to
minimize the influence of measurement noise, a sufficient
number of samples has to be collected for each surface point.
To serve this purpose, we assume that changes in local nor-
mal direction within a short window in time can be ne-
glected. This way, all samples for a surface point that are
taken from a chunk of subsequent time steps in the input
footage can be applied to infer a single normal direction.
The input sequence of length N is therefore split into C sub-
sequent chunks of odd length d, the last chunk being allowed
a different length. Typically, the chunk size is d = 5 time
steps. For every point ~x on the body surface we fit an op-
timal normal n̂ to each chunk of video individually. After
the time-varying normals have been estimated at this coarse
scale, the normal directions between subsequent chunks are
interpolated via spherical linear interpolation, Fig.6.

This way, a normal field is generated that represents a
compromise between smoothness in the temporal domain
and local normal accuracy. It faithfully models subtle details
in surface structure, and it exhibits no normal discontinuities
at chunk boundaries that would appear as flickering in the
final renditions of the 3D video. The results we obtain with
this approach confirm that it is permissible to assume that
during a sufficiently small time period the local normal di-
rection does not change dramatically. A comparison to the



Figure 6: 2D illustration of robust time-varying normal
map estimation. Top: The sequence subdivided into short
chunks. For each chunk, one best-matching normal is de-
rived per texel which is assigned to the chunk’s center time
step (white). Intermediate time steps are interpolated (Bot-
tom).

video footage shows that we are able to capture even the
subtle wrinkles that are due to limb bending, Fig. 10a,b,c.

7. Rendering

The outcome of our approach is a relightable dynamic object
description that consists of the animated geometry and the
material properties.

The geometry is comprised of the 3D body model mesh,
the underlying skeleton and the joints’ motion parameters.

The material properties consist of the time-independent
BRDF textures and the dynamic normal maps. The num-
ber of BRDF data parameters depends on the employed re-
flectance model. In the case of Phong we store a floating
point diffuse component, a specular component, and a spec-
ular exponent for all color channels in each texel. The nor-
mal maps are represented as vectors in the tangent space of
the triangles, where (0,0,1) represents an unaltered triangle
normal (see Fig. 10a ).

For the rendering we extend the human animation sys-
tem in [CTMS03]. After reading the customized human
character model and preparing the static BRDF textures,
real-time rendering can commence. For each time step, we
now read the pose parameters from the stream and apply
the respective rigid transformations to the body model. The
player also loads the fitting normal map. The final outlook
is now determined by the shader programs, which use simi-
lar techniques as in [Fer04] to perform per-fragment lighting
computations with BRDF textures and normal maps. On a
3.0 GHz Pentium 4 and an Nvidia GeForceTM 6800 graph-
ics board, we achieve 25 fps sustained rendering frame rate
at 1024×1024-pixel resolution while illuminating the scene
with three moving light sources.

To better demonstrate relighting effects while articulated
body motion is performed in the scene, we have decided
to illuminate the 3D video with point lights, so that the

viewer can see the light source positions and correspond-
ing shadows on the floor. Since we use high-level Cg
shaders [MGAK03], our system can be switched to different
parametric reflectance models with low effort. We currently
can demonstrate Phong and Lafortune model implementa-
tions. A comparison between renderings with a two-lobe
Lafortune model and the Phong model is shown in Fig. 7.
The results shown in Figs. 8, 9 and 10 have been generated
using Phong reflectance.

Figs.10a show that wrinkles in the apparel are faith-
fully identified and represented in the normal maps. Un-
der varying illumination, the wrinkles are realistically ren-
dered, Figs.10b. Figs.10c show rendered images of the pants
at three consecutive time steps, illustrating the dynamic na-
ture of the normal maps employed by the renderer. Small
rendering artifacts are noticeable that are due to texture re-
sampling.

Figure 7: Top row: person rendered with Phong (left) and
Lafortune (right) model while being illuminated by one light
source. Bottom row: Only specular component rendered for
Phong (left) and Lafortune (right) model under the same
lighting conditions.

8. Results and Discussion

For validation, we have five different sequences of a male
and a female subject available. Each sequence is between
50 and 250 frames long. Unfortunately, ground truth BRDF
data and normal maps are not at our disposal. Thus, we as-
sess the estimation accuracy in both cases by means of vi-
sual comparison to the actual video footage. We found that
our method is capable of nicely reproducing the appearance
of the actor in the video frames.



Our BRDF estimation approach captures surface re-
flectance characteristics of different materials simultane-
ously, as seen in the renderings of Figs.10d,e. The animated
male and female models are accurately relit for illumination
conditions very different from the recording setup. The ap-
proach reliably discriminates between diffuse and specular
reflectance. The realistically reproduced specular reflection
of the trousers of the male model is shown in the accompa-
nying video.

Once we have estimated the BRDF for one type of cloth-
ing, we can also use the surface appearance description to
change the apparel of a person even for motion sequences
in which the person was originally dressed differently. Fig.8
depicts an example of dynamic reclothing.

The entire estimation process including motion capture
and reflectance estimation takes approximately three min-
utes per time step. Optional input frame warping takes
around 10 seconds for one pair of reference image and repro-
jected image. We assess the multi-view warping quality by
comparing the image differences between reference views
and reprojected model views before and after the warp. Typ-
ically, we achieve an average reduction in absolute image
difference in the range of 6% over a whole sequence. The lo-
cal registration improvements in single image pairs lead to a
global improvement in multi-view texture-to-model consis-
tency. In Fig. 9 the texture registration improvement due to
the warp-correction step is demonstrated. However, in some
rare cases local deteriorations in the final texture can be ob-
served despite an improvement on the global level. The deci-
sion if the warp-correction is applied is thus left to the user.

Our method is subject to a couple of limitations: First, our
method is based on the assumption that interreflections on
the body surface can be neglected. In the RES, interreflec-
tions potentially play a role between the wrinkles in clothing.
To prevent this effect from degrading the estimation accu-
racy, we have taken care to minimze the number of wrinkles
in the RES.

Another limitation of our approach is that visual quality
deteriorates if the fabric shifts substantially across the body.
Furthermore, we cannot account for loose apparel whose
surface can deviate almost arbitrarily from the body model.

For some body poses, rendering artifacts due to undersam-
pling may occur. Especially the lower side of the arms some-
times can not be seen by any of the cameras and thus the true
normal directions cannot be inferred. Additional appropri-
ately positioned imaging sensors would solve this problem.

Finally, we intend to employ a single-skin surface model
instead of our current segmented one in the future. With the
current body representation, occlusions of parts of the sur-
face geometry in the RES complicate the reflectance and
normal estimation processes. If a surface point on the model
is never seen by any camera, we cannot reconstruct its re-
flectance. In that case, we interpolate missing parts in the

BRDF textures from neighboring regions. However, discon-
tinuities in the texture when frequently occluded surface
patches suddenly appear may still be visible. Alternatively,
recording the person in more than one body pose can solve
that problem already during acquisition. Moreover, if the
face geometry of the template model is too different from
the shape of the real actor’s face, blurring artifacts occur in
the final rendering. One possibility to solve this would be
to precede the reflectance estimation with a face model re-
construction from high-resolution images of the head. We’d
like to emphasize that all limitations inflicted by our specific
body geometry are not principal limitations of our method.

Our results demonstrate that we have developed an ef-
fective novel method for simultaneous capture of dynamic
scene geometry, per-texel BRDFs and time-varying normal
maps from multi-view video. The acquired scene description
enables realistic real-time rendition of relightable 3D videos.

9. Conclusions

Our video-based modeling approach jointly captures motion
and surface reflectance of a person. From eight synchronized
multi-video streams, we recover all information necessary to
photo-realistically render a recorded person from arbitrary
viewpoint and in arbitrary illumination. The ability to per-
form convincing relighting enables us to implant real-world,
animated people into virtual surroundings. The abstract de-
scription of people appearance in terms of geometry, ani-
mation and surface reflectance further allows us to separate
surface appearance from geometry. This way, we can inter-
change surface attributes among different people, e.g., for
re-dressing one person with another person’s clothes. More-
over, we employ a compact data format for our scene de-
scription that can be acquired with only a handful of imaging
sensors.

Joint motion and reflectance capture can not only be ap-
plied to humans but to any dynamic object whose motion can
be described by a kinematic chain and for which a suitably
parameterized geometry model is available. For BRDF pa-
rameter recovery, the proposed algorithm currently assumes
that the subject is illuminated by one point light source.
While this setup has been chosen to maximize observed re-
flection variations, the approach can be extended towards
more general illumination configurations captured, e.g., via
HDR environment maps. To overcome the fixed relationship
between light and camera direction, alternatively, a number
of spotlights may be applied that are switched on and off
during acquisition to illuminate the person sequentially from
different directions.
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Figure 8: Dynamic reclothing.

(a) (b)

Figure 9: Magnification of the lower leg of the rendered per-
son. (a) Result without warp-correction prior to reflectance
estimation - ghosting due to misalignments along the stripes
of the trousers are visible. (b) Result with warp-correction -
ghosting artifatcs have been significantly reduced due to bet-
ter multi-view consistency. Block artifacts are due to limited
texture resolution.



(a) (b)

(c) (d)

(e)

Figure 10: (a) Color-coded normal map in local coordinates (left) and corresponding input video frame (right). The default
normal in the tangent frame is the vector (0,0,1) which translates into a purely blue pixel in the local normal map. Normals
deviating from the default one, e.g. due to wrinkles, appear in a different color. (b) Wrinkles on T-shirt rendered under different
illumination conditions. (c) Rendered time-varying wrinkles in pants. (d) Single pose relit with different light positions. (e)
Person rendered from different viewpoints and illuminations (colored dots: light source positions, colors are light source colors).
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