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Abstract

Depth maps captured with time-of-flight cameras have
very low data quality: the image resolution is rather limited
and the level of random noise contained in the depth maps
is very high. Therefore, such flash lidars cannot be used
out of the box for high-quality 3D object scanning. To solve
this problem, we present LidarBoost, a 3D depth superres-
olution method that combines several low resolution noisy
depth images of a static scene from slightly displaced view-
points, and merges them into a high-resolution depth image.
We have developed an optimization framework that uses a
data fidelity term and a geometry prior term that is tailored
to the specific characteristics of flash lidars. We demon-
strate both visually and quantitatively that LidarBoost pro-
duces better results than previous methods from the litera-
ture.

1. Introduction
The ability to capture decent 3D models of static real

world objects has reached increased importance in many
fields of application, such as manufacturing and prototyp-
ing, but also in the design of virtual worlds for movies and
games. To capture a complete model of a scene, many indi-
vidual scans have to be taken from different viewpoints and
finally merged into a complete shape representation. It is
no wonder that the choice of sensor for such a task is highly
important.

Recently, new time-of-flight (ToF) cameras or flash li-
dars have been introduced that capture 3D depth maps by
measuring the return travel time of an infrared light wave-
front emitted from the sensor. At a first glance, these cam-
eras seem to be very suitable for 3D shape scanning, as they
can capture hundreds of depth scans in only a few seconds.
Unfortunately, the resolution of the depth maps is far too
low and the level of random noise is of such significance
that, out-of-the-box, flash lidars cannot be used for 3D ob-
ject scanning.

To overcome this problem, we develop in this paper a
new 3D depth sensor superresolution approach. The core
idea is to take a handful of depth images of a static scene

from only slightly displaced viewpoints (such that parallax
can be neglected), align them, and combine them into a sin-
gle high-resolution depth image. The resulting 3D depth
map is of sufficient quality for 3D shape scanning, since it
has much higher resolution than any input image, and mea-
surement noise has been canceled out. The main contribu-
tions of this paper are
• A 3D depth sensor superresolution method that incor-

porates ToF specific knowledge and data. Additionally
a new 3D shape prior is proposed, that enforces 3D
specific properties.
• A comprehensive evaluation of the working range and

accuracy of our algorithm using synthetic and real data
captured with a ToF camera.
• Only few depth superresolution approaches have been

developed previously. We show that our algorithm
clearly outperforms the most related approaches.

2. Related Work
Time-of-flight cameras, such as the MESA

SwissrangerTM, enable full-frame capture of 3D depth
maps of general scenes at video rate. Furthermore, mea-
surement accuracy is largely independent of surface texture
when compared to passive reconstruction methods like
stereo [13].

Greater flexibility and fast capture rates of ToF sensors,
however, come at the price of low X/Y sensor resolution and
often significant random measurement noise. To get qual-
ity recordings of higher resolution from noisy depth record-
ings, superresolution algorithms can be applied. Only a few
approaches dealing with superresolution of any 3D scanner
have been presented so far, which roughly fall into two cat-
egories:

Combining Depth and Image Data One strategy to up-
sample and denoise a 3D recording leverages information
from a high-resolution image of the same scene that was
taken from a viewpoint close to the depth sensor. The core
idea is to enforce simple statistical relations between depth
and intensity data, such as the joint occurrence of depth
and intensity edges, and smoothness of geometry in areas
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(a) Color Image (b) Recording Resolution

(c) IBSR (d) LidarBoost (e) Diebel’s MRF

Figure 1: Real scene - wedges and panels (a): This scene with many depth edges (b) demonstrates the true resolution gain.
IBSR (c) demonstrates increased resolution at the edges, but some aliasing remains and the strong pattern in the interior
persists. LidarBoost (d) reconstructs the edges much more clearly and there is hardly a trace of aliasing, also the depth layers
visible in the red encircled area are better captured. MRF upsampling (e) oversmooths the depth edges and in some places
allows the low resolution aliasing to persist.

of largely uniform color [2, 14, 7]. Although these meth-
ods are often computationally very efficient, they frequently
suffer from artifacts that are due to the heuristic nature of
the enforced statistical model, e.g. copying of intensity tex-
ture into 3D geometry. Also, having to incorporate a sec-
ond type of sensor may restrict the application range. Our
method only requires depth images and does not suffer from
texture copying.

Superresolution From Depth Data Only Here, the goal
is to enhance the resolution by combining only depth
recordings of a static scene that were taken from slightly
displaced viewpoints. Kil et al. [5] were among the first to
explore such an idea for laser triangulation scanners. They
heavily oversample the scene by taking up to 100 scans
from similar viewpoints to achieve four-times upsampled
geometry. Since their data is so dense, and the random noise
level of a laser scanner is significantly lower than that of a
ToF camera, they can obtain good results by regular resam-
pling from the aligned scan points with associated Gaussian
location uncertainty. Reportedly, results may exhibit unnec-
essary blur and it is unlikely that this data fusion principle
will work for highly noisy ToF data.

Only recently researchers looked into performing super-
resolution on ToF camera data. Rajagopalan et al. [10] pro-
posed a Markov-Random-Field based resolution enhance-
ment method from a set of low-resolution depth record-
ings that formulates the upsampled 3D geometry as the
most likely surface given several low resolution measure-
ments. Their MRF uses a neighborhood system that en-

forces an edge-preserving smoothness prior between adja-
cent depth pixels. Their formulation of the problem bears
two disadvantages: first complex parameter selection and
secondly the formulation of the prior renders the problem
non-convex, and hence more sophisticated solvers are re-
quired.

In another line of thinking, researchers tried to apply
ideas from image superresolution algorithms, which com-
bine low resolution intensity images into a high-resolution
intensity image, to the 3D case. At a first glance, this seems
like a reasonable strategy since for many years ever more
successful image superresolution methods have been devel-
oped [9]. This strategy was first used by Rosenbush et al.
[11]. While their paper was still very focused on alignment
algorithms for depth measurements, they showed that ideas
from image superresolution can in general be applied to-
wards depth measurements. However, their reconstruction
is rather basic and simply aligns the low resolution measure-
ments on the high resolution grid and interpolates missing
points.

Lately, more advanced image superresolution methods
have been proposed that may also function in the 3D do-
main. Schuon et al. [12] verified this and applied the image
superresolution method by Farsiu et al. [3] to depth images
taken with a 3DVTM ToF camera. Following a general prin-
ciple put forward by many image superresolution methods,
they solve an energy minimization problem that jointly em-
ploys a data term, enforcing similarity between the input
and output images, and a bilateral regularization term for



edge-preserving smoothness.
Our algorithm also falls into the latter category, but

clearly outperforms previous approaches in terms of recon-
struction quality and accuracy.

3. Our Algorithm
In our measurement setup we captureN depth images of

a static scene , Yk ∈ Rn×m, each having depth sensor res-
olution n ×m. Each depth image (also called depth map)
is a grid of depth pixels, where each depth pixel records
the distance to a 3D scene point along the measurement ray
through the pixel. Given intrinsic ToF camera calibration
data, a depth map can be reprojected into 3D geometry in
world space. The Yk are captured from only slightly dis-
placed viewpoints which is why parallax effects can be ne-
glected. Prior to superresolution, all depth images are regis-
tered against a reference frame out of Yk. Reliable registra-
tion is important for superresolution, but in our case simple
a procedure sufficed. Once registered, we compute a single
high resolution depth image with β times higher resolution
X ∈ Rβn×βm by solving an optimization problem of the
form:

minimize Edata(X) + Eregular(X) .

The first term Edata(X) is a data term measures agreement
of the reconstruction with the aligned low resolution maps,
Sect. 3.1. Eregular(X) is a regularization or prior energy
term that guides the optimizer towards plausible 3D recon-
structions if data points are sparse, Sect. 3.2.

This formulation is common to most superresolution
methods. However their data and prior terms are designed
for intensity images and cause strong artifacts when applied
to depth images, as shown in Fig. 1c for the example of
Schuon et al.’s method [12]. In contrast, our prior and data
terms explicitly take into account the specifics of the 3D
reconstruction problem as well as the characteristics of the
time-of-flight sensors used. In contrast to related 3D up-
sampling methods, our formulation yields a convex opti-
mization problem which makes the superresolution proce-
dure efficient and robust. Overall, our superresolved depth
maps therefore exhibit a much higher quality than it was
achieved with previous approaches for ToF superresolution.

3.1. Data Term

The data term ensures that the final superresolved depth
map is coherent with the registered low resolution measure-
ments Yk ∈ Rn×m. During preprocessing, N − 1 frames
out of the Yk frames are aligned against a reference frame
by computing for each a displacement vector. Typically,
the first frame from Yk is chosen as reference frame. Cur-
rently, we use hierarchical Lukas Kanade optical flow [8]
to compute the registration but alternative registration ap-

proaches would be feasible. This process and the upsam-
pling described below transform each original frame Yk into
an aligned frame Dk ∈ Rβn×βm:

It is our goal to compute a higher resolution version of
a 3D depth map from aligned low resolution depth maps.
When solving for the high resolution image we therefore
have to resample the aligned high-resolution depth pixel
grid of the target image. We performed experiments to de-
termine the best resampling strategy. It turned out that a
nearest neighbor sampling from the low resolution images
is preferable over any type of interpolated sampling. Inter-
polation implicitly introduces unwanted blurring that leads
to a less accurate reconstruction of high-frequency shape
details in the superresolved result.

Our data term takes the following form:

Edata(X) =
N∑
k=1

‖Wk .*Tk .* (Dk −X)‖2 ,

where .* denotes element-wise multiplication. Wk ∈
Rβn×βm is a banded matrix that encodes the positions of
Dk which one samples from during resampling on the high-
resolution target grid. Tk ∈ Rβn×βm is a diagonal matrix
containing 0 entries for all samples from Dk which are un-
reliable according to the ToF sensor’s readings, as described
in the following:

Since a ToF camera relies on a sufficiently strong return
of the emitted IR pulse to measure depth, certain scene char-
acteristics lead to biased or totally wrong depth estimates.
In consequence, if a surface reflects light away from the
camera, or if it absorbs most of the light, depth measure-
ments become unreliable. An example can be seen in Fig. 5,
where the ball has problematic reflectance properties and
the print on the box absorbs most of the light. Fortunately, a
low amplitude of the returned light wavefront at each pixel
(the SR 3000 camera we use gives access to an amplitude
image) indicates the occurrence of such difficult situations
and, thus amplitude serves as a form of confidence mea-
sure. We therefore use a thresholding approach, to detect
and exclude low-confidence measurements with low am-
plitude. Technically this is implemented in the matrix Tk
which multiplies unreliable samples by 0.

We would like to remark that the choice of error norm
is critical to the quality of the final result. In essence, the
norm decides at each high resolution depth pixel on how
to choose a best target depth position given the depth val-
ues from all low resolution maps at that position. Previ-
ous depth superresolution methods, such as Schuon et al.
[12] as well as many image superresolution methods, em-
ploy a `1-norm. While a `1-norm forces the depth value at
a certain high-resolution grid point towards the median of
registered low-resolution samples, an `2-norm yields their
mean. For very noisy data, the median is certainly reason-
able since it rejects outliers. In contrast, the mean yields



a smoother surface reconstruction, since the averaging can-
cels out recording noise. From our experience using ToF
data and our method, it is more beneficial to capitalize from
the smoothing effect of a `2-norm.

3.2. Regularization Term

The regularization or prior term guides the energy mini-
mization to a plausible solution, and is therefore essential if
data are sparse and noise-contaminated.

We seek a prior that brings out high frequency 3D shape
features that were present in the original scenes in the up-
sampled 3D geometry. At the same time the prior shall
suppress noise in those regions that correspond to actually
smooth 3D geometry. Finally we seek it to be convex.

All these properties can be enforced by designing a prior
that favors certain distribution of the spatial gradient in the
final depth map. On the one hand we want to preserve local
maxima in the spatial gradient that correspond to high fre-
quency features, e.g. depth edges. On the other hand, we
want the overall distribution of the gradient to be smooth
and relatively sparse which cancels out random noise.

One way to enforce this property is to resort to a sum-
of-gradient-norms regularization term that can be computed
efficiently, and that has also been used by previous im-
age superresolution methods. However, the implementation
of this regularizer for image superresolution often enforces
sparseness on individual differences contributing to an over-
all finite difference approximation of the spatial gradient.
For instance, the regularizer employed by Schuon et al. [12]
essentially enforces sparseness on the elements of the ap-
proximated vector (i.e. sparseness on the individual finite
differences). Although this prior manages to preserve high
frequency detail to a certain extent, it completely fails in ar-
eas of smooth geometry where it creates a severe staircasing
pattern (e.g. Fig. 2f). While small staircasing artifacts may
not be visible if one works with intensity data, 3D recon-
structions are severely affected.

We have therefore designed a new sum-of-norms prior
that can be efficiently computed and that is tailored to pro-
duce high-quality 3D reconstructions. Let∇Xu,v be a com-
bined vector of finite difference spatial gradient approxima-
tions at different scales at depth pixel position (u, v). Then
our regularization term reads:

Eregular(X) =
∑
u,v

‖∇Xu,v‖2 =
∑
u,v

∥∥∥∥∥∥∥∥∥


Gu,v(0, 1)
Gu,v(1, 0)

...
Gu,v(l,m)


∥∥∥∥∥∥∥∥∥
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,

where each Gu,v(l,m) is a finite difference defined as fol-
lows

Gu,v(l,m) =
X(u, v)−X(u+ l, v +m)√

l2 +m2
.

In our regularizer, we approximate the gradient with finite
differences, but weight the various differences by the in-
verse Euclidean distances, yielding a rotation invariant ap-
proximation. Secondly we compute local gradient approx-
imations at different scales and weight gradient approxi-
mations at lower levels of hierarchy (i.e. computed with
a higher pixel position difference) lower. An important in-
sight is that it is essential to compute the norm on all dif-
ferences contributing to a local gradient approximation at
different scales simultaneously and not on individual finite
differences.

Since the (`2-) norms of all combined gradient vectors
in the above sum are positive, the sum has the effect of a
`1-regularization [1] on the entire set of gradient magni-
tudes: enforcing sparseness, i.e. drive most gradients to
zero and hence smooth the result in noisy regions, but allow
high-frequency detail to prevail. By combining distance-
weighted gradient approximations at different scales we
thus implicitly achieve feature preserving smoothing in a
computationally efficient and convex way.

Given the data and regularization terms defined in the
previous sections, we can now formulate the complete Li-
darBoost energy function as

K∑
k=1

‖Tk .*Wk .* (Dk −X)‖2 + λ
∑
u,v

‖∇Xu,v‖2 ,

where λ is the trade-off parameter between enforcement of
data similarity and smoothness. As one can see in Fig. 2g,
our approach produces high quality superresolved geometry
which exhibits clear 3D features and only marginal noise in
smooth areas.

4. Results
To explore the capabilities of the new approach, we

tested it on synthetic and real sequences captured with a
Swissranger SR3000 camera (176 × 144 depth pixel res-
olution). We also compared LidarBoost to two alternative
approaches from the literature. First we compare against an
image-based superresolution method applied to depth data
(IBSR), in particular we use the approach by Farsiu et al. [3]
as proposed by Schuon et al. [12]. We apply the publicly
available implementation of Farsiu’s approach and choose
the following parameters: λ = 0.04, N = 50, α = 0.7, β =
1, P = 5, and a Gaussian 3× 3 PSF with standard variance
(see original paper for details). The computation time was
below two minutes for all scenes.

Second, on the real scenes only, we compare against
color and depth fusion method, namely the method by
Diebel and Thrun [2]. We ran all method with several
parametrizations and show only the best results for each
method in the respective scenes.

LidarBoost was implemented using the cvx modeling
framework for disciplined convex optimization [4]. This



(a) Recording Resolution (b) IBSR (c) LidarBoost (d) Ground Truth

(e) Recording Resolution (f) IBSR (g) LidarBoost (h) Ground Truth

(i) Recording Resolution (j) IBSR (k) LidarBoost (l) Error Color Coding

Figure 2: Synthetic test set without noise (4× upsampling): The first row depicts the depth maps, from which a 3D geometry
has been rendered as shown in the second row. The third row shows a rendering, with color coded rMSE. IBSR recovers the
overall structure, but exhibits a noise pattern. LidarBoost recovers the structure almost perfectly and yields a smooth surface.

framework transforms the problem into Second-Order-
Cone-Program (SOCP) and solves it using a generic solver.
Due to the size of the transformed problem, which easily
exceeded a million variables, we subsequently compute so-
lutions for images patches of 20× 20 low-resolution pixels
and stitch the results using two-pixel overlap (similar to pri-
mal decomposition with one iteration). Computation time
for the synthetic scenes (9 patches) was about five minutes
and for the real scenes (28 - 48 patches) up to two hours.

Synthetic Scene - No Noise Added A first comparison
is performed on synthetic images of the Stanford Graphics
Lab’s dragon model created with 3D Studio Max. Synthetic
ground truth depth maps of resolution 400× 400 were ren-
dered and downsampled by factor 8 (using a uniform 8× 8
kernel) to simulate low resolution input depth maps. In to-
tal, N = 10 low resolution input images from slightly dis-
placed viewpoints were created. One such input depth maps
is shown in Fig. 2a, compared to the ground truth shown in
Fig. 2d. Figs. 2b and 2c show the four times superresolved
results computed by applying IBSR and LidarBoost. Below
each depth map, we show renderings of the corresponding

3D geometry (obtained by reprojection into 3D) since depth
maps only do not properly visualize the true gain in quality
and tend to mask unwanted artifacts.

The method by Schuon et al. successfully brings out the
outline of certain shape detail that was not visible in individ-
ual input frames, Fig. 2f, such as individual toes and sharp
boundaries. However, the results are clearly contaminated
by the previously discussed staircase pattern (Sect. 3.2).
In comparison, LidarBoost (Fig. 2g, with λ = 0.04) ex-
tracts more detail (e.g. the eye holes and the third small
horn of the dragon) and at the same time successfully erad-
icates measurement noise without introducing a disturbing
pattern.

On synthetic data we can also perform quantitative com-
parisons against ground truth and compute the relative mean
square error. It is relative, because the MSE result was di-
vided by the number of pixels considered to keep numbers
reasonable. A two times downsampled version of a refer-
ence 400 × 400 depth depth map forms the ground truth -
to make resolutions match. One low resolution depth map
has been upsampled four times using a nearest neighbor



No Noise Medium Noise Stark Noise
var = 0 var = 0.7 var = 5

LR 157.6 161.7 203.9
IBSR 83.8 89.9 127.0
LidarBoost 70.6 72.5 82.9

Table 1: Relative MSE comparison on synthetic data: Li-
darBoost throughout outperforms all other methods and
shows less sensitivity towards noise then IBSR

approach to establish a baseline comparison. LidarBoost
clearly outperforms the IBSR method and leads to signifi-
cant improvements over a single low-resolution depth map.
Figs. 2i - 2k show a color-coded rendering of the error dis-
tribution (rMSE in percent of longest bounding box dimen-
sion of synthetic object) over the model surface using the
color scheme shown in Fig. 2l (green=low error, red=large
error).

Both methods struggle on edges, which comes to no sur-
prise, as the sub-pixel exact location for a steep edge is hard
to guess. Despite a potentially small mis-localisation, Li-
darBoost still recovers depth edges more reliably than the
comparison method. Also, the pattern introduced by IBSR
leads to much stronger errors in the interior regions than
with LidarBoost.

Synthetic Scene - Stark Noise Added Depth images are
inherently noisy, therefore the algorithms need to be eval-
uated on such data. To simulate the effect of measurement
noise introduced by real ToF cameras, we repeated the ex-
periment from the previous section, but added Gaussian
noise along the measurement ray directions following the
sensor characterization proposed by Kim et al. [6]. In the
simulated data, depth values range from 0 to 182. Although
in scenes with a larger depth range a depth-dependency in
noise can be expected, for our test scene with limited range
we use a constant variance. We tested both noise with vari-
ance of 0.7 and 5.0. In both cases the LidarBoost results are
clearly superior to IBSR, and for space reasons we decided
to discuss here only the case of strong noise contamination
(the low noise case is shown in the additional material).

For the stark noise case, in a single low resolution in-
put frame (Fig. 3a) all fine surface detail vanished and it is
even hard to recognize the object’s shape as a whole. While
IBSR recovers a decent level of shape detail (Fig. 3b), se-
vere staircasing becomes visible on the geometry and the
result is distorted by the random pattern discussed before.
In contrast, in particular under these extreme conditions,
LidarBoost recovers clearly more detail (even traces of the
dragon’s pattern on the back, as well as the dragon’s teeth)
and maintains truly smooth geometry in actually smooth ar-
eas. The color-coded error rendering confirms that under
these challenging conditions the advantage of using Lidar-
Boost relative to IBSR is even stronger, Figs. 3i - 3k.

Synthetic Scenes - Quantitative Comparison Looking
at all synthetic test data sets, the overall trend in rMSE error
confirms the visual observations (Tab. 1). In all noise cases
our algorithm performs clearly better than the reference ap-
proach and clearly improves over the quality of a single low
resolution frame. Overall, with increasing noise the perfor-
mance of IBSR worsens more drastically than our method’s
results.

Parameter Selection Both LidarBoost and IBSR use a
regularization term with a tunable trade-off parameter λ.
Fig. 4 plots λ against the rMSE obtained with both IBSR
and LidarBoost, as evaluated on the dragon data set with
stark noise. The reconstruction quality of the former shows
a strong dependency on λ, and the rMSE is in general much
higher that for LidarBoost. In contrast, the rMSE of Lidar-
Boost is consistently lower and rather stable. Therefore λ
requires less tweaking which renders LidarBoost highly ap-
plicable. The same observation was made for data sets with
no noise and stark noise (additional evidence is given in the
additional materials).

Real Scene - Collection of Objects Two real scenes were
recorded using a Swissranger SR 3000 depth camera. We
recorded N = 15 frames each with 30 ms integration time.
The camera was displaced in-between shots using rotation
only, where the maximum displacement from end to end
was below 30 pixels for the first and below 15 pixels for
the second scene. The SR 3000 records at 176 × 144 pixel
resolution, but we cropped the frames in either case to the
region of interest, which for the collection of objects scene
(Fig. 5a) resulted in a 106×64 frame size, and for the second
scene (Fig. 1a) in a 126× 89 frame size.

For this scene, the low resolution input (one being shown
in Fig. 5b) conveys the overall geometry, but fine details
such as the small holes of the laundry basket and the cup’s
handle are hard to tell. Also, the occlusion edges are very
rough and aliased. Furthermore smooth surfaces, such as
the ball’s or basket’s surface are perturbed by noise.

IBSR’s reconstruction enhances the fine details, but also
introduces the previously discussed staircase pattern. In
contrast, LidarBoost (running with λ = 7) also does fea-
ture these details, while yielding a noise free, smooth sur-
face. This result also shows the effectiveness of our am-

Figure 4: Optimal choice of regularization trade-off param-
eter λ: For the noisy test sets the resulting rMSE has been
plotted against varying λ. IBSR is sensitive towards λ with
a constant optimum at 0.04. In contrast LidarBoost is robust
on a wide range of choices.



(a) Recording Resolution (b) IBSR (c) LidarBoost (d) Ground Truth

(e) Recording Resolution (f) IBSR (g) LidarBoost (h) Ground Truth

(i) Recording Resolution (j) IBSR (k) LidarBoost (l) Error Color Coding

Figure 3: Synthetic test set with stark noise (Variance of 5.0, 4× upsampling) - First row: rendered 3D geometry in frontal
view, LidarBoost shows shows best upsampling result. Middle row: Also in a lateral view it is apparent that LidarBoost’s
reconstruction is closest to ground truth. Bottom row: LidarBoost clearly produces the lowest reconstruction error.

plitude thresholding approach. Parts of the cardboard are
painted in black, leading to low reflectivity. Fig. 5c shows
the amplitude image with measurements below the exper-
imentally determined thresholds being color coded in red.
By assigning such pixels a weight of 0 via Tk, LidarBoost
reconstructs the true surface (5f) of the box. Please also
note that two stripes of reflective material on the soccer ball
caused slight reconstruction errors since almost no light was
reflected to the camera. In this particular case our confi-
dence weighting could not fill the holes since the tiny area
of correctly capture depth on the rim pulls the final surface
slightly inward.

Since we also took a photograph of the real scene, we can
also compare to the method by Diebel et al. (Fig. 5g) which
yields a smooth reconstruction, but struggles with fine de-
tails such as the basket’s bars, and oversmooths depth edges
that don’t coincide with intensity edges. Furthermore the
method erroneously transforms intensity texture into geo-
metric patterns, in particular in the checkerboard structure
on the background and in the pattern on the ball’s surface.

Real Scene - Wedges and Panels The second real scene
recorded with the Swissranger was purposefully designed
to contain wedges with thin fine edges, and many sharp oc-
clusion boundaries (Fig. 1a). The same camera settings as
in the previous test were used and N = 15 low resolution

frames were captured. This scene nicely demonstrates the
effectiveness of superresolution. While in the low resolu-
tion image (Fig. 1b), occlusion edges clearly show a stair-
casing aliasing pattern, both IBSR and LidarBoost recover
sharper edges. However, in Schuon’s result there is still a
little bit of jagginess around the occlusion edges and, as in
previous results, there is a strong aliasing pattern in regions
of smooth geometry (Fig. 1c). In contrast, LidarBoost (with
λ = 6) creates crisp edges with no aliasing, and faithfully
recovers smooth areas (Fig. 1d). In addition, LidarBoost
does a much better job in recovering different depth lay-
ers that are visible through the small holes in the left panel
(marked in red in Fig. 1d).

Diebel et al.’s method does well in recovering the layers,
but in contrast to our method exhibits problems on several
edges. Many edges on the wedges appear rounded or are
still aliased (particularly on the right most wedge).

5. Conclusion
We presented a new 3D depth superresolution approach

that enables us to take detailed high resolution surface
recordings of 3D objects even with low resolution and heav-
ily noisy time-of-flight cameras. The core of our method is
an energy minimization framework that explicitly takes into
account the characteristic of the sensor and the specific re-



(a) Color Image (b) Recording Resolution (c) Amplitude image with cutoff area red

(d) IBSR (e) LidarBoost (f) LidarBoost with Confidence Weighting

(g) Diebel’s MRF

Figure 5: Real scene - collection of objects (a): One of several low-resolution depth maps with an SR3000 ToF cam is shown
in (b). IBSR (d) produces an erroneous pattern, whereas LidarBoost (e) correctly recovers high-frequency detail and smooth
geometry. When the reflectivity of the materials is really low, the low resolution recordings may contain errors (such as in
the red areas in (c)). LidarBoost with activated confidence weighting (f) can correct for such reconstruction errors. Diebel’s
MRF method (g) yields oversmoothing on many depth edges and transforms intensity patterns into geometry patterns (e.g.
checkerboard).

quirements to superresolution in 3D space. We have shown
both quantitatively and qualitatively that our algorithm pro-
duces high-quality results and outperforms related methods
from the literature.
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