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Abstract

We presenti23, an algorithm to reconstruct a 3D
model from a single image taken with a normal
photo camera. It is based off an automatic machine
learning approach that casts 3D reconstruction as
a probabilistic inference problem using a Markov
Random Field trained on ground truth data. Since
it is difficult to learn the statistical relations for all
possible images, the quality of the automatic re-
construction is sometimes unsatisfying. We there-
fore designed an intuitive interface for a user to
sketch, in a few seconds, additional hints to the al-
gorithm. We have developed a way to incorporate
these constraints into the probabilistic reconstruc-
tion framework in order to obtain 3D reconstruc-
tions of much higher quality than previous fully-
automatic methods. Our system also represents an
exciting new computational photography tool, en-
abling new ways of rendering and editing photos.1

1 Introduction

Authentic and photo-realistic 3D reconstruction
from image data has been a long standing prob-
lem in both computer vision and graphics. Re-
cent progress in computational algorithms has made
it feasible to reconstruct decent 3D models from
multi-view image data. Applications for these are
mainly for professionals, which may explain why
the related technology has not reached the layman.

At the same time, computational photography re-
search has shown us that amateur photographers
could enjoy groundbreaking new photo postpro-
cessing functionality, if only photo cameras would

1A preliminary version of this work was informally presented
in [25]

also capture depth information [32]. Unfortunately,
single-image 3D reconstruction is a complex prob-
lem, and most researchers propose some form of
hardware modification to the camera’s optics [8,21].

In contrast, we present an interactive algorithm
that allows a user to extract 3D models from sin-
gle images captured by any camera with standard
optics. Our algorithm relies on a machine learn-
ing approach based on a Markov Random Field
(MRF) (Sect. 4) [26, 27]. It phrases monocular
3D reconstruction as the problem of estimating the
most likely 3D model given image features. The
MRF represents statistical relations between scene
depth and image features, learned from a train-
ing set of images with ground truth depth. Previ-
ous learning-based approaches [10, 27] have aimed
at fully-automatic reconstruction that are unable to
create plausible 3D models on a general set of im-
ages.

To boost quality, we get the user in the loop.
While learning algorithms are good at low-level
tasks (like segmentation), humans are good at un-
derstanding high-level cues, and a combination of
the two complements each other to provide a fast
and easy way to create 3D models. Specifically, af-
ter a first fully automatic 3D reconstruction using
the MRF (Sect. 4), the user inspects the result and
can optionally provide supporting input to the re-
construction method in the form of simple scribbles
and strokes (Sect. 5). The inputs hint, for instance,
at coherent 3D structures and likely foreground ob-
jects (Fig. 1b,c). We have created a method to
feed the user’s input back into the probabilistic re-
construction algorithm, and reconstruct a new most
likely 3D model given this additional knowledge.
The interface we created is simple and intuitive and
allows even inexperienced users to create faithful
3D models with minimal effort, Fig. 1d. In exper-
iments with a web prototype, 1238 mostly inexpe-
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Figure 1: Algorithm Overview: (a) An original image. (b) Interactive tool: user indicates foreground
object(s). (c) The foreground object is removed from the image, the background is inpainted, and the user
points at an approximate horizon as well as scribbles areas that are on the same 3D planes. A background
3D model is then reconstructed, 3D geometry for the foreground portions are re-inserted, and finally the
scene can be rendered from a novel viewpoint as in (d).

rienced users created 3D models for 3775 images
using the interactive tool, and 84% of the 3D mod-
els created were considered by the users to be good.

The quality of our 3D reconstructions are now
sufficient to create new forms of image edits or ren-
dering, previously infeasible with 2D data (Sect. 6).
We exemplify the potential of our method as a cre-
ative tool for image processing by creating virtual
3D flythroughs from photographs, virtual pan ef-
fects in a single image with correct scene parallax,
as well as cinematographic camera shots. We can
make depth of field modifications, even for images
originally taken with small digital cameras lacking
the optics to create such effects.

2 Related Work

Monocular 3D reconstruction is harder than multi-
view reconstruction since stereo and correspon-
dence cues that are essential for multi-view recon-
struction are not available. [24,28]

Approaches to estimating 3D information from a
single viewpoint include acquiring several images
of a scene with different camera settings: Depth-
from-focus [19], depth-from-defocus [22], and [17,
20]. However, these typically fail on scenes with
large depth, or those taken using small aperture
lenses of regular cameras. They frequently rely
on special active illumination which requires care-
fully designed illumination pattern removal strate-
gies. [31] reconstruct piece-wise planar objects, as
compared to the entire scene, and rely on a user to
provide detailed geometrical constraints.

Other approaches include using several images
and modifying the lighting settings in between
shots: Shape-from-shading approaches [35], and
using depth-dependent shading variations with flash
[7]. In contrast, our algorithm works on single im-
ages and for scenes with large depth where con-
trolled lighting is infeasible.

Fattal [4] estimates depth maps from hazy scenes.
However, our method does not require specific en-
vironment conditions to work. [29, 30] use multi-
ple images of the same scene found in community
photo collections while we aim to reconstruct 3D
geometry from a single image.

The optical system of the camera can be mod-
ified to encode information on scene geometry in
the captured signal. Modifications include a special
mirror in the optical path [8], coded aperture masks
[13, 34] and micro-lens arrays [6, 21]. Our algo-
rithm does not require any modification of the opti-
cal camera path, works for scenes with large depth
complexity, and does not sacrifice image resolution.

Our method uses learned statistical relations be-
tween image features and 3D scene information.
Similarly, Nagai et al. [18] use an MRF-based learn-
ing approach to perform single image reconstruc-
tion of known objects (e.g. faces), while [23] esti-
mate depth from monocular images using local and
global features, and modeling the relation between
depths at different points. A different form of sta-
tistical relation is exploited by shape-from-texture
approaches [15, 16] that perform texture distortion
analysis to determine 3D structure. Torralba [33]
used the Fourier spectrum of an image to estimate
the mean depth. Hoiem et al. [10] classify an im-



Figure 2: (a) Original image, and (b) superpixels,
small segments with uniform color or texture. Our
goal is to estimate the 3D location and orientation
of the plane on which each superpixel lies.

age into ground and vertical areas to produce photo
popups.

The algorithm presented in this paper is an exten-
sion of the Make3D method of Saxena et al. [26,27]
who propose a learning algorithm to estimate depth
from learned statistical relations between image
features and 3D structure. Since we apply user-
defined hints as constraints during inference, re-
construction quality is dramatically improved over
these previous approaches.

3 Algorithm Overview

Our method begins by automatically reconstructing
a 3D model from a single image using a machine
learning method based on a Markov Random Field
(MRF) (Sect. 4). The initial 3D model may be un-
satisfying since the algorithm is dependent on the
training set, which is unlikely to capture all statisti-
cal relations of natural images.

Therefore, we developed an intuitive interface to
allow the user to specify additional constraints (see
Sect. 5). The sequence of steps differs slightly de-
pending on whether there is a prominent foreground
object in the scene (situation I) or not (situation II).

For situation II, if the user is not pleased with the
initial reconstruction, the user can first draw simple
strokes on the image to denote regions that should
lie on similar planes in 3D (Sect. 5.1) and/or in-
dicate the location of a horizon (Sect. 5.2). Given
these, a more accurate 3D model is reconstructed.

If situation I applies, the above sequence is pre-
ceded with specific steps to handle foreground ob-
jects (Sect. 5.3). Simple sparse strokes roughly de-
note a likely foreground object and background ar-
eas. This enables the method to cut out the fore-

ground, inpaint the background image and recon-
struct the background geometry using the step for
situation II. Previously segmented foreground ele-
ments are reconstructed separately and re-inserted
into the background model yielding a final high-
quality 3D model of the entire scene (see Fig. 1).

The user inputs translate into constraints that can
be directly incorporated into MRF reconstruction
(such as plane and horizon information), or indicate
areas of the scene that merit a special reconstruction
strategy (as in the case of foreground objects).

4 Initial 3D Model Reconstruction

We assume the world comprises of small 3D planes
that are projected into the image as regions with
similar color and texture, called superpixels (Fig. 2,
[5]). Our goal is to infer their location/orientation.

We parameterize the plane on which the super-
pixel lies byα ∈ R

3, giving its position/orientation.
1/|α| is the distance from the camera center to the
closest point on the plane, and the normal vectorα̂
gives the orientation of the plane.

Givenα for each superpixel, we create textured
3D models by approximating each superpixel with
triangles in the 2D image. 3D triangles are com-
puted by intersecting rays through the 2D triangles’
vertices with their respective planes in 3D.

We take a supervised learning approach similar
to Saxena et al.’s Make3D to reconstruct an initial
3D model from an image, by exploiting statistical
relations between image features and depth. We de-
scribe their algorithm’s initial steps to enable the
reader to understand how we combine it with the
user’s hints (Sect. 5). For details, see [27].

For each superpixel, we try to infer the parameter
α of its 3D plane. Formally, an MRF modelsα as a
function of the image featuresX. In the MRF, we
have terms modeling pairwise relations between the
superpixels, and a quantity,yij , the strength of this
relation for each pair. For instance, two neighboring
superpixels, like those on the road in Fig. 2 are more
likely coplanar if they have similar image features.
Implicitly the MRF defines a neighborhood system
(graph) on the set of superpixels that enforces 3D
relations between immediately adjacent superpixels
of the image. Mathematically, our MRF is formu-
lated as



Figure 3: The user interface.
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f2(αi, αj , yij ; Θ)
(1)

Thus we infer the maximum-a-posteriori (MAP)
set of positions and orientations of 3D surfaces
P (α|X; Θ) given the set of model parametersΘ
(learned from labelled ground-truth data) and fea-
tures extracted for each superpixel,Xi.

The first term in Eq. (1) models depth and ori-
entation as a function of the image features. The
second termf2(.) statistically models the relations
between two superpixels such as coplanarity, con-
nectivity and colinearity.

Here,yij = f(Xi, Xj ; Θ) ∈ R
+ is the weight

of the particular pair-wise term (a larger weight im-
plies a stronger relation). Ayij exists for all pair-
wise relations, and is dependent on the image fea-
tures. ParametersΘ weigh the influence of each
image feature on the relation between features and
depth, captured byf1, and the strength of each pair-
wise constraint, captured byf2.

Fully-automatically reconstructed 3D models of
images that are very different from the training data
are typically of poor quality. Designing a training
set to capture all possible natural variation is im-
possible. Instead, we propose to get the user into
the loop, and incorporate user input into our proba-
bilistic framework.

(a) Small rough strokes (b) Exact strokes

Figure 4: Examples for the variability of user scrib-
bles on the same image. Large parts are occupied
by two major planes: ground and the vertical walls.

5 User Interface

We designed an intuitive user interface for even
non-expert users to give guidelines to the 3D recon-
struction algorithm in a few seconds, Fig. 3.

First, the user can roughly scribble on an image
to give high-level cues about which parts of the im-
age belong to the same 3D planes (Fig. 4). Areas
scribbled with the same color are to belong to one
3D plane. In the automatic algorithm, areas of sim-
ilar color (e.g., a uniformly painted wall) are con-
sidered more likely to be coplanar, but it may fail to
infer that the windows belong to the same 3D plane,
which even a partial scribble would help fix. For-
mally, the algorithm would increaseyij wherever
two neighboring superpixels share the same scrib-
ble color (Sect. 5.1).

Second, the user can drag the horizon line to the
correct location (Sect. 5.2). This cue enables the
learning algorithm to reuse parameters that were
learned on a subset of training images having the
horizon line in roughly the same location.

Third, the user can make small strokes indicat-
ing a foreground object and the scene’s background.
Our motivation for this work was the difficulty in
training a learning algorithm for all possible fore-
ground objects and the observation that even small
mistakes in such objects are glaring to users. In our
UI, the user gives a high-level cue by scribbling a
few strokes to indicate the foreground object allow-
ing the algorithm to plausibly infer the foreground
geometry (Sect. 5.3).

5.1 Scribbles for Coplanar 3D Segments

The user is to mark the parts of the image belong-
ing to the same 3D plane, with the same color. Each
pixel should have one color/plane assignment. It is



not necessary to color each individual pixel manu-
ally, since a plausible color assignment from sparse
approximate strokes can be inferred. This high-
level cue modifiesyij . Intuitively, if we know that
two superpixels belong to the same 3D plane, we
can increase the value ofyij in Eq. (1) to increase
the effect of the connectivity and coplanarity terms.
The functionyij = f(Xi, Xj , Ui, Uj ; Θ) has to
weigh the user inputUi andUj against the feature
evidence from the images,Xi andXj .

When designingf we also consider that input
from inexperienced users may contain errors: color-
ing one 3D plane with two colors, or having impre-
cise strokes that bleed into an incorrect area. Using
these as a hard constraint would give poor results.

User scribble representation: AssumingK col-
ors,U(x, y) ∈ R

K represents the scribble color at
each point(x, y) in the image. If the user draws a
loop without any other color inside it (Fig. 4b), then
we “fill” the “holes” with the same color.

Strokes from different users can vary from sparse
to precise even on the same image (Fig. 4). Given
the scribble color that superpixelsi andj have, our
goal is to inferyij . Three situations arise:

1. If i andj have the same color,yij should be high.
2. If i andj have different colors,yij should be low.
3. One or both superpixels have no color (were
not scribbled by the user). This corresponds to the
tricky case where the user expects the algorithm to
complete the grouping (Fig. 4a). We wantyij to be
a function of the distance from the nearest stroke. If
the superpixels have nearby strokes of same color,
then yij should be larger compared to when they
have strokes further away. This weighs the input
from the user as well as evidence from the images.

This weighting strategy translates into a blurring
functionΩ, which we convolve withU(x, y) to pro-
duced a blurred scribble imageV (x, y)

V (x, y) =

∆x
X

p=−∆x

∆y
X

q=−∆y

U(x+p, y+q) Ω(p, q)

(2)
Finally, we defineVi for superpixeli as the mean

of each of the values at each pixel. We now change
yij in Eq. (1) to incorporate the user inputV ∈ R

K :

yij = f(Xi, Xj ; Θ)/||Vi − Vj ||2 (3)

f(Xi, Xj ; Θ) is a logistic function of the image
featuresXi andXj similar to that in [27].

5.2 Horizon Information

The horizon location plays an important role in es-
timating the 3D structure of a scene. For example,
blue color at the top of the image is more likely
sky, while at the bottom is likely water. The rela-
tion of depth to the image features varies as a func-
tion of the vertical distance from the horizon. The
same feature (e.g. blue color) can sometimes mean
different depths which makes learning hard when
training data is limited. Therefore, we propose a
new parametrization of the weightsΘ in the model,
in which we explicitly consider the location of the
horizon. Assuming the horizon is horizontal, we
represent its location by its image rowh ∈ [−1, 1].

Specifically,Ψ encodes a MRF parametrization
for each rowr, assuming a “standard” horizon line
in the center of the image,h = 0. Given an image
with a horizon line that is not in the standard loca-
tion, we have to decide which MRF parameters to
use for each rowr. Therefore, we define a trans-
formation that maps theΘ(r|h) into Ψ(r′). For in-
stance, if the horizon is at the bottom one-fourth of
the image (h = − 1

2
), then we wantΘ at this hori-

zon to be equal toΨ at its reference horizon. More
formally, the mapping fromΘ to Ψ is

Θ(r|h) = Ψ

„

r − h

1 − h

«

, r > h

= Ψ

„

r − h

1 + h

«

, r < h (4)

Now, even if the horizon was always in one location
during training (e.g., we use the data set of [27],
where all the images have the horizon in the center),
we would effectively train the horizon-normalized
weightsΨ. During inference, we can now use the
horizon-corrected MRF parametersΘ.

Figure 5: Handling foreground objects: (a) original
with segmentation outline, (b) alpha-matte of fore-
ground object, (c) depth map with impostor geome-
try in the foreground. The red and blue strokes were
added for better visibility of the billboards.



5.3 Foreground Objects

Automatic methods [10,27] make most reconstruc-
tion mistakes for objects in the scene foreground,
see Fig. 6. These are often the focus of attention,
and results where they are ”pasted” on the ground
(see video), are visually unacceptable.

Therefore, we treat the foreground separately
and change the reconstruction process: First, the
user provides sparse strokes on the images to
roughly indicate foreground and background re-
gions (Fig. 1b), These serve as input to a graph-
cut segmentation method [14] which separates out
the foreground region. The user provides addi-
tional strokes and iterates the segmentation. Al-
ternatively, if the image’s color distribution is chal-
lenging for graph-cut segmentation, the foreground
object’s boundary can be manually traced (Fig. 5a).

Next, we create an alpha matte for the foreground
region (Fig. 5) by assuming a trimap area around
its outline and performing Bayesian matting [1].
Quality foreground object occlusion boundaries, in-
cluding those of fuzzy materials like hair and fur,
enable convincing novel viewpoint renderings and
image postprocessing.

Foreground elements can now be removed from
the image, and their 3D geometry can be estimated
separately and re-inserted into the scene. First,
however, we need to in-paint the parts of the im-
age behind the foreground objects, which will be
exposed in 3D renderings from new viewpoints
(Fig. 1c) by performing exemplar-based inpainting
[2]. On the inpainted background image, we now
employ the previously described interactive 3D re-
construction to obtain a background 3D model.

Foreground objects can now be re-inserted into
the background model by approximating their ge-
ometry as a collection of planar billboards (Fig. 5c).
Shape and position of these billboards in 3D are es-
timated from the bottom section of the foreground
element’s outline curve (blue line) by piecewise lin-
ear segments. Each such segment defines one bill-
board (two in Fig. 5c, one in Fig. 1). Assuming
all billboards are upright, we trace rays through the
end-points of bottom curve segments and intersect
them with the background geometry to get their
3D positions. By projectively texturing the alpha-
matted foreground images onto the 3D billboards,
one convincingly renders the entire 3D model.

Figure 6: Results of prior art for the image in
Fig. 1a. (a) Make3D [27], (b) Photo-Popup [12]

6 Results and Applications

Here, we report our tests illustrating the improve-
ment over prior art (Sect. 6.1), as well as the re-
sult of an internet user study for the interactive re-
construction (Sect. 6.2), and show why our sys-
tem is an exciting computational photography tool
(Sect. 6.3).

6.1 Rapid High-quality Reconstruction

Fig. 8 shows snapshots of 3D models produced by
i23 and the input images. In the postbox and the
boat images (left and bottom-left),i23 placed the
foreground objects correctly (else they would ap-
pear distorted when viewed from such drastically
novel viewpoints), and realistically filled in the oc-
cluded parts to create a visually-pleasing effect. Our
algorithm creates good occlusion and parallax ef-
fects such as in the waterfall and the ski-slope im-
age. However,i23 is not flawless: the model of
Prague (Fig. 8, bottom right) is satisfactory but the
ground and statue geometry isn’t perfect.

We also compare our performance with fully
automatic single-image reconstruction methods by
[27] and [12] (Fig. 6). If a foreground object is
present, our method clearly performs better. Fur-
ther, we experimentally validated that even state
of the art Cascaded Classification Models [9] that
combine inputs from object detectors [3] and occlu-
sion boundary detectors [11], fail to produce decent
3D models on images with foreground objects.

6.2 User Experiments

To better understand the working range of our
system and the improvement over fully-automatic
methods, parts of the interface (scribbling and hori-
zon line specification) were used for an online ex-



Table 1: Results on 300 random images, with an
experienced user providing input.

User input led to: No. of Images %
bad result 0 0.0
no difference 11 3.7
some improvement 73 24.3
significant improvement 216 72
Total 300 100

periment. Despite not being a controlled experi-
ment, we obtained insightful answers from a large
user group to two questions: 1) Are the results gen-
erally perceived as good, and 2) how much of a im-
provement can be achieved through user input?

Users could upload any image, although a note
mentioned that the system performs better on im-
ages of “environments“ than objects. After see-
ing the initial 3D model, users gave inputs rang-
ing from one small stroke to extensive strokes, e.g.
for the waterfall image (video). Anyone could vote
a “Thumbs-up“ or “Thumbs-down“, but each user
was restricted to one vote per model.

Here, 1238 (inexperienced) users created 3D
models for 3775 images and 84% of models were
rated good. Some results in this paper are from this
experiment: the waterfall, the Reichstag, Prague
and ski slope pictures (Fig. 8). Admittedly, this as-
sessment is not indicative of absolute reconstruction
accuracy, but answered our first question: users are
generally pleased with the visual quality.

To remove the user’s experience as an influenc-
ing factor, we did a second experiment with a single
user having moderate experience. The user was pro-
vided 300 random images with poor initial recon-
struction (adjudged by online voters), and 50 im-
ages with good models (from the Make3D database
[27]). The user spent 30 minutes providing input
to 350 images (under 5 sec/image). He then com-
pared the result against the automatic reconstruction
based on four discrete grades. Table 1 and Table
2 summarize the results. Notably, 72% of random
images were significantly improved and 96.3% (=
72% + 24.3%) were convincing. We also see that
user input helps, even if the initial reconstruction is
good. These experiments indicate thati23 faithfully
constructs pleasing 3D models.

Table 2: Results on 50 images with good initial 3D
reconstruction, with an experienced user providing
input.

User input led to: No. of Images %
bad result 0 0.0
no difference 12 24.0
some improvement 34 68.0
significant improvement 4 8.0
Total 50 100

6.3 Picture Display and Photographic
Postprocessing

The 3D information enables display and editing in
ways previously impossible for images from regular
cameras (see video): 3D flythroughs,Ken Burns Ef-
fect, Dolly Zoomand depth-of-field modifications.
Dramatic 3D flythroughs provide an immersive ex-
perience of the spatial structure of the scene (Fig.
8). TheKen Burns Effect, where the camera slowly
pans and zooms over a static image (used in doc-
umentaries), can be createdperspectively-correct
with actual depth and parallax. Cinematographic
techniques like theDolly or Hitchcock Zoom, where
the virtual camera moves towards or away from the
scene and concurrently the zoom is adjusted so that
a certain scene element remains unchanged, can
now be created. This creates a dramatic perspective
distortion of the peripheral scene. Advanced editing
such as selectively adjusting the depth-of-field and
refocussing to any distance can be achieved due to
the per-pixel depth information (Fig. 7).

7 Discussion and Conclusion

Feedback to the user isn’t immediate, but computa-
tion times are reasonable: computing features (50-
60s, once per image), model inference with scrib-
bles (5-6s), foreground segmentation (10s), matting
(30s) and inpainting (10-160s depending on reso-
lution); on a Quad Core 2.4 GHz with 4GB RAM,
with unoptimized MATLAB code.

Despite convincing results, our approach has
some limitations. On difficult scenes, foreground
segmentation may need several attempts for satis-
fying results. On scenes with similar foreground
and background color, Bayesian matting may not



Figure 7: Virtual image refocusing: (a) focus on
foreground, (b) focus on background.

always create an accurate matte. In practice, these
artifacts are not strongly noticeable.

We also make some heuristic assumptions. Our
placement method for foreground billboards is ef-
fective in general but sometimes incorrect (e.g. a
scene with no obvious ground area). Our 3D models
areplausible, not metrically correct: important spa-
tial relations between 3D scene elements are cap-
tured approximately, permitting faithful novel view-
point rendering, but sometimes leading to visual ar-
tifacts: in Fig. 1, the tree branches are part of the
background. Normally, these are barely noticeable.

Despite these limitations, in this paper we pre-
sented an effective new algorithm to reconstruct
convincing 3D models from a single image. It is
based on a fruitful combination of a learning-based
reconstruction method with supporting input from
the user. We have shown that our algorithm enables
even inexperienced users to rapidly create realistic
models that are superior in quality to previous meth-
ods, and enable advanced image display and editing
capabilities.
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