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Abstract— In recent years, the convergence of computer
vision and computer graphics has put forth free-viewpoint
video as a new field of research. The goal is to advance tra-
ditional 2D video into an immersive medium that enables
the viewer to interactively choose an arbitrary viewpoint in
3D space onto the a scene while it plays back. In this paper
we give an overview of a system for reconstructing, render-
ing and encoding free-viewpoint videos of human actors. It
employs a hardware-accelerated marker-free optical mo-
tion capture algorithm from multi-view video streams and
an a-priori body model to reconstruct shape and motion
of a moving actor. Real-time high-quality rendering of the
moving person from arbitrary perspectives is achieved by
applying a multi-view texturing approach from the video
frames. We also present a predictive encoding as well as
a 4D-SPIHT wavelet compression mechanism that both
exploit the 3D scene geometry for efficient encoding of the
multi-view texture images.

I. INTRODUCTION

We currently witness the convergence of the fields of com-
puter graphics and computer vision. This development has
been motivated by the idea of creating photo-realistic visual-
izations of real-world scenes in a computer not by designing
models of shape and appearance, but by reconstructing these
models from photographic or video data of the real world.
One novel field of research that has been spawned by this
convergence is the field of free-viewpoint video. In traditional
video, the viewpoint onto a scene has been determined by the
director and cannot be changed by the viewer. The goal of free-
viewpoint video is to enable the viewer to interactively choose
an arbitrary viewpoint onto the playback of a dynamic scene
that was previously recorded in the real world. The algorithmic
challenges to make such a technology reality are manifold and
involve the acquisition of multi-view video (henceforth MVV)
streams, the reconstruction of the recorded dynamic scenes and
the efficient encoding of the 3D video footage. In this paper we
describe our algorithmic solutions to these problems that lead
to the development of a model-based free-viewpoint video sys-
tem of human actors [1]. Our approach applies a model-based
marker-less human motion capture algorithm to reconstruct
free-viewpoint videos from MVV footage. The reconstructed
3D video can then be played back in real-time from any
arbitrary viewpoint. Photo-realistic surface appearance of the
actor is attained by creating dynamic MVV textures from the

Fig. 1. Overview of the free-viewpoint video acquisition and
rendering system.

input video footage. We also developed algorithmic solutions
for efficient compression of the surface textures.

II. RELATED WORK
A variety of different approaches have been proposed in

the literature that aim at transforming 2D video and television
into an immersive 3D medium. Free-viewpoint video is one
category of 3D video in which the viewer shall be given
the flexibility to interactively position himself at an arbitrary
virtual location in a 3D. But the term 3D video also comprises
other techniques, such as depth-image-based [2] or panoramic
video [3].

The trail for 3D video applications was paved by algorithms
from image-based rendering that aim at reconstructing novel
renderings of a scene from input images [4]. These techniques
have motivated novel research that draws from experience in
computer vision and computer graphics to explicitly create
3D video systems. In depth-image-based approaches, novel
viewpoints of a scene are reconstructed from color video and
depth maps [2]. In [5] and [6] dynamic 3D scene geometry
is reconstructed via stereo algorithms from multiple video
cameras, and during playback the viewer can attain novel
viewpoints in between the recording imaging sensors. In [7]
a shape-from silhouette method is applied to reconstruct dy-
namic scenes from multiple video streams. Applying light-
field based methods for free-viewpoint video has also been
considered [8].

Whereas 3D video provides interactivity only on the
viewer’s side, in 3D TV the full pipeline from acquisition



Fig. 2. Blend between rendered body model and underlying triangle mesh (l); body model with kinematic structure (m); rendered
free-viewpoint video (r).

to display needs to run in real-time. A 3D TV system for
a restricted set of novel viewpoints based on multiple video
cameras for recording and multiple projectors for display has
been presented in [9].

We propose a model-based system for free-viewpoint videos
of human actors that employs a marker-less motion capture
approach to estimate motion parameters. A comprehensive
review of computer vision based motion capture algorithms
can be found in the survey paper [10].

Whereas acquisition and rendering of free-viewpoint videos
is one aspect, encoding of the 3D videos is essential for
efficient transmission over broadcasting channels [11].

III. THE BIG PICTURE

Our free-viewpoint video acquisition and rendering system
consists of: a multi-camera system for recording, a model-
based marker-free optical motion capture algorithm for re-
construction, and a real-time renderer for display of the free-
viewpoint videos [1]. The system consists of an off-line and
an online component (Fig. 1). The off-line part involves the
recording of the MVV footage of the actor with a set of
synchronized video cameras as well as the estimation of the
person’s motion parameters. The (optional) texture compres-
sion is also performed off-line. Both, for estimating motion
parameters, as well as for rendering the 3D video from a novel
viewpoint, we employ an a-priori human body model (Fig. 2).
The optical motion capture algorithm uses silhouettes of the
moving person and an error measure computed in graphics
hardware to robustly estimate motion parameters. In an initial-
ization step, the shape and proportions of our a-priori model
are adapted to the appearance of the recorded person.

The online component of the system provides a real-time
renderer with an interaction interface for the user. Two dif-
ferent rendering systems are provided. Both renderers display
the body model in the sequence of captured poses. Renderer
I textures the model with the back-projected and rendered
segmented video frames. Renderer II, on the other hand, ap-
plies time-varying texture maps on the human body model
that have been created in a pre-processing step. The texture
atlas, a parameterization function, allows our surface texture
compression schemes to efficiently exploit scene geometry and
temporal coherence [12].

IV. MULTI-VIEW VIDEO RECORDING
The video sequences used as inputs to our system are

recorded in our multi-view video studio [13]. IEEE1394 cam-
eras are placed in a convergent setup around the center of
the scene. The video sequences used in our experiments are
recorded from 8 static viewing positions arranged at approx-
imately equal angles and distances around the center of the
room. All cameras are synchronized and record at a resolution
of 320x240 pixels and a frame rate of 15 fps (maximum frame
rate with external trigger). The cameras are calibrated into a
global coordinate system. In each video frame, the silhouette
of the person in the foreground is computed via background
subtraction.

V. THE MODEL
In our system we apply a generic human body model consist-

ing of 16 individual body segments. Each segment’s surface is
represented via a closed triangle mesh. The model’s kinematics
are defined via 17 joints that connect the body segments and
form a hierarchical skeleton structure. 35 pose parameters are
needed to completely define the pose of the body. In total, more
than 21000 triangles make up the human body model (Fig. 2).

The generic model does not, in general, have the same
proportions as its human counterpart. To be able to adapt model
size and proportions to the recorded person, each segment can
be individually scaled, and its surface deformed. The param-
eters controlling model stature and build are derived from the
model overlap with silhouette images of an initialization pose.
They are kept fixed during actual motion capture.

VI. MOTION CAPTURE
Since any form of visual markers in the scene would neces-

sarily change its natural appearance, we developed a marker-
less human motion capture method to acquire free-viewpoint
videos based on our a-priori model. In our method, the indi-
vidualized geometry model automatically tracks the motion of
a person by optimizing the 35 joint parameters for each time
step. This is achieved by matching the projected body model
to the segmented silhouette images of the person in each of
the input camera views so that the model performs the same
movements as the human in front of the cameras.

The pose parameters are determined by means of a hierarchi-
cal non-linear optimization procedure. The number of pixels



of the projected model silhouettes and the input silhouettes
that do not overlap is our comparison measure. Conveniently,
the exclusive-or (XOR) operation between the rendered model
silhouettes and the segmented video-image silhouettes yields
exactly those pixels. The sum of these XOR pixels over all
camera perspectives forms our error measure that can be ef-
ficiently evaluated in graphics hardware.

For numerical optimization of the pose parameters we
employ a standard non-linear optimization method, such as
Powell’s method. To efficiently avoid local minima and to
obtain reliable model pose parameter values, the parameters
are not all optimized simultaneously. Instead, the model’s
hierarchical structure is exploited. Model parameter estimation
is performed in descending order with respect to the individual
segments’ impact on silhouette appearance and their position
along the model’s kinematic chain. First, the position and
orientation of the torso are varied to find its 3D location. Next
the arms and legs are fitted using a joint parameterization for
their lower and upper parts. Finally, the hands and the feet are
regarded.

To avoid local, sub-optimal error minima for the arms and
legs a limited regular grid search precedes the optimization
search. This procedure accelerates convergence and effectively
avoids local minima. Inter-penetrations between limbs are pre-
vented by incorporating a collision check based on bounding
boxes into the parameter estimation.

The motion parameters as well as the body deformation
parameters are saved in our proprietary free-viewpoint video
file format that serves as input for the real-time renderer.

Recently, we have enhanced the basic silhouette-based
tracking system by implementing it as a client-server applica-
tion using 5 CPUs and GPUs [14]. We also included texture
information into the tracking process by deriving pose correc-
tions from 3D corrective flow fields reconstructed from optical
flow [15].

VII. RENDERING WITH PROJECTIVE TEXTURES
A high-quality 3D geometry model is now available that

closely matches the dynamic object in the scene over the
entire length of the sequence. Renderer I displays the free-
viewpoint video photo-realistically by rendering the model
in the sequence of captured body poses and by projectively
texturing the model with the segmented video frames. Time-
varying cloth folds and creases, shadows and facial expressions
are faithfully reproduced, lending a very natural, dynamic
appearance to the rendered object (Fig. 2). To attain optimal
rendering quality, the video textures need to be processed off-
line prior to rendering: Since the final surface texture at each
time step consists of multiple images taken from different
viewpoints, the images need to be appropriately blended in
order to appear as one consistent object surface texture. Also,
local visibility must be taken into account, and any adverse
effects due to inevitable small differences between model
geometry and the true 3D object surface must be countered
efficiently. For appropriate blending of the input camera views,
per-vertex blending weights need to be computed and the

visibility of each vertex in every input camera view needs to be
determined. If surface reflectance can be assumed to be approx-
imately Lambertian, view-dependent reflection effects play no
significant role. Thus, the weights are computed independent
of the output view in such a way that the camera seeing a vertex
best gets the highest blending weight. This is achieved by
assigning the reciprocal of the angle between the vertex normal
and a camera’s viewing direction as blending weight to each
camera’s texture fragment. An additional rescaling function is
applied to these weights that allows for the flexible adjustment
of the influence of the best camera on the final texture.

The 0/1-visibility of each vertex in each input camera view is
precomputed and saved as part of the free-viewpoint video file.
Since the silhouette outlines do not always exactly correspond
to the projected model outlines in each camera view, we apply
an extended visibility computation from a set of displaced
camera views to avoid projection artifacts.

Finally, while too generously segmented video frames do not
affect rendering quality, too small outlines can cause annoying
untextured regions. To counter such artifacts, all image silhou-
ettes are expanded by a couple of pixels prior to rendering.

During rendering, the color from each texture image is
multiplied by its vertex-associated normalized blending weight
and its 0/1-visibility in the programmable fragment stage of the
graphics board. The final pixel color is the sum of the scaled
texture colors.

Optionally, Renderer I can also reproduce view-dependent
lighting effects by means of view-dependent rescaling of the
view-independent blending weights.

VIII. RENDERING AND ENCODING USING VIDEO
TEXTURES

For encoding purposes we resort to a different texture rep-
resentation and rendering algorithm. Renderer II represents
surface textures as an angle-dependent video texture, or multi-
view video texture, that has been created beforehand using a
parameterization of the body model. During display Renderer
II unpacks the MVV textures from a compressed code-stream.

Since the texture changes only slightly with the viewing
angle and over time, MVV textures actually comprise corre-
lated 4D data volumes. In the following we detail how the
MVV textures are constructed and describe two methods for
their efficient encoding. No new compression method has to
be provided for the 3D model and motion capturing data, as
compressed bit-streams already are specified as sub-standards
of the MPEG4 AFX specification [16].

IX. TEXTURE ENCODING
A. Texture Atlas

The mapping from the input streams into texture space is
done by defining a texture atlas which maps the surface of
the 3D model into the 2D domain. The problem of creating
a texture atlas is closely related to the problem of surface pa-
rameterization. For general meshes it is necessary to introduce
cuts on the surface in order to bound the distortion. Those cuts
may partition the surface into distinct patches.
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Fig. 3. Resampling into the texture atlas: (a) Color-coded body
parts. (c) Corresponding regions in texture space. (b) Original
frame. (d) Resampled frame considering visibility (512x512).

Our method resembles the approach presented in [17], in
the way that our texture atlas is constructed by projecting the
triangles of one patch orthogonally onto a plane defined by
the average surface normal. Starting with one arbitrary seed
triangle, neighboring triangles are added to the patch until the
triangle normal deviates too much from the average normal. If
one patch cannot grow any further another seed triangle starts a
new patch. A separate texture atlas is constructed for each body
part which are then joined into a single atlas as demonstrated
in Figure 3a) and c).

Vertex programs on graphics hardware assist in the texture
resampling process. In order to compute visibility, we perform
a traditional shadow mapping approach with the camera po-
sition used as the light source. All non-visible texels will be
rendered black as can be seen in Figure 3d).

B. Compression Overview

Two compression approaches can be used:

• Predictive Texture Encoding [12]: A two step average
(first over all camera angles, then over all time steps) is
generated, then differential textures are computed with
respect to the average textures. All resulting textures are
then compressed using a shape-adaptive wavelet algo-
rithm. The format grants random access over 2 differential
image additions. .

• 4D-SPIHT coding [18]: All camera-specific textures com-
prise one large 4D array of texel data. For random ac-
cess and acceptable decoding time they are chopped into
blocks with an equal number of camera angles and time
duration. Unused texels are exploited to reduce entropy.
Afterwards, a modified SPIHT algorithm in four dimen-
sions provides the necessary, lossy data compression. The

Fig. 4. The averaging scheme for texture encoding.

SPIHT-specific data structure allows early termination of
decoding to fulfill time constraints in real-time playback.

C. Predictive Encoding Scheme
Encoding the video streams now means encoding the re-

sulting texture maps of each time step t and camera c. We
experienced a strong coherence inbetween the camera-specific
textures of one timestep as well as over time. The proposed
encoding reflects this coherence in a two level encoding.

The encoding is shape-adaptive, i.e., all black texels will be
encoded by a shape mask, and only the visible texels p(x,y, t,c)
for which vis(x,y, t,c) = 1 need to be considered for each
frame.

At first, the average T ′(x,y, t) of all camera textures at one
timestep is computed, and from this the average over all frames
T ′′(x,y) (the parameters x and y are left out in the remainder of
this paper). See Fig. 4 for a graphical sketch of the process.

After computing the average textures T ′ and T ′′ all textures
(also the input textures) are converted from RGB to YUV
color space in which all further processing is performed. Then,
only the T ′′ texture is encoded using a shape-adaptive wavelet
encoder (Binary Set Splitting with k-d Trees) [19].

Afterwards differential textures R(t,c) to the original texture
maps are extracted for each frame and camera. Weighting the
input in Equations 1-3 with the visibility vis when comput-
ing the averages avoids affecting the distance from the valid
pixel values to the computed average by non-visible pixels.
This would otherwise increase the entropy of the differential
textures and thus degrade encoding quality.

More specific, we first compute for each timestep the differ-
ence textures R′(t) between the overall T ′′ and the timestep
average T ′(t). In order to get back to the original textures
we further compute for each camera and timestep R(t,c) =
p(t,c)− (T ′′ + R′(t)). Again all R′(t) and R(t,c) are encoded
using shape-adaptive wavelet encoding.

Since the applied wavelet encoding is lossy the decoded
result would be strongly influenced by the decoding error in T ′′

and R′(t). We avoid this influence by computing all differences
with respect to the once encoded and decoded textures T̂ ′′ and
R̂′(t) respectively. Instead of averaging the entire stream by a
single T ′′ one may also define shorter time spans and compute
several T ′′.



Fig. 5. Group of Pictures arranged from MVV textures.

As the final result, the encoded data stream contains BISK-
encoded files for the YUV-planes and bitmasks of:

• T̂ ′′: the average of all timestep averages.
• R̂′(t): the difference textures to the timestep average.
• R̂(t,c): the difference textures of each camera texture.

D. 4D-SPIHT Encoding
1) Data grouping and Filling: Compression of a data

block commences when all necessary camera images are avail-
able as textures.

After resampling, we group the texture maps into blocks of
spatial and temporal coherency, yielding four-dimensional data
blocks of YUV samples. The block division corresponds to
the GOP (group of picture) block structure commonly used in
MPEG video formats, and allows for limited random access
as long as the whole 4D block containing a certain texture
is decoded, see Figure 5. U and V values can optionally be
subsampled, but we currently work with reduced bitrates for
these color components, see the SPIHT encoder below.

Unused texels (currently: black pixels) in these 4D blocks
are now filled with averages of the surrounding valid texels, see
Fig. 6 for an example. This ensures best possible data compres-
sion under the subsequently applied algorithm, as described
in [20].

To serve this purpose, the whole 4D data block is first
downsampled in a Laplacian 4D pyramid, all the way to the
lowest resolution of 1x1, taking the different dimension extents
into consideration (a division by two remains one if the result
would be smaller than one). Afterwards, the pyramid is tra-
versed backwards from the lowest to the highest resolution, and
each unused (black) texel receives the color of its associated,
average parent in the previous level. This way, it is ensured that
all unused texels are filled with a color value that corresponds
to the average of all valid texels in its support region.

Fig. 6. Left: input texture map. Right: Same map after filling
operation.

Fig. 7. Two texture map patches. Decoding was performed
with equal Y, U, V datarate, and using the fill feature. Top:
0.05 bpp; Middle: 0.25 bpp; Bottom: Encoder input.

2) Wavelet Encoding: The following 4D wavelet trans-
formation uses Haar wavelets. We take the 4D data block
that was filled in the previous step, and sequentially apply a
1D Haar wavelet tranform in all four dimensions until even
the texture dimension sizes have been reduced to 2. Finally,
compression commences. The compression algorithm is based
on the widely-used SPIHT algorithm, although in a new adap-
tation, making it suitable for 4D data. It is based on work
done in [20]. The encoder is currently able to handle a 4D
data block with pairs of equal dimensions (e.g. max(s,t,u,v)
= {8,8,512,512}, that is, 8 timesteps of 8 cameras at 512 x
512 resolution). The SPIHT encoder very much resembles its
classic 2D counterpart [21], with one exception: Since the 4D
dimensions are of different size, the codec has to be able to
detect boundary conditions that generate a different number of
descendants in the wavelet data traversal.

3) Decoding: Most decoders will probably extract several
time steps at once, since time steps are usually read sequen-
tially. The bit mask can only be applied if it has been transmit-
ted to the decoder. If this is not the case, shadow casting must
be applied for masking if multi-view interpolation is intended
(as noted in the next section).

Figure 7 shows example output from the reference decoder.
Notice the typical wash-out effect of wavelet compression. The
outer contours were transmitted in an additional shape-mask.



E. The Shape Mask
Texture shape masks are not needed if the original 3D

model is available; only visible texels will be accessed in
the rendering phase, since only those were exposed to the
camera in the given view. Therefore it suffices to provide the
renderer with the unmasked texture maps. If, on the other side,
intermediate views shall be rendered, then the texel visibility
mask needs to be applied to the texture maps before rendering
One way is to store it in the bitstream, which requires some
extra storage space. The other approach is to reconstruct the
relevant masks from the 3D model in the decoder, using the
visibility algorithm that was originally used by the encoder.
This improves compression, but requires a minimum of two
extra rendering passes.

X. RESULTS AND CONCLUSION

Our free-viewpoint video system can robustly reconstruct
such complex motion as that of expressive jazz dance(Fig. 2).
Fitting times of 1 s per frame are achievable (for details
see [1], [14]). With both rendering algorithms highly realistic
renditions of the scene from novel viewpoints are obtained,
preserving subtle details in surface appearance.

A novel rendering method enables photo-realistic display
of free-viewpoint videos using texture streams that have been
compressed in texture space. A straightforward way of texture
compression would be to encode the input video frames us-
ing MPEG2. Applying our predictive encoder as well as our
4D-SPIHT encoder in the texture domain has the advantage
that the codecs can benefit from structural scene information
during compression. With the predictive scheme, we obtain
compression rates in the range of 8:1 to 50:1. The 4D-SPIHT
encoder enables compression rates between 20:1 and 280:1, it
also allows for random access into the bitstream. Which codec
and which compression rates are suitable depend on the target
application and the tolerable PSNR value (see [12], [18] for
PSNR ranges).

The system produces convincing results on complex test
scenes both in terms of rendering and reconstruction. In future,
we plan to extend the system to automatically derive more
advanced surface appearance models.
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