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ABSTRACT
For realistic animation of an artificial character a body model
that represents the character’s kinematic structure is re-
quired. Hierarchical skeleton models are widely used which
represent bodies as chains of bones with interconnecting
joints. In video motion capture, animation parameters are
derived from the performance of a subject in the real world.
For this acquisition procedure too, a kinematic body model
is required. Typically, the generation of such a model for
tracking and animation is, at best, a semi-automatic pro-
cess. We present a novel approach that estimates a hierar-
chical skeleton model of an arbitrary moving subject from
sequences of voxel data that were reconstructed from multi-
view video footage. Our method does not require a-priori
information about the body structure. We demonstrate its
performance using synthetic and real data.

Categories and Subject Descriptors
I.3.7 [Computer Graphics]: Three-Dimensional Graph-
ics and Realism—Virtual Reality ; I.4.8 [Image Processing
and Computer Vision]: Scene Analysis—Motion, Track-

ing, Time-varying Imagery ; I.5.1 [Pattern Recognition]:
Models—Structural ; I.2.10 [Artificial Intelligence]: Vi-
sion and Scene Understanding—Motion,Video Analysis
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1. INTRODUCTION
The generation of realistic artificial characters has always

been a challenging problem in computer animation and in
the development of 3D virtual worlds. Not only the design
of a realistic physical appearance but also the generation of
life-like motion is a prerequisite for a convincing visual im-
pression. Many techniques have been developed that assist
the animator in the latter task spanning from key-framing,
over physics-based animation to motion capture. All these
techniques have in common, that they rely on a kinematic
skeleton model of the body which represents the character
as a chain of bones and interconnecting joints. In motion
capture, animation parameters are derived from the perfor-
mance of a moving subject in the real-world. Many systems
have been developed for capturing humans, but only the
marker-based optical ones are general enough to be applied
to a broader category of subjects, e.g. animals. The cap-
tured parameters define the pose in terms of the configura-
tions of the joints in the skeleton. The employed model has
to be designed manually before the capturing session starts
or it can be learned in a semi-automatic procedure [26]. Au-
tomatic construction of models for arbitrarily shaped bodies
has been difficult so far.

We have developed a novel approach that enables the au-
tomatic construction of a kinematic skeleton model of an ar-
bitrary moving subject. Our method does with practically
no a-priori information about the body structure. The in-
puts to our system are sequences of voxel volumes of a mov-
ing subject that can be reconstructed from multi-view video
streams by means of a non-intrusive shape-from-silhouette
approach. The system is flexible enough to derive the body
structure of any type of subject that can be modeled as a
linked kinematic chain, such as humans, most animals and
several mechanical structure. We expect this approach to
be a helpful tool for people working in computer anima-
tion and motion analysis. Although our method is mainly a
tool for reconstructing skeletons, we can also perform basic
marker-less optical motion tracking. We demonstrate our
system using volume sequences acquired in the real world,
as well as synthetic voxel data created with a 3D animation
package.

2. RELATED WORK
Commercial human motion capture systems can be classi-

fied as mechanical, electromagnetic, or optical systems [21].
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Figure 1: Visualization of our algorithm’s workflow.

Video-based systems used in the industry typically require
the person to wear optical markers on the body to whose
3D locations a kinematic skeleton is fitted [26]. Since in
many application scenarios no visual intrusion into the scene
is desired, researchers in computer vision have investigated
marker-free optical methods [12]. Some of these methods
work in 2D and represent the body by a probabilistic re-
gion model [30] or a stick figure [18]. More advanced al-
gorithms employ a kinematic skeleton assembled of simple
shape primitives, such as cylinders [25], ellipsoids [7], or su-
perquadrics [13]. Inverse kinematics approaches linearly ap-
proximate the non-linear mapping from image to param-
eter space [3, 31] to compute model parameters directly.
Analysis-through-synthesis methods search for optimal body
parameters that minimize the misalignment between image
and projected model. To assess the goodness-of-fit, features,
such as image discontinuities, are typically extracted from
the video frames [13]. A force field exerted by multiple im-
age silhouettes aligns a 3D body model in Ref. [10]. In
Ref. [23] a combination of stereo and silhouette fitting is
used to estimate human motion. A hardware-accelerated
silhouette-based motion estimation is described in Ref. [5],
and in Ref. [11] a particle filter is applied to estimate body
pose parameters from silhouette views.

Recently, sequences of shape-from-silhouette (visual hull)
models have been considered as input data for human mo-
tion estimation. Ellipsoidal body models [7], kinematic skele-
tons [20], or skeleton models with attached volume sam-
ples [29] are fitted to the volume data. Other visual hull-
based approaches fit a pre-defined kinematic model with
triangular mesh surface representation [2] to the volumes,
or employ a Kalman Filter and primitive shapes for track-
ing [22].

All previously mentioned marker-free techniques rely on
some form of pre-designed body model or require a signif-
icant amount of a-priori knowledge to generate the model
from the data in a semi-automatic procedure. In contrast,
we present an approach that estimates the moving subject’s
kinematic structure from the motion of individual rigid body
parts that were automatically identified. We achieve this by
combining a volume decomposition technique based on su-
perquadric shells with a motion tracking of these primitive
shapes. The derived model may then serve as a representa-
tion for motion tracking.

The idea of characterizing 3D point clouds by means of
fitting primitive shapes is a common approach in 3D shape

analysis (see [19] for a survey) where it is typically applied
to static data. In Ref. [8], multiple superquadric shapes are
used to decompose 3D point data into primitive sub-shapes.
The same category of geometric primitives is used in com-
puter vision for object recognition, range map segmenta-
tion [17] and analysis of medical data sets [1]. A method
for clustering triangle meshes which can also extract shape
skeletons is described in [15].

Most similar to our approach is the work by Cheung et
al. [6], where a person’s skeleton and motion are estimated
from visual hulls, and the work by Kakadiaris et al. [14]
where body models are estimated from multiple silhouette
images. Our method differs from these approaches in that
it does not require a dedicated initialization phase where
prescribed motion sequences are to be performed with each
limb separately. Thus, our method requires far less a-priori
information about the tracked subject.

In contrast to our previous work [9], we now employ su-
perquadrics, a class of shape primitives that can approxi-
mate many volumes more accurately. Thus, we designed a
novel split and merge approach, a novel method for rigid
body classification and a new criterion for joint localization.

3. OVERVIEW
Fig. 1 illustrates the main algorithmic workflow of our

method. The system expects a voxel volume V (t) for each
time step t of a motion sequence as input (Sect. 4). In step 1,
the Superquadric Fitting step, each V (t) is packed with su-
perquadric shells using a split and merge approach (Sect. 5).
The result is a set of fitted shape primitives Q(t) and a list
of associated voxel subsets S(t) for each time instant. The
correspondences between superquadrics at different time in-
stants are established by means of a dynamic programming
method in step 2, the Correspondence Finding step (Sect. 6).
The result of step 2 is a path for each primitive shape that
describes its motion over time. Together, all superquadric
paths form the path set P . Knowing their motion, the prim-
itives are clustered into separate rigid bodies in step 3, the
Body Part Identification step (Sect. 7). After step 3, the
motion of each rigid body over time is known, and joint lo-
cations between neighboring bodies can be estimated in step
4, the Skeleton Reconstruction step (Sect. 8).

4. INPUT DATA
It is our intent to demonstrate that the presented method

is capable of reliably estimating kinematic body models from



Figure 3: Different superquadric shapes obtained
with different ε1 and ε2.

multi-view video data acquired in the real world. Unfortu-
nately, it turns out to be difficult to find decent test subjects
for the acquisition of multi-view video sequences of anything
else but humans. Thus, in order to complement the human
motion data that we recorded in our multi-camera studio, we
created several synthetic data sets to demonstrate the flexi-
bility of our approach. The synthetic sequences were gener-
ated with 3D Studio MaxTM by placing animation skeletons
into the surface meshes of a bird, a snowman and a monster.
Animations with these models were created via key-framing.
For each time frame of animation, a separate surface voxel
set was exported.

The video footage acquired in the real word was recorded
in our multi-view video studio [28]. Eight synchronized cam-
eras are placed in a convergent setup around the center of
the scene. Each camera records at a resolution of 320x240
pixels and at a frame rate of 15 fps which is the technical
limit for external synchronization. The cameras are met-
rically calibrated into a common coordinate system. From
image silhouettes we reconstruct the voxel-based volume of
the object in the foreground by means of a space-carving
approach [16]. In addition to simple shape-from-silhouette
reconstruction, this method employs a color-consistency cri-
terion over multiple camera views to enhance the reconstruc-
tion quality. In our experiments, we carve surface voxel sets
out of volume blocks of 2563 volume elements.

5. SUPERQUADRIC FITTING

5.1 Fitting a Superquadric to Voxel Data
A superquadric is a closed curve defined as the solution

of the implicit equation
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In Eq. 1 a1, a2 and a3 are the radii along the three main
axes, and ε1 and ε2 are roundness parameters. All points
that fulfill this equation lie by definition on the surface
of the superquadric. If one considers the left-hand-side of
Eq. 1 being a function F (x, y, z), a simple test for decid-
ing if a point (x, y, z) lies inside (F < 1), on the surface of
(F = 1), or outside (F > 1) the primitive shape is feasi-
ble. Depending on the roundness parameters, the shape of
a superquadric shell mediates between circular and rectan-
gular, enabling a variety of intermediate shapes (see Fig. 3).
A superquadric in a general position is described by three
additional rotation parameters (Rx, Ry, Rz) and three trans-
lation parameters (Tx, Ty, Tz) with respect to the world ori-
gin. Thus, in order to fit a superquadric Q to a set of N

3D points (in our case surface voxels) such that its surface
comes as close as possible to all points, 11 shape parame-
ters Q = [a1, a2, a3, ε1, ε2, Rx, Ry, Rz, Tx, Ty, Tz] need to be
determined. The optimal parameters of a superquadric ap-
proximating a 3D voxel set are found by numerically mini-
mizing an error function that measures the distance between

the shape’s surface and the volume elements.
The choice of a good error function is essential for the

quality of the final fit. We have run experiments with several
different distant measures and found the following one to
produce the best results:

D =
a1a2a3

N

N
∑

i=1

(F (xi, yi, zi)
ε1 − 1)2 (2)

In Eq. 2 N is the number of voxels and d = F (xi, yi, zi)
ε1 − 1

is an approximation to the distance of a volume element to
the superquadric surface as proposed in Ref. [17]. The factor
a1a2a3

N
is included in order to prevent a shape primitive from

growing too much in one direction or uniformly in all direc-
tions. We have evaluated several non-linear optimization
schemes on test voxel sets to identify the most appropri-
ate minimizer. We achieved best results with the LBFGS-B
method [4], which is a quasi-Newton algorithm that permits
the specification of bound constraints on the parameters.
Results with other numerical optimization schemes such as
Amoeba (a downhill-simplex variant), Powell’s method (a
direction set method), and the often used Levenberg-Mar-
quardt optimizer were significantly worse (see Ref. [24] for
information on these methods). This is mainly due to the
fact that these methods don’t allow for constrains on the
parameter space, and thus it happens frequently that the
roundness parameters become negative which corresponds
to inappropriate superquadric shapes.

A good initial set of parameters to start the minimization
with is found by fitting a regular ellipsoid to the voxel data
(a regular ellipsoid can be expressed as a superquadric by
setting ε1 = ε2 = 1). The ellipsoid’s position T ix, T iy, T iz
coincides with the voxel set’s center of gravity, the directions
of its three main axes are identical to the directions of the
eigenvectors of the voxel set’s covariance matrix [7]. The
initial radii a i1, a i2, a i3 along the main axes are found as
a ij = 2 ·

√

λj , λj being the eigenvalue corresponding to
eigenvector j [1]. The initial rotation R ix, R iy, R iz is also
derived from the directions of the eigenvectors.

5.2 Split and Merge
Using the method described in Sect. 5.1 for each time

step, we fill the voxel volumes with superquadric shells. We
achieve this by applying a hierarchical split and merge ap-
proach [8]. The procedure starts with a split stage, approx-
imating the whole voxel volume first by one superquadric
which is subdivided into two superquadrics if this reduces
the overall fitting error (Fig. 2). The split stage recursively
processes each newly created superquadric in the same way,
thereby producing a hierarchical decomposition of the voxel
set. The split stage is performed for each voxel volume V (t)
individually.

The merge stage follows the split stage and improves the
fitting result by merging pairs of neighboring superquadrics
into one. It is performed only for the voxel volume V (1) of
the first time step.

In the following the individual steps of the split stage and
the merge stage are detailed.

5.2.1 Split Stage
For each V (t):

1 The whole set of 3D voxels V (t) is approximated by
one superquadric Q.
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Figure 2: Illustration of the split and merge procedure using the snowman model as an example.

2 The set of 3D voxels is split into two subsets S1 and S2

along the plane P orthogonal to the major inertia axis
of the voxel set (Note that P contains the centroid of
the set).

3 S1 and S2 are approximated individually by one su-
perquadric each. For each subset, the procedure is
repeated from step 2.

We obtain a set of shapes Qsplit(t) and a set of correspond-
ing voxel subsets Ssplit(t) that approximate the voxel model
V (t). After a sufficient number of subdivisions (in our case
typically 7), there is a high likelihood that all points in one
voxel subset belong to the same rigid body of the moving
subject’s kinematic skeleton. Nonetheless, it is still possible
that more than one superquadric is fitted to one rigid body
(e.g. four superquadrics to the upper arm).

5.2.2 Merge Stage
For V (1) only:

1 For each subset of voxels Si ∈ Ssplit, we determine the
list Ki = {Sn1, .., Snk} of neighboring voxel subsets
(Sn1, .., Snk ∈ Ssplit).

2 For each possible pairing of the voxel set Si and one
neighboring voxel set Sj ∈ Ki, a merged voxel set Mj

is created. A novel superquadric is fitted to each Mj

and the fitting error Dj is computed (Eq. 2). From
all paired superquadrics whose Dj is smaller than the
sum of fitting errors of the superquadrics it was created
from, the one with the lowest Dj is chosen to replace
the two primitives it emerged from.

3 A new set of superquadrics is obtained. The procedure
is repeated from step 1. It terminates when no further
reduction of the fitting error is possible.

We perform the merging step only on the first voxel vol-
ume V (1). If we were considering voxel volumes from dif-
ferent time steps independently and merging superquadrics
only due to structural criteria, it would not be possible to
prevent erroneous merges across rigid body boundaries. The
resulting set of shapes is the starting point for the corre-
spondence finding step (Sect 6) which exploits the temporal
dimension to prevent merging across boundaries of separate
bodies.

The result of the split and merge process is a set of su-
perquadrics Q(t) and a set of voxel subsets S(t) for each
V (t).

6. CORRESPONDENCE FINDING
After subdividing each voxel volume using primitive shapes,

a set of correspondences C(t, t + 1) between each pair of su-
perquadric sets Q(t) and Q(t + 1) at subsequent time steps
is computed. The set of correspondences describes for each
shape primitive in Q(t) to which member of Q(t + 1) it is
related. For every superquadric, the correspondences indi-
cate from which 3D location at t to which position at t + 1
it moves.

Assuming that we can keep the number of superquadrics
constant for all time instants, the correspondences enable
the reconstruction of a complete motion path for each indi-
vidual shape primitive over the duration of the whole input
sequence. The correspondence finding procedure looks at
each pair of superquadric sets Q(t) and Q(t + 1) at subse-
quent time instants separately.

Since the number of shape primitives in the sets Q(t)
and Q(t + 1) may differ, we employ a two-stage procedure
to establish the correspondences and to reorganize the su-
perquadrics such that their number at each time instant is
constant. This way we establish a bijective correspondence
mapping between superquadrics at subsequent time steps.

Technically, the correspondences from t to t + 1 are es-
tablished by searching for correspondences from t + 1 to t

which are, in the end, inverted. In the first stage, a corre-
spondence for each individual shape primitive is established
to a superquadric at the preceding time instant by means
of a dynamic programming approach [27]. The error func-
tion used in this optimization procedure is the Euclidean
distance between the superquadric centers.

Dynamic programming establishes a first set of correspon-
dences. After the first stage, two cases of degenerate corre-
spondences may occur that need to be corrected in a second
stage in order to establish a bijective mapping.

The first case, the unmatched superquadric (Fig. 4 A),
occurs if there exists a superquadric Q1 at time t to which no
superquadric from time t + 1 established a correspondence.
To solve this problem, the superquadric Q2 ∈ Q(t+1) closest
to Q1 according to the Euclidean distance is selected. The
voxel subset associated to Q2 is split in two and two new
superquadrics Q3 and Q4 are fitted to the newly created
voxel subsets. Q3 inherits the original correspondence to
time t from Q2, Q4 establishes a new correspondence to Q1.

The second case, the multi-match (Fig. 4 B), arises if more
than one superquadric from Q(t + 1) found the same part-
ner in Q(t). We solve this problem by merging all the su-
perquadrics at t+1 corresponding to the same superquadric
at t. This is achieved by merging all the associated voxel
subsets and fitting a new shape primitive.



The two degenerate cases are corrected subsequently. Af-
ter stage two of the correspondence finding, the correspon-
dence directions are inverted. By this means, for each prim-
itive in Q(t) exactly one partner from Q(t + 1) is found.

After all time steps have been processed in this way, each
superquadric set contains the same number of shapes as the
set Q(1). Note that in order to establish correct correspon-
dences C(t, t+1) the superquadric sets are modified as well.
For each shape primitive in Q(1) a complete motion path
over the whole sequence can be identified by linking subse-
quent correspondences. The so-created set of paths P con-
tains for each Qi ∈ Q(1) a path Pi, Pi being an ordered set of
3D coordinates Pi = {(xi(t), yi(t), zi(t)) | t valid time step}
of the superquadric center at time t. Fig. 5 (1) shows ex-
ample paths of individual superquadrics that we found with
our approach.

Initial set of correspondences

(A) Unmatched Superquadric

Corrected set of correspondences
t t+1 t t+1

Initial set of correspondences

(B) Multi−match

Corrected set of correspondences
t t+1 t t+1

Figure 4: Handling degenerate cases during corre-
spondence finding.

7. BODY PART IDENTIFICATION
The paths of P provide all necessary information we need

to identify separate rigid bodies in the kinematic skeleton
of the moving subject. In case we are analyzing volume
data of a human, this means that the paths enable us to
identify, for example, the upper arm segment or the lower
leg segment. Implicitly, we make the simplifying assumption
that individual kinematic elements can be represented as
rigid structures that do not undergo strong deformations.

In order to identify individual rigid bodies, we make use of
the fact that the mutual Euclidean distance between any two
points on the same body does not change while the skeleton
is moving. Thus, if the mutual distance between the motion
paths of two superquadrics over time is subject to significant
variations, it is most likely that the two primitives do not
lie inside the same rigid body.

This criterion gives us a procedure at hand which enables
clustering individual superquadrics into separate kinematic
elements of the whole body. We employ a voting-based test
that analyzes the curve of Euclidean distances between su-
perquadric paths over time. The value of the distance curve
di,j(t) between the paths of two superquadrics Qi ∈ Q(1)
and Qj ∈ Q(1) at time t is defined as the Euclidean distance
between their respective positions on the paths at t. In or-

der to decide if Qi and Qj lie on the same rigid body we
look for the presence of two features in the distance curves.

The first feature is a significant change in the first deriva-
tive of di,j at some time step t. For each t at which d′

i,j(t) >

Tderiv, Tderiv being a derivative threshold, a voting counter
vc(i, j)deriv is increased by one.

The second feature arises at every time step for which the
value of the distance curve differs by more than a threshold
from the initial distance value di,j(1). Thus, for each t with
‖di,j(t)−di,j(1)‖ > Tdiff , Tdiff being a difference threshold,
a second voting counter vc(i, j)diff is increased by one.

The final vote vc(i, j) is the sum of the two previously
mentioned voting counters vc(i, j) = vc(i, j)deriv+vc(i, j)diff .
If this final vote is larger than a threshold Tvote, the distance
curve fails the test and the superquadrics are considered to
be on different rigid bodies.

To eliminate spurious peaks in a distance curve due to
noise, a median filter is applied to it before applying the
distance criterion. By means of our voting-based scheme
and appropriate thresholds (found through experiments) it
is possible to perform robust path comparison even in the
presence of measurement noise.

We apply the voting-based test to classify individual rigid
bodies as follows:

1 A seed superquadric Qseed ∈ E(1) is selected and a
distance curve dseed,k with each superquadric Qk ∈
E(1) \ {Qseed} is computed.

2 For each Qk the voting-based test is applied to dseed,k,
and Qk is classified as lying on the same rigid body if
the test is passed.

3 The procedure iterates by restarting from step 1 and
selecting a new seed from all superquadrics that have
not yet been assigned to a rigid body.

The seed Qseed in the first iteration is the superquadric
nearest to the center of gravity (COG) of the voxel set V (1).
In the subsequent iterations, the selected seed is the su-
perquadric nearest to the COG of the body part that was
found in the preceding iteration. This seed selection cri-
terion is a heuristics which enables the construction of a
hierarchy of rigid bodies in the moving character. The rigid
body detected first is considered to be the root of the skele-
ton hierarchy. Each subsequently detected rigid body is con-
sidered to be on the next lower hierarchy level, and to be
connected to the root. The whole classification procedure
is recursively applied to each individual rigid body on the
next lower hierarchy level, thereby further refining the set
of detected body parts.

In case of a human subject this strategy leads to the iden-
tification of one rigid body for the torso and one for each
arm, each leg and the head in the first iteration. Now the
procedure is repeated for each limb which produces the final
correct subdivision into body parts.

For each V (t) it is now known which voxel subsets form a
rigid body and how the rigid bodies move over time. Fig. 5
shows individual body parts as they were found in some of
our test data sets.

8. SKELETON RECONSTRUCTION
In the final step we use the detected rigid bodies and their

motion to estimate the 3D locations of joints in the skele-
ton hierarchy. Joint finding can be performed for each time



Figure 5: Motion paths of individual superquadrics as they were found by our method (1). Individual body
parts detected in different test subjects (2),(3),(4).

step individually, but we usually regard the skeleton recon-
structed for the first time instant as the reference model.
The rigid body hierarchy, and thus the information which
rigid bodies are connected, has already been determined in
the Body Part Identification step (Sect. 7). For each pair
of connected adjacent rigid bodies Ba and Bb the joint lo-
cation is estimated relative to the boundary voxels between
the voxel subsets associated with Ba and Bb. The joint
location at time t is estimated as the center of gravity of
the set of voxels which contains all those voxels from both
voxel subsets that have at least one adjacent voxel from the
other voxel subset, respectively. This is a simple but efficient
heuristic approach which produces good results for our test
data.

The primary goal of our system is to reconstruct a kine-
matic skeleton model. Nonetheless, since we are able to
build such a model for each time step of a motion sequence,
approximate motion tracking of the moving subject is also
feasible. Although applying our joint localization scheme to
each time step of video is not tracking in a strict sense since
we do not apply the same body model in each frame, it is
still possible to obtain a first rough estimate of the motion
parameters. In the future, we plan to further evolve our sys-
tem into a complete motion tracking approach that employs
the same body model at each time step of video.

9. RESULTS AND DISCUSSION
We evaluated the performance of our system using syn-

thetic and real data sets. The synthetic data sets we used
were the moving snowman (on avg. 8000 voxels per time
step), the bird (on avg. 11000 voxels per time step), and
the monster (on avg. 14000 voxels per time step). Motion
sequences with these models were created using 3D Studio
MaxTM. The snowman was animated using one point of ar-
ticulation at the neck, the derived skeleton and the correctly
detected two body parts are shown in Fig. 6. In order to
create the bird data set we animated 4 joints in a kinematic
skeleton, one at the neck, one at the tail and two at the roots
of the wings. The skeleton which was found by our method
nicely coincides with the actual kinematic model we used
for animation (Fig. 6). Our most complex data set is the
monster, a lizard-like four-legged creature. In total, we used
15 joints for animating its motion, 2 in the tail, 3 in each
leg and 1 at the neck. The skeleton of the creature that we
estimated is shown in Fig. 6. In the monster data set, it was
hard to identify the feet as separate rigid bodies since their
motion is only very marginal compared to the rest of the
body. In general, it is difficult to find decent segmentation

Figure 7: Plot of reconstructed (dashed) against
ground truth y-coordinate of one joint in the snow-
man skeleton for each time step of the input se-
quence.

thresholds if the relative motion between two body parts is
hardly noticeable.

Since for the synthetic sequences we know the ground
truth joint positions, we can provide an estimate of the accu-
racy of our approach. For visual illustration we plot in Fig. 7
the reconstructed y-coordinate against the true y-coordinate
of one joint in the snowman skeleton for each time step of
the input sequence. With the exception of some outliers, the
difference in y-coordinates is small (mostly below 2% with
respect to the length of the body, 5% in the worst case).

We also ran experiments with video footage of a mov-
ing person that was recorded in our multi-view video stu-
dio. From the multi-view silhouette frames shape-from-
silhouette voxel models were reconstructed. Although the
space carving approach eliminates most of the typical arti-
facts in shape-from-silhouette volumes that are due to in-
sufficient visibility, some noise still appears in the form of
bulky arms and legs. In our tests we analyzed a sequence
of 40 frames, roughly 22500 voxels each, in which the per-
son is only moving the arms and the head. This way it is
possible to nicely demonstrate the working principle of our
method. Since no motion is performed with the lower ex-
tremities, the torso and the legs are classified as belonging
to the same rigid body (Fig. 6). Even though the sequence
is very short, the kinematic structure of the arms, the leg
and the head are correctly found. Little inaccuracies in the
detected locations of the elbow joints can be observed. This
is mainly due to the fact that the sequence is very short and
that the person wears comparably wide cloths.



Figure 6: Top row: Monster with 3D Studio skeleton, animated joints are shown as spheres (1); motion of
individual body parts (2); estimated skeleton within voxel set, joints are shown as (blue) spheres between
bones, bones are shown in white (3),(4). Second row: Snowman with 3D Studio skeleton (1); estimated body
parts (2); reconstructed skeleton (3). Third row: Bird with 3D Studio skeleton (1); estimated body parts
and their motion (2); reconstructed skeleton (3),(4). Bottom row: Voxel sets from input sequence (1),(2);
identified body parts and skeleton if only upper extremities move (3); estimated skeleton only (4).

Due to the hierarchical optimization the most time con-
suming components of our approach are the split and merge
steps. Processing our test sequences on an Intel XeonTM 3.0
GHz we measured run-times of the splitting in the range
of 120-160 s per time step of the input sequence, and of
the merging in the range of 250-1000 s per time step. All
the other processing steps in our algorithm run significantly
faster. Correspondence finding takes 7-19 s for one time in-
stant, skeleton reconstruction 0.3-0.5 s, and body part iden-
tification 3-6 s per time instant.

An important advantage of our method over related ap-
proaches is that it estimates the body structure of an arbi-
trary moving subject with a minimum of a-priori informa-
tion. No special initialization motion is required to recon-
struct the body model, any motion sequence is equally ap-
propriate. Our experiments with real video data show that
the method’s performance does not significantly deteriorate
if measurement noise is present in the volume data.

In its current state, the system is subject to a couple of
limitations. Even though we don’t prescribe an initializa-
tion motion, two different adjacent rigid body segments can
only be discriminated if at least once in a sequence a rel-
ative motion between them can be observed. We consider
this a principal problem of a non-informed motion analysis
approach and not a limitation that is specific to our method.
Furthermore, we expect that the system’s performance will
deteriorate if voxels of individual rigid bodies merge fre-
quently with the rest of the volume (e.g. if the arms are
often kept tight to the torso).

Although our method does not operate on the same accu-
racy level as marker-based approaches for skeleton deriva-
tion and motion tracking, it is nonetheless a useful tool in
situations where visual interference with the captured scene
is inappropriate and no information about the structure of a
moving subject is available. In future, we will extend our ap-
proach to a complete skeleton learning and tracking method,



that uses the body structure learned in the first iteration to
follow the motion without the use of optical markers.

10. CONCLUSIONS AND FUTURE WORK
We presented a novel approach for estimating a kinematic

model of an arbitrarily structured moving body from se-
quences of voxel volumes reconstructed from video footage.
We demonstrated that our algorithm is equally well-suited
for the reconstruction of kinematic skeletons of animals and
humans. In addition to estimating body models the ap-
proach can also perform a simple motion tracking.

In general, we believe that the method is an algorithmic
component that can be used in combination with many non-
intrusive motion estimation algorithms described in the lit-
erature. This combination creates a very powerful marker-
free tracking system applicable to a large class of moving
subjects. To demonstrate this in the future, we intend to
further evolve the approach into a complete motion capture
system by combining it with a volume-based motion track-
ing scheme.
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