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Abstract— We investigate algorithms for computing en-

ergy efficient paths in ad-hoc radio networks. We demon-

strate how advanced data structures from computational

geometry can be employed to preprocess the position of

radio stations in such a way that approximately energy

optimal paths can be retrieved in constant time, i.e., inde-

pendent of the network size. We put particular emphasis

on actual implementations which demonstrate that large

constant factors hidden in the theoretical analysis are not

a big problem in practice.
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I. INTRODUCTION

Ad hoc radio networks are an attractive way to quickly

build a communication infrastructure without slow and

expensive deployment of a cable backbone. Since many

of the stations will be battery or solar powered, energy

consumption becomes a major issue in such networks.

We use the following widespread model for energy

consumption: The stations are defined by a set of n

points in the plane. The energy consumption for com-

munication between points p and q is assumed to be

ω(p, q) = |pq|σ for some constant σ > 1 where |pq|

denotes the Euclidean distance between p and q. In free

space σ = 2 gives an exact physical model. Values

σ ∈ (2, 4) can be used to approximate absorption effects

[Rap96], [Pat00].

We are now looking for paths connecting arbitrary

pairs of points that minimize energy consumption subject

to the additional constraint that at most k hops are

used. Limiting the number of hops accounts for distance

independent energy consumption (e.g., for encoding and

decoding signals) as well as for reliability and latency

problems connected with paths that use an unbounded

number of hops. For refinements of the model refer to

Section IV. In our considerations we assume k to be a

rather small constant.

This problem can be solved optimally in time O(kn2)

using well known algorithms for computing shortest

paths. However, this would be much too slow for all



Fig. 1. Screenshot of our Simulation Program

but very small networks. In [FMS03] we have therefore

developed an algorithm that produces paths that are

within a factor (1 + ε) from optimal in constant time

independent of the size of the network. If k and ε are

considered constants, the algorithm needs preprocessing

time O(n log n) and space O(n) for a lookup data

structure. However, this theoretical algorithm has large

hidden constant factors and it uses sophisticated data

structures from computational geometry for which there

is little experience with respect to their practicality.

The subject of the present paper is to help close this

gap between theory and practice. We study a number of

implementations of simple algorithms and new heuristics

as well as a variant of the approximation scheme from

[FMS03] but tuned for more practicability. Our presented

solutions can be modified to provide for additional re-

quirements like dynamic maintenance or fault-tolerance

which both improve the quality of service.

Related Work

In 1998, Bambos [Bam98] reviewed developments in

power control for wireless networks and emphasized the

need for minimum-power routing protocols. Since then a

vast amount of research has been conducted on the issue

of energy-conservation in ad-hoc and sensor networks,

see for example [JSAC02], [Pat00], [PRR01].

In the computational geometry community, Chan,

Efrat, and Har-Peled [EH98], [CE01] have made several

interesting observations for energy optimal paths with

unbounded number of hops. They observe that it suffices

to compute shortest paths in the Delaunay triangulation

of the input points, i.e., optimal paths can be computed

in time O(n log n). Note that this approach completely

collapses for k hop paths because most Delaunay edges

are very short. They also give a sophisticated O(n4/3+γ)

time algorithm for arbitrary monotone cost functions

ω(p, q) = f(|pq|) where γ is any positive constant.

For quadratic cost functions with offsets ω(p, q) =

|pq|2 + C, Beier, Sanders, and Sivadasan reduce that

to O(n1+γ), to O(kn log n) for k-hop paths, and to

O(log n) time queries for two hop paths using linear

space and O(n log n) time preprocessing. The latter

result is very simple, it uses Voronoi diagrams and an

associated point location data structure.



II. EXACT ALGORITHMS FOR FINDING

ENERGY-MINIMIZING k-HOP PATHS

Before we get to the actual algorithms let us give

a more formal and abstract definition of our energy-

minimizing k-hop path problem:

Given a set P of n points in Z
2 and some constant

k, report for a given query pair of points s, t ∈ P ,

a polygonal path π = π(s, t) = v0v1v2 . . . vl, with

vertices vi ∈ P and v0 = s, vl = t which consists of

at most k segments, i.e. l ≤ k, such that its weight

ω(π) =
∑

0≤i<l ω(vi, vi + 1) is minimized. By πopt =

πopt(s, t) we denote an optimal path from s to t under

this criterion.

In the following we assume that the weight function

ω is of the form ω(p, q) = |pq|σ with σ > 1 (the case

σ ≤ 1 is trivial as we just need to connect s and t

directly by one hop). For more general weight functions,

in particular if we also have a constant, node-dependent

offset like ω(p, q) = |pq|σ + cp, we refer to Section IV

for possible refinements of our presented algorithms.

A. The naive approach

The point set P together with the weight function ω

induces the complete weighted graph G(P, E, ω) with

vertex set P and edges (v, w) ∈ E of weight ω(v, w),

∀v 6= w ∈ P . This graph has n(n−1)/2 edges and for a

given query pair s, t ∈ P we are looking for the shortest

path πopt = π(s, t)opt from s to t in G which uses no

more than k edges.

This path πopt can be easily computed by dynamic

programming. Let π(s, v)
(i)
opt denote the shortest path

from the source node s to node v which uses no more

than i edges. Clearly π(s, v)
(1)
opt = sv, ∀v ∈ P − {s}.

π(s, v)
(i)
opt is determined as π(s, w)

(i−1)
opt v with w chosen

such that ω(π(s, w)
(i−1)
opt ) + ω(w, v) is minimized.

The naive dynamic programming approach fills a table

of dimension n× k using the above rules:

• ∀v ∈ P : π(s, v)
(1)
opt ← sv

• for i = 2 to k do

– ∀v ∈ P :

∗ compute π(s, v)
(i)
opt by looking at all possi-

ble w, the concatenations π(s, w)
(i−1)
opt v and

their weights ω(π(s, w)
(i−1)
opt ) + ω(w, v)

Clearly this algorithm has running time O(k · n2) as

we have to fill in a table of size k ·n and determining the

value of one cell costs O(n) since we look at all possible

w ∈ P . It is not hard to figure out that this approach only

works for extremely small problem instances and even

for those, it is rather slow as we get a quadratic behavior

in n per query.

B. Neighborhood Pruning

One obvious improvement to the above algorithm is

due to the observation that if we are interested in the

energy-minimal k-hop path from s to t, points which are

”far” away from the segment st cannot be of any use for

the solution. So let D denote the distance between the

query points, i.e. D = |st|. If we restrict our dynamic

programming approach to all points p ∈ P which have

distance at most λ ·D to the segment |st| – we call this

the λ-neighborhood of st –, what is the smallest value of

λ such that we can still compute the optimal solution ?

See Figure 2 for an example of λ-neighborhoods. It is not

hard to see that if the optimal path πopt leaves the region



which has distance at most λ ·D to st, the sum of the

Euclidean lengths of the segments of this path must be

at least 2 ·D ·
√

λ2 + 1/4. And as the ”optimal” strategy

to chop a path of any given length into k pieces such

that the overall energy is minimized, is to chop it into

pieces of equal length, we get the following inequality

(2 ·D ·
√

λ2 + 1/4)σ

kσ−1
≤ Dσ

which bounds λ in terms of the cost Dσ that are

incurred when taking just one direct hop from s to t.

So we get

λmax =

√
k

2σ−2

σ − 1

2

Therefore, if there are only few points in the neighbor-

hood of the query points s and t (more precisely if there

are only few points within distance λmax|st|), we first use

a standard range query data structure from computational

geometry to report all those points and run the naive

approach only for those and can expect a reasonably fast

query time, which is now only quadratic in the number

of points in the neighborhood of s and t.

Cascaded Neighborhood Pruning: In the neighbor-

hood pruning approach we have used the one-hop cost

as an upper bound to limit the size of the neighborhood

that still needs to be explored. Clearly, if we had a

better upper bound (i.e. tentative solution) for the cost of

getting from s to t within k hops, we could restrict the

size of the neighborhood even further. How could such

a better tentative solution be obtained? Well, we could

start with a very small value for λ, even λ = 0 is viable,

it just restricts the neighborhood to all points which lie

on the segment st. We run our dynamic programming

s t

λ = 1/11

λ = 5/22

λ = 5/11

Fig. 2. λ-neighborhoods of a segment st

approach on that set of points and use the outcome to

bound the maximal value of λ that we have to consider to

guarantee the optimal solution is found. So this cascaded

strategy could be implemented as follows:

1) λ← 0.1

2) upper = |st|σ

3) while (2·D·
√

λ2+1/4)σ

kσ−1 ≤ Dσ

• compute using dynamic programming the op-

timal k-hop path w.r.t. the λ-neighborhood of

st, update upper if necessary

• λ← λ · 2

The procedure terminates as soon as it can prove that

no larger neighborhood has to be inspected, which of

course happens no later than after O(log λmax) rounds.

For dense point sets, this will turn out to be a lot more

effective than the naive or simple neighborhood pruning

strategy without cascading.

III. APPROXIMATE ALGORITHMS FOR FINDING

ENERGY-MINIMIZING k-HOP PATHS

The neighborhood pruning approach – though helpful

for many problem instances – does not improve the

worst-case running time of the dynamic programming

approach as it might be the case that basically all the



points are in the neighborhood of the segment st and

have to be inspected.

But if we relax the exactness requirement and only

require approximate (1 + ε) solutions, i.e. we are happy

with paths π(s, t)app such that ω(π(s, t)app) ≤ (1 +

ε) · ω(π(s, t)opt) for any ε > 0 to be chosen from the

user, we can do better. In fact, using Grid Pruning we

can guarantee a logarithmic query time, when k, ε, σ are

considered constants.

A. Grid Pruning

The idea of Grid Pruning is to place a grid over the

neighborhood of the segment st and first report one

representative in each of the grid cells (this can be

done again using a standard geometric range query in

time O(log n) per grid cell). The dynamic programming

approach is then only performed on those representative

points and the computed path is used as result of the

computation. The smaller ε, the smaller the grid-cells

will be, and hence the better approximation of the

optimal path πopt we get.

In fact, one can show (see [FMS03]) that putting a grid

of cell-width α·D/k with α = ln 2
2
√

2
ε
σ , the computed path

πapp(s, t) has cost at most (1 + ε) · ω(πopt(s, t)).

The grid pruning algorithm looks as follows:

1) Put a grid of cell-width α · |st|/k on the λmax-

neighborhood of st with α = ln 2
2
√

2
ε
σ

2) For each grid cell C perform an orthogonal range

query to either certify that the cell is empty or

report one point inside which will serve as a

representative for C.

3) Compute the minimum k-hop path π(s, t) with

QP

(k
δ−1

δ + 1)|P Q|

α|P Q|/k

Fig. 3. 3-hop-query for P and Q: representatives for each cell are

denoted as solid points, the optimal path is drawn dotted, the path

computed by the algorithm solid

respect to all representatives and {s, t} using the

dynamic programming approach.

4) Return π(s, t)

The gain compared to the previous methods is that

we reduce the number of points to be considered to

O(σ2·k
4σ−2

σ

ε2 ), irrespectively how many points there are in

the neighborhood of st. So considering k, σ, ε constants,

the query time becomes O(log n) due to the range

queries, that have to be performed for each grid cell.

Please look at Figure 3 for a schematic drawing of how

the algorithm computes the approximate k-hop path.

Cascaded GridPruning: Clearly, the same trick of

looking at small neighborhoods of st first, which we have

used to improve the neighborhood pruning approach,

also works here. So first we only put the grid over

a very small neighborhood and consider larger and

larger neighborhoods until the required approximation



guarantee can be proven.

B. The Milestone Heuristic

For very dense point sets, there is another very simple

heuristic, which uses the observation that in the ”ideal”

case, the segment st is divided into k subsegments of

equal length. Clearly, if such a k-hop path can be ob-

tained, it is the optimum path. So the Milestone Heuristic

tries to approximate this ”ideal” path by virtually placing

the k − 1 ”ideal” radio stations v1, . . . vk−1 on st. As

these vi are typically not in P , we perform for each

of them a nearest neighbor query on the point set P

and use the outcome as the replacement for vi (each of

these queries can be performed in O(log n) time). Near-

est neighbor query data structures from computational

geometry are by now standard in many software libraries

and very space- and time-efficient implementations are

available, e.g. in [LEDA]. So the algorithm looks as

follows:

1) determine ”ideal” hop positions v1, . . . , vk−1

2) for each vi perform a nearest neighbor query on

P to obtain v′i ∈ P

3) output sv′1 . . . v′k−1t as the k-hop path

Unfortunately this approach can be fooled quite badly

if the point set P is not equally distributed and there are

large areas without any radio stations in the area between

s and t.

C. Path Templates via Clustering

The best query scheme we have seen so far is able

to answer a (s, t) query in O(log n) time (considering

k, δ, ε as constants). Standard range query data structures

Fig. 4. Example of split tree with additional blue edges.

were the only precomputed data structures used. Now

we explain how additional precomputation can further

reduce the query time. More precisely, we show how to

precompute a linear number of k-hop paths, such that

for every (s, t), a slight modification of one of these

precomputed path templates is a (1 + ε′) approximate

k-hop path and such a path can be accessed in constant

time. Here ε′ > 0 is the error incurred by the use of

these precomputed paths and can be chosen arbitrarily

small.

1) The Well-Separated Pair Decomposition: We will

first briefly introduce the so-called well-separated pair

decomposition due to Callahan and Kosaraju ([CK92]).

The split-tree of a set P of points in R
2 is the tree

constructed by the following recursive algorithm:

SplitTree(P )

1) if size(P )=1 then return leaf(P )

2) partition P into sets P1 and P2 by halving its

minimum enclosing box R(P ) along its longest

dimension

3) return a node with children (SplitTree(P1),

SplitTree(P2))
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Fig. 5. Clusters A and B are ’well-separated’ if d > s · r.

Although such a tree might have linear depth and

therefore a naive construction as above takes quadratic

time, Callahan and Kosaraju in [CK92] have shown how

to construct such a binary tree in O(n log n) time. With

every node of that tree we can conceptually associate

the set A of all points contained in its subtree as well as

their minimum enclosing box R(A). By r(A) we denote

the radius of the minimum enclosing disk of R(A).

We will also use A to denote the node associated with

the set A if we know that such a node exists.

For two sets A and B associated with two nodes of

a split tree, d(A, B) denotes the distance between the

centers of R(A) and R(B) respectively. A and B are

said to be well-separated if d(A, B) > S · r, where r

denotes the radius of the larger of the two minimum

enclosing balls of R(A) and R(B) respectively. S is

called the separation constant. Roughly, this means that

the distance the centers of R(A) and R(B) is about the

same as for any pair a ∈ A, b ∈ B.

In [CK92], Callahan and Kosaraju present an algo-

rithm which, given a split tree of a point set P with

|P | = n and a separation constant S, computes in time

O(n(S2 +log n)) a set of O(n ·S2) additional blue edges

(A, B) for the split tree, such that

• the point sets associated with the endpoints of a blue

edge are well-separated with separation constant S.

• for any pair of leaves (a, b), there exists exactly one

blue edge (A, B) that connects two nodes on the

paths from a and b to their lowest common ancestor

lca(a, b) in the split tree

The split tree together with its additional blue edges

is called the well-separated pair decomposition W

(WSPD).

2) Application of the WSPD: Intuitively, the W en-

codes in linear space all Θ(n2) distance relationships

in the point set approximately. More precisely, for any

query pair (s, t) there exists exactly one cluster pair

(A, B) ∈ W with s ∈ A, t ∈ B and |W| = O(n).

So we precompute for each of these O(n) cluster pairs

a good k-hop path between their respective centers (e.g.

a (1+ε) path using the grid pruning strategy), such that at

query time, for a given query pair (s, t), it only remains

to find the unique cluster pair (A, B) ∈ W with s ∈ A,

t ∈ B. We output the associated k-hop path replacing its

first and last node by s and t respectively.

Since s ∈ A and t ∈ B and d(A, B) > S · r, the

precomputed path between the centers of cA and cB is

’almost’ optimal for the query points s and t. In fact one

can show formally that the returned path is a (1 + ε′)

approximation of the lightest k-hop path from s to t,

where ε′ > 0 can be chosen arbitrarily by the user (this

affects the required choice of the separation constant).

See [FMS03] for the details.

How to retrieve the respective cluster pair (A, B) for
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Fig. 6. Cluster centers cA and cB are snapped to closest grid points

c̃A and c̃B

a pair of query points (s, t)? The idea of our approach is

to round the centers cA, cB of a cluster pair (A, B) ∈ W

to canonical grid points c̃A, c̃B and store the associated

k-hop path in a hash table under the key (c̃A, c̃B), see

Figure 6. As grid width we choose the next power of two

of dc/s, where dc = |cAcB|. For a query pair (s, t) we

have d = |st| ≈ dc as s ∈ A, t ∈ B and (A, B) ∈ W .

Hence, the same grid width as used for (cA, cB) can

be determined from (s, t) (up to a factor of 2) and the

path stored under the key (c̃A, c̃B) can be retrieved. See

[FMS03] for the technical details on this procedure.

In fact in [FMS03] we have shown that for any (s, t)

we can find exactly the respective cluster pair (A, B) in

O(1) time, but the constants hidden in the O-notation

were quite huge (in the range of 106) mainly due to the

fact that there might be many (even though O(1)) cluster

pairs snapped to the same grid position. But for practical

purposes, the k-hop path stored with any cluster pair

(A′, B′) of those is good for us. Although it might not be

true that s ∈ A′, t ∈ B′, we know that the cluster centers

cA′ , cB′ are close to s and t (otherwise they would not

have been snapped to the same grid points) and therefore

the respective k-hop path template is good for us.

IV. REFINEMENTS

In the following we will mention some refinements

and extensions that are possible for the presented algo-

rithms, some of which have already found their way into

the current implementation.

A. Lazy Precomputation

In the path template approach as presented before, the

idea was first to identify a collection of O(n) source–

target pairs (namely the centers of the clusters that

are connected by a blue edge in the WSPD) and then

precompute a good k-hop path for each of these pairs.

In practice, it will turn out that identifying the blue edges

can be done very quickly, and the really time-dominating

step is the computation of the template paths (even when

done using our O(log n) grid pruning approach).

But our data structure can easily be modified into

a ”lazy precomputation” scheme. So at precomputation

time, only the blue edges are determind. At query time

for a pair (s, t), we first identify the corresponding blue

edge. If a template path has been stored for that edge

already, we use it (and have spent O(1) time only to

answer the query). Only if no template path has been

stored already, we compute one using the grid approach

(making this query expensive, i.e. O(log n)). Observe

that if a similar query, i.e. a query (s′, t′) with s′ near s

and t′ near t, arrives later, it will find the precomputed

template path and can therefore be answered in O(1).

B. Dynamization

All the data-structures that we have used are also – at

least in theory – available in a dynamic version, where



updates can be performed in O(log n) time. Hence our

whole construction could also be applied for moving

and/or changing radio stations. Whether these dynamic

versions of the algorithms are also of practical value,

has to be shown or proven wrong by an experimental

study. For more information on dynamic versions of the

required data structures, we refer to [AM98], [AM00],

[CK95].

C. Fault-tolerance

In many real-world applications reliability and quality

of service (QoS) plays an important role. In particular,

availability of the system has a very high priority. For

our application this means that connections between two

sites s and t should not be prohibited or become very ex-

pensive if some stations inbetween collapse. Therefore,

it is very reasonable to provide for backup paths between

the sites, i.e. if one or more stations of an energy efficient

path between s and t become unavailable, there are other

equally efficient paths already precomputed at hand. But

this is easy to incorporate into our approach. For each

blue edge of the WSPD we precompute instead of one

template path several template paths which are all node-

disjoint. These node-disjoint paths can be obtained as

follows: First use the grid approach to compute the first

energy-efficient k-hop path. Then remove all the used

representative nodes from the grid cells that have been

used in this path. If there are still other nodes left in the

respective grid cells, use them to get another path, which

looks very similar to the first one, but is node-disjoint

from the latter. If some of the used grid-cells are empty,

just run the brute-force algorithm on the remaining grid

cell representatives. In this way, one can easily compute

several path templates for each blue edge all of which

are node-disjoint.

D. Startup-Costs

In our model as presented we restrict to a cost

model where the required energy to transmit from p

to q is ω(p, q) = |pq|σ. We can generalize this in the

following manner: If the cost of transmitting from p

to q is |pq|σ + Cp for a site dependent cost offset Cp,

our result remains applicable under the assumption of

some bound on the offset costs. In our grid pruning

approach we would choose the cell representative as

the node with minimum offset in the cell (this can be

easily incorporated into the standard geometric range

query data structures). The offset could model distance

independent energy consumption like signal processing

costs or it could be used to steer away traffic from

devices with low battery power.

V. IMPLEMENTATION

All the algorithms mentioned in the previous sec-

tions were implemented using the LEDA library of

data structures and algorithms ([LEDA]). We used

the floating-point geometry kernel which represents

points in the plane by two double coordinates. As

range query structure we employed the LEDA datatype

point dictionary which allows range queries in

time O(log2) and nearest neighbor queries in O(n) worst-

case time. But as these subroutines never dominated the

running time in the respective algorithms where they

were used, we did not put more effort into O(log n)



worst-case query time implementations.

A very critical issue was the use of an appropriate

hashing datastructure for accessing the precomputed

template paths. We are using the LEDA type h array

which hashes 32-bit integer values to some information

domain. But our implementation requires to hash 4-

tuples of 32-bit integer values. So we had to reduce the

number of bits by a factor of 4. In our experiments the

best choice for a hash function was to choose the 3rd

to 10th least significant bits of each of these 4 integers

and concatenate them to obtain the hash value for the 4-

tuple. For other hash functions we tried, the number of

collisions increased considerably and therefore accesses

to the hashing table required going through a long list.

All algorithms were tested within an embedded sim-

ulation environment where data can be either read in or

generated and then processed by our algorithms. Using

a graphical user-interface, the different parameters and

alternative algorithms can be selected and evaluated for

running-time and quality of their produced solution. See

Figure 1 for a screenshot of our simulation environment.

VI. EXPERIMENTS

We conducted extensive experiments on different test

data and using different parameters for our algorithms.

All running times were measured on a low-end 700 MHz

Pentium III with 256 MB of RAM. We used g++ 2.95.4

with the -O option under a Linux 2.4.19 system.

A. Benchmarks

Different test data sets were used to evaluate the

quality of our algorithms. See Figure 7 for examples

Fig. 7. Examples for test data: random (left), MST-based (middle)

and Delaunay-based (right)

of the generated data.

1) Random Data: Here we simply generated integer

points uniformly at random in a square.

2) Simulated Real-World Data: As we had no real-

world data available that could be put into a freely-

available publication, we simulated the placement of

radio stations along a road-network between cities. We

had two simple algorithms to generate such data:

a) MST-based generation: We first generated a ran-

dom set of points (the cities) and computed a Euclidean

minimum spanning tree. For all the leaves of the tree

inside the Convex Hull of the random set we added a

new edge. Furthermore, we generated a cluster of points

around every city and also put randomly some points

along every edge (roads). At the end, we pruned sharp

angles.

b) Delaunay-based generation: We first generated

a random set of points (the cities) and computed the

Delaunay triangulation. As we did not want to keep

this ”triangular” road network, we removed some of

the edges under the constraint that the remaining graph

is still strongly connected. Then we assigned random

weights to the cities and generated radio stations accord-

ingly. Finally we generated some random stations along

the remaining edges.



TABLE I

1000 POINTS RANDOMLY GENERATED; k = 5, σ = 2, S = 5,

ε = 5; QUERY TIME AND QUALITY

WSPD BF BFp Grid Milestone

Av. Time 8.0 · 10
−4 0.91 0.24 0.038 0.002

Max Time 2.0 · 10
−3 1.45 1.24 0.080 0.01

Av. Rel. Err 15% 0 0 2.7 % 2.7 %

Max Rel. Err 49% 0 0 6.5 % 20 %

σrel.err 0.12 0 0 0.018 0.039

TABLE II

4000 POINTS RANDOMLY GENERATED; k = 5, σ = 2, S = 5,

ε = 5; QUERY TIME AND QUALITY

WSPD BF BFp Grid Milest.

Av. Time 5.66 · 10
−4 14.59 4.75 0.07 0.01

Max Time 0.003 24.63 14.46 0.099 0.01

Av. Rel. Err 16 % 0 % 0 % 2.6 % 0.5 %

Max Rel. Err 32.6 % 0 % 0 % 4.8 % 2.5 %

σrel.err 0.088 0 0 0.016 0.007

B. Timings and Quality

In the following we are going to report timings and

quality of the computed solutions for our different test

data and varying problem sizes. For the precomputation

of the template paths we chose a separation constant

of S = 5 for the WSPD and ε = 5 for the grid pruning

subroutine. Even though in theory, this guarantees only a

solution within a factor of 216 (!) of the optimal solution,

in practice, the returned solutions were rather close to

the optimum. For the used parameters of k = 5, σ = 2,

S = 5, ε = 5, in fact the returned solutions were not

more than 20 % off the optimum on the average. See

tables I, II, III, IV, V for the timing and quality results.

From the results you can see that the query time

TABLE III

1000 POINTS FROM THE MST MODEL; k = 5, σ = 2, S = 5,

ε = 5; QUERY TIME AND QUALITY

WSPD BF BFp Grid Milestone

Av. Time 1 · 10
−4 1.193 0.937 0.009 0.0006

Max Time 1 · 10
−3 1.63 4.03 0.01 0.01

Av. Rel. Err 14 % 0 % 0 % 3.6% 10.2 %

Max Rel. Err 38.7 % 0 % 0 % 14.4 % 35.9 %

σrel.err 0.123 0 0 0.047 0.114

TABLE IV

4000 POINTS FROM THE MST MODEL; k = 5, σ = 2, S = 5,

ε = 5; QUERY TIME AND QUALITY

WSPD BF BFp Grid Milestone

Av. Time 1 · 10
−4 18.6 10.1 0.024 0.011

Max Time 0.001 27.19 21.09 0.039 0.02

Av. Rel. Err 10.1 % 0 % 0 % 3.3 % 14.3 %

Max Rel. Err 20.5 % 0 % 0 % 8.1 % 33.7 %

σrel.err 0.048 0 0 0.026 0.109

using the WSPD approach remains basically constant,

independent of the problem size, which is not true

for all other algorithms. In particular the brute-force

variants suffer severely when increasing the problem

size, but also the Milestone approach gets slower. The

Grid approach also deteriorates a bit, but will saturate

at some point (at least in theory). With regards to the

quality, the brute force approaches are clearly the best

since optimal, but also the Milestone Approach is not too

bad. The results produced by the WSPD approach are

mostly comparable to the Milestone and Grid approach

but can be tuned by choosing different parameters as we

will see later.

Of course, these very fast query times have their cost,



TABLE V

1000 POINTS FROM THE DELAUNAY MODEL; k = 5, σ = 2,

S = 5, ε = 5; QUERY TIME AND QUALITY

WSPD BF BFp Grid Milestone

Av. Time 4 · 10
−4 0.772 0.303 0.014 5 · 10

−4

Max Time 0.002 1.13 1.28 0.03 0.01

Av. Rel. Err 17.2 % 0 % 0 % 5.7 % 10.7 %

Max Rel. Err 35 % 0 % 0 % 56 % 57 %

σrel.err 0.101 0 0 0.12 0.134

both in terms of time for the precomputation as well

as in terms of the space required to store the template

paths. For this purpose we look again at the example of

1000 random points but now vary both ε (the parameter

used for the grid approach when computing the template

paths) as well as S (the separation constant for the

WSPD). See table VI for the results. Apart from the size

of the precomputed structure and the preprocessing time

we show the average and maximal relative error that was

incurred by the precomputed paths for 30 random k-hop

queries.

Clearly, the more time and space one is willing to

invest into computing good path templates, the better

results one gets for the queries. We remind that all

the precomputation can be done in a lazy fashion as

explained in Section IV, so the precomputation time

would only consist of the time required to construct

the WSPD, which is neglectable. If a query is ”new”

in a sense that no similar query has been performed

before, the respective path template will be computed,

so the set of path templates is built up one by one

during the queries. Once all path templates have been

TABLE VI

TIME/SPACE FOR PREPROCESSING ON 1000 RANDOM POINTS,

k = 5, σ = 2 AND VARYING ε AND S

# templ. time (s) avg.err max err

ε = 10, S = 4 7813 57.7 23% 58 %

ε = 10, S = 5 12042 98.0 22% 47 %

ε = 10, S = 7 21200 187.3 14% 36 %

ε = 10, S = 11 46148 458.8 12% 29 %

ε = 5, S = 4 8287 145.7 17% 37 %

ε = 5, S = 5 12004 230.6 15% 27 %

ε = 5, S = 7 21924 559.8 12% 34 %

ε = 5, S = 11 46236 1446.5 6 % 13 %

ε = 2, S = 4 7925 433.91 22 % 47 %

ε = 2, S = 5 11724 712.31 9 % 28 %

ε = 2, S = 7 22126 1606 9 % 31 %

ε = 2, S = 11 43347 3875 5 % 24 %

TABLE VII

TIME FOR PREPROCESSING ON 1000 RANDOM POINTS, σ = 2,

S = 5,ε = 5, VARYING k

WSPD

pre. time(s) avg. err max err

k = 2 14.6 6.1 % 13.8 %

k = 4 74.8 15.9 % 41.6 %

k = 8 530 25 % 41.1 %

k = 16 3471 29.2 % 55.8 %

constructed, the data structure behaves exactly as its

counterpart where all precomputation has taken place

before the queries.

The choice of k – the number of allowed hops – also

affects the running time of the grid pruning approach

and therefore of the preprocessing step. See table VII.

As larger values for k require a finer grid, the running

time of the precomputation grows rapidly. To keep the



TABLE VIII

TIME FOR PREPROCESSING ON 1000 RANDOM POINTS, k = 5,

S = 5,ε = 5, VARYING σ

pre. time (s) avg. err max err

σ = 2 232 14 % 30 %

σ = 3 524 30 % 60 %

σ = 4 817 41 % 75 %

quality of the solution, we would have had to increase

the value for S as well to accommodate for the finer

granularity of the solution.

As mentioned in the introduction, even though setting

σ = 2 models the exact, free-space energy consumption,

in practice people use larger values σ ∈ [2, 4] to account

for absorption effects etc. As σ also affects the running

time of the grid pruning approach, we give experimental

data for varying σ in Table VIII.

It turns out that higher values for σ induce a consid-

erably higher precomputation since the grid size chosen

by the grid pruning algorithm is smaller. But still, the

quality deteriorates, as with the larger exponent in the

cost function, even small perturbations might increase

the cost considerably. So to keep the same error bounds,

a smaller value for ε and/or a larger value for S would

have to be used.

VII. CONCLUSIONS

We have demonstrated that near energy optimal paths

can be queried very efficiently even in large radio

networks. If the network is not too large, even slowly

changing networks can be accommodated. Nevertheless,

many questions remain how such a technique could be

used in real networks.

As long as the network is static, rather large networks

could be handled. For small networks the precomputed

tables could even be replicated on all nodes. For large

networks the hash table can be distributed over the

network. If paths are used for a long time (seconds)

compared to the time needed for querying a path

(milliseconds) even a centralized server for connection

queries would be feasible. In that case even occasional

updates for inserting, deleting, or moving stations would

be feasible.

Finite maximum ranges can be accommodated easily

by ignoring all connections that exceed this range in the

path computations.

Distributed implementations that can accommodate

large and dynamic networks are a challenge beyond the

scope of this paper however. Still, at least simple grid-

based data structures may be helpful here and can use

similar arguments as in our centralized algorithm.

Contention of several routes that use the same fre-

quency bands at the same time are an issue not directly

accessed by our shortest path model. However, for σ =

2, our cost model minimizes the sum of the areas covered

by the transmitters used in a path. This can have an

indirect positive effect on contention.

Minimal total energy consumption does not guarantee

fairness, i.e., it might happen that one station is used so

often that its batteries are quickly drained. This effect

can be mitigated in several ways. For example, rather

than storing fixed routes, we can simple store areas (e.g.

squares) where relais stations should be located. Any



combination of points in these relay areas will yield

an energy efficient path. At least in densely populated

areas one can then balance energy consumption by

picking random stations in each relay area. One can even

explicitly take energy reserves or other priorizations into

account.
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