

Universität des Saarlandes FR Informatik

Uwe Waldmann November 17, 2011

Tutorials for "Automated Reasoning II" Exercise sheet 4

Exercise 4.1:

Convexity of theories is sometimes defined in such a way that one considers only equations between variables in the right-hand side of the implication. Prove that the two definitions are equivalent: A first-order theory \mathcal{T} is convex w.r.t. equations if and only if for every conjunction Γ of Σ -equations and non-equational literals and for all equations $x_i \approx x_i'$ $(1 \le i \le n)$, whenever $\mathcal{T} \models \forall \vec{x} \ (\Gamma \to x_1 \approx x_1' \lor \cdots \lor x_n \approx x_n')$, then there exists some index j such that $\mathcal{T} \models \forall \vec{x} \ (\Gamma \to x_j \approx x_j')$.

Exercise 4.2:

Let $\Sigma = (\Omega, \emptyset)$ be a signature without predicate symbols (except built-in equality). For two Σ -algebras \mathcal{A} and \mathcal{B} , we define the product $\mathcal{A} \times \mathcal{B}$ as the Σ -algebra whose universe is the cartesian product of the universes of \mathcal{A} and \mathcal{B} , and where $f_{\mathcal{A} \times \mathcal{B}}((a_1, b_1), \dots, (a_n, b_n)) = (f_{\mathcal{A}}(a_1, \dots, a_n), f_{\mathcal{B}}(b_1, \dots, b_n))$.

A Σ -theory \mathcal{T} is called closed under products, if the product of any two models of \mathcal{T} is again a model of \mathcal{T} .

Prove: If \mathcal{T} is closed under products, then it is convex.

Exercise 4.3:

Prove: If the axioms of the Σ -theory \mathcal{T} are unversally quantified equational Horn clauses (that is, clauses where all atoms are equations and at most one of the literals is negated), then \mathcal{T} is convex. (You may use the previous exercise.)

Bring your solution (or solution attempt) to the tutorial on Nov. 28.