1.3 Linear Rational Arithmetic

There are several ways to define linear rational arithmetic.

We need at least the following signature: ¥ = ({0/0,1/0,+/2}, {</2}) and the pre-
defined binary predicate =.

The equational part of linear rational arithmetic is described by the theory of divisible
torsion-free abelian groups:

Ve,y,z(x+ (y+2) = (x + (y + 2))) (associativity)
Ve,y(x+y~y+x) (commutativity)
Vo (x40~ x) (identity)
Ve dy (z+y=~0) (inverse)
Foralln>1:Vz(z+---+2~0—2~0) (torsion-freeness)

————

n times
Foralln > 1: Ve 3dy (y+---+y~x) (divisibility)
—
n times

-1=0 (non-triviality)

Note: Quantification over natural numbers is not part of our language. We really need
infinitely many axioms for torsion-freeness and divisibility.

By adding the axioms of a compatible strict total ordering, we define ordered divisible
abelian groups:

Vo (-2 < x) (irreflexivity)
Ve,y,z(z<yAy<z—x<z2) (transitivity)
Ve,y(e<yVy<azVzmy) (totality)
Ve,y,z(x <y —x+2<y+2) (compatibility)
0<1 (non-triviality)

Note: The second non-triviality axiom renders the first one superfluous. Moreover, as
soon as we add the axioms of compatible strict total orderings, torsion-freeness can be
omitted. Every ordered divisible abelian group is obviously torsion-free.

In fact the converse holds: Every torsion-free abelian group can be ordered (F.-W. Levi
1913).

Examples: Q, R, Q", R", ...



The signature can be extended by further symbols:
</2,>/2, >/2, %£/2: defined using < and =~

—/1: Skolem function for inverse axiom

—/2: defined using +/2 and —/1

div,,/1: Skolem functions for divisibility axiom for all n > 1.

mult,, /1: defined by Vz (mult,(z) =z +---+ ) for all n > 1.

n times

mult,/1: defined using mult,,, div,, — for all ¢ € Q.
(We usually write ¢ - t or ¢t instead of mult,(t).)
q/0 (for ¢ € Q): defined by g~ ¢ - 1.

Note: Every formula using the additional symbols is ODAG-equivalent to a formula over
the base signature.

When - is considered as a binary operator, (ordered) divisible torsion-free abelian groups
correspond to (ordered) rational vector spaces.

Fourier-Motzkin Quantifier Elimination

Linear rational arithmetic permits quantifier elimination: every formula dx F' or Va F
in linear rational arithmetic can be converted into an equivalent formula without the
variable x.

The method was discovered in 1826 by J. Fourier and re-discovered by T. Motzkin in
1936.

Observation: FEvery literal over the variables x,y;,...,y, can be converted into an
ODAG-equivalent atom z ~ t[g] or 0 ~ t[g], where ~ € {<,>, <, > =, %} and t[y]
has the form >, ¢; - yi + qo-

In other words, we can either eliminate x completely or isolate in on one side of the
atom.

Moreover, we can convert every % atom into an ODAG-equivalent disjunction of two <
atoms.



We first consider existentially quantified conjunctions of atoms.

If the conjunction contains an equation = = t[y], we can eliminate the quantifier 3z by
substitution:

dx(x~tly] N F)

is equivalent to

If x occurs only in inequations, then

o (Aiw < si@) A Az < 4()
A Nex > @) A Aw =@ A A0~ wn(5)

is equivalent to

Ni i, 5i(9) > wi(9)
AWAAYEN >>vz( j) NN Nt () = a(y)
AN, O~y

m
Proof: (=) by transitivity;
(<) take 5 (min{s;,¢;} + max{uy,v;}) as a witness.
Extension to arbitrary formulas:
Transform into prenex formula;
if innermost quantifier is 3: transform matrix into DNF and move 3 into disjunction;
if innermost quantifier is V: replace Va F' by —dz —F, then eliminate 3.

Consequence: every closed formula over the signature of ODAGs is ODAG-equivalent
to either T or L.

Consequence: ODAGs are a complete theory, i. e., every closed formula over the signature

of ODAGSs is either valid or unsatisfiable w.r.t. ODAGs.

Consequence: every closed formula over the signature of ODAGs holds either in all
ODAGS or in no ODAG.

ODAGs are indistinguishable by first-order formulas over the signature of ODAGs.

(These properties do not hold for extended signatures!)
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Fourier-Motzkin: Complexity

One FM-step for 3
formula size grows quadratically, therefore O(n?) runtime.
m quantifiers 3...3:

naive implementation needs O(n?") runtime;
unknown whether optimized implementation with simply exponential runtime is pos-

sible.
m quantifiers VIV ... 3:

CNF/DNF conversion (exponential!) required after each step;
therefore non-elementary runtime.

Loos-Weispfenning Quantifier Elimination

A more efficient way to eliminate quantifiers in linear rational arithmetic was developed
by R. Loos and V. Weispfenning (1993).

The method is also known as “test point method” or “virtual substitution method”.

For simplicity, we consider only one particular ODAG, namely Q (as we have seen above,
the results are the same for all ODAGs).

Let F(z,y) be a positive boolean combination of linear (in-)equations x ~; s;(i) and
0 ~; si(y) with ~;, ~; € {=, %, <, <, >, >}, that is, a formula built from linear (in-)
equations, A and V (but without —).

Goal: Find a finite set T" of “test points” so that
e F(zg) H \ Fle,g{z—t}
teT

In other words: We want to replace the infinite disjunction Jx by a finite disjunction.

If we keep the values of the variables ¢ fixed, then we can consider F' as a function
F:z— F(z,y) from Q to {0,1}.

The value of each of the atoms s;(y) ~; x changes only at s;(%), and the value of F' can
only change if the value of one of its atoms changes.

Let 6(5) = min{ |si(5) — s;()] | s:(5) 7 ;(¥) }

F' is a piecewise constant function; more precisely, the set of all z with F(z,7y) = 1 is
a finite union of intervals. (The union may be empty, the individual intervals may be
finite or infinite and open or closed.)
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Moreover, each of the intervals has either length 0 (i.e., it consists of one point), or its
length is at least d(¥).

If the set of all  for which F'(x, ) is 1 is non-empty, then
(i) F(z,y) =1 for all x < r(y) for some r(y) € Q

(ii) or there is some point where the value of F(z,¥) switches from 0 to 1 when we
traverse the real axis from —oo to 4o00.

We use this observation to construct a set of test points.
We start with some “sufficiently small” test point 7(y) to take care of case (i).

For case (ii), we observe that F'(x, %) can only switch from 0 to 1 if one of the atoms
switches from 0 to 1. (We consider only positive boolean combinations of atoms and A
and V are monotonic w.r.t. truth values.)

x < 5(y) and = < s;() do not switch from 0 to 1 when z grows.

(
x> 5;(y) and x = s;(7) switch from 0 to 1 at s;(¢)

= ;(¥) is a test point.

x> s;(y) and x % s,;(y) switch from 0 to 1 “right after” s;(v)

—

= 5;(¢) + € (for some 0 < e < 6(7)) is a test point.
If 7(y) is sufficiently small and 0 < & < §(¥), then

T ={r@yu{s@) |~e{>=}}
U{si(¥) +e|~i€{>#}}

is a set of test points.

Problem:
We don’t know how small r(7) has to be for case (i), and we don’t know () for
case (ii).

Idea:
We consider the limits for r — —oo and for € \, 0, that is, we redefine

) ~ie {22}
Jhel~ie {54}

T := {—OO} U { SZ‘(
U { si(

N

<

How can we eliminate the infinitesimals co and € when we substitute elements of T
for x 7
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Virtual substitution:

(@ < s@) {x = —o0} i= lim (r < s(7)) = T

(@ < s(7) { > —00} i= lim (r <s(@) = T

(@ > s@) {x = —o0} i= lim (1> s(7)) = L

(@2 s(7) { — —00} i= lim (r > s(7) = L

(@~ (@) {a — —o0} i=_lim (r =~ s(7) = L

(@ 5 s(7)) { > —o0} 1= lim (r # s() = T

(& < ) o ot ) = lim(u+ = < () = (u < ()
(x <s@){z—ute}:= hm(u+€ < s(y)) = (u < s(y))
(x> s(y)){r —u+e}:= 11 1(u+e > s(y)) = (u 2 5(y))
(@2 sy){z—ute}:= 11 (U+€ > s(y)) = (u = s(y))
(@ % ) o = u+-} = i+ 2~ ) = L
(x#&s(y){r—u+e} = hm(u+€ #%s(y)=T

We have traversed the real axis from —oo to +00. Alternatively, we can traverse it from
400 to —oo. In this case, the test points are

Th={too} Ulsiy) [~i€{<=}}
U{si(i) —el~ie{<,#}}
Infinitesimals are eliminated in a similar way as before.
In practice: Compute both T" and T” and take the smaller set.

For a universally quantified formulas Vz F', we replace it by =3z = F', push inner negation
downwards, and then continue as before.

Note that there is no CNF/DNF transformation required. Loos-Weispfenning quantifier
elimination works on arbitrary positive formulas.
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Loos-Weispfenning: Complexity

One LW-step for 4 or V:

as the number of test points is at most half of the number of atoms, the formula size
grows quadratically; therefore O(n?) runtime.

Multiple quantifiers of the same kind:
dzo 3xy. F(21, 22, 7)
~ Fzg. (Ve Fxr, @2, ) {21 — t1})
~ Ve Gz F(a1,22,9) {71+ t1})

~  Vyen Vien (F(r1,12,9) {z1 = t1} {72 = ta})

m quantifiers 3...Jor V... V:

m—l—l)

formula size is multiplied by n in each step, therefore O(n runtime.

m quantifiers VIV ... 3:
doubly exponential runtime.

Note: The formula resulting from a LW-step is usually highly redundant; so an efficient
implementation must make heavy use of simplification techniques.
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