1.8 Combining Decision Procedures

Problem:
Let \mathcal{T}_{1} and \mathcal{T}_{2} be first-order theories over the signatures Σ_{1} and Σ_{2}.
Assume that we have decision procedures for the satisfiability of existentially quantified formulas (or the validity of universally quantified formulas) w.r.t. \mathcal{T}_{1} and \mathcal{T}_{2}.

Can we combine them to get a decision procedure for the satisfiability of existentially quantified formulas w.r.t. $\mathcal{T}_{1} \cup \mathcal{T}_{2}$?

General assumption:
Σ_{1} and Σ_{2} are disjoint.
The only symbol shared by \mathcal{T}_{1} and \mathcal{T}_{2} is built-in equality.

We consider only conjunctions of literals.
For general formulas, convert to DNF first and consider each conjunction individually.

Abstraction

To be able to use the individual decision procedures, we have to transform the original formula in such a way that each atom contains only symbols of one of the signatures (plus variables).

This process is known as variable abstraction or purification.
We apply the following rule as long as possible:

$$
\frac{\exists \vec{x}(F[t])}{\exists \vec{x}, y(F[y] \wedge t \approx y)}
$$

if the top symbol of t belongs to Σ_{i} and t occurs in F directly below a Σ_{j}-symbol or in a (positive or negative) equation $s \approx t$ where the top symbol of s belongs to $\Sigma_{j}(i \neq j)$, and if y is a new variable.

It is easy to see that the original and the purified formula are equivalent.

Stable Infiniteness

Problem:
Even if the Σ_{1}-formula F_{1} and the Σ_{2}-formula F_{2} do not share any symbols (not even variables), and if F_{1} is \mathcal{T}_{1}-satisfiable and F_{2} is \mathcal{T}_{2}-satisfiable, we cannot conclude that $F_{1} \wedge F_{2}$ is $\left(\mathcal{T}_{1} \cup \mathcal{T}_{2}\right)$-satisfiable.

Example:
Consider

$$
\mathcal{T}_{1}=\{\forall x, y, z(x \approx y \vee x \approx z \vee y \approx z)\}
$$

and

$$
\mathcal{T}_{2}=\{\exists x, y, z(x \not \approx y \wedge x \not \approx z \wedge y \not \approx z)\} .
$$

All \mathcal{T}_{1}-models have at most two elements, and all \mathcal{T}_{2}-models have at least three elements.

Since $\mathcal{T}_{1} \cup \mathcal{T}_{2}$ is contradictory, there are no $\left(\mathcal{T}_{1} \cup \mathcal{T}_{2}\right)$-satisfiable formulas.
To ensure that \mathcal{T}_{1}-models and \mathcal{T}_{2}-models can be combined to $\left(\mathcal{T}_{1} \cup \mathcal{T}_{2}\right)$-models, we require that both \mathcal{T}_{1} and \mathcal{T}_{2} are stably infinite.

A first-order theory \mathcal{T} is called stably infinite, if every existentially quantified formula that has a \mathcal{T}-model has also a \mathcal{T}-model with a (countably) infinite universe.

Note: By the Löwenheim-Skolem theorem, "countable" is redundant here.

Shared Variables

Even if $\exists \vec{x} F_{1}$ is \mathcal{T}_{1}-satisfiable and $\exists \vec{x} F_{2}$ is \mathcal{T}_{2}-satisfiable, it can happen that $\exists \vec{x}\left(F_{1} \wedge F_{2}\right)$ is not $\left(\mathcal{T}_{1} \cup \mathcal{T}_{2}\right)$-satisfiable, for instance because the shared variables x and y must be equal in all \mathcal{T}_{1}-models of $\exists \vec{x} F_{1}$ and different in all \mathcal{T}_{2}-models of $\exists \vec{x} F_{2}$.

Example:
Consider
$F_{1}=(x+(-y) \approx 0)$,
and
$F_{2}=(f(x) \not \approx f(y))$
where \mathcal{T}_{1} is linear rational arithmetic and \mathcal{T}_{2} is EUF.
We must exchange information about shared variables to detect the contradiction.

The Nelson-Oppen Algorithm (Non-deterministic Version)

Suppose that $\exists \vec{x} F$ is a purified conjunction of Σ_{1} and Σ_{2}-literals.
Let F_{1} be the conjunction of all literals of F that do not contain Σ_{2}-symbols; let F_{2} be the conjunction of all literals of F that do not contain Σ_{1}-symbols. (Equations between variables are in both F_{1} and F_{2}.)

The Nelson-Oppen algorithm starts with the pair F_{1}, F_{2} and applies the following inference rules.

Unsat:

$$
\frac{F_{1}, F_{2}}{\perp}
$$

if $\exists \vec{x} F_{i}$ is unsatisfiable w.r.t. \mathcal{T}_{i} for some i.
Branch:

$$
\frac{F_{1}, F_{2}}{F_{1} \wedge(x \approx y), F_{2} \wedge(x \approx y) \quad \mid \quad F_{1} \wedge(x \not \approx y), F_{2} \wedge(x \not \approx y)}
$$

if x and y are two different variables appearing in both F_{1} and F_{2} such that neither $x \approx y$ nor $x \not \approx y$ occurs in both F_{1} and F_{2}
"|" means non-deterministic (backtracking!) branching of the derivation into two subderivations. Derivations are therefore trees. All branches need to be reduced until termination.

Clearly, all derivation paths are finite since there are only finitely many shared variables in F_{1} and F_{2}, therefore the procedure represented by the rules is terminating.

We call a constraint configuration to which no rule applies irreducible.

Theorem 1.1 (Soundness) If "Branch" can be applied to F_{1}, F_{2}, then $\exists \vec{x}\left(F_{1} \wedge F_{2}\right)$ is satisfiable in $\mathcal{T}_{1} \cup \mathcal{T}_{2}$ if and only if one of the successor configurations of F_{1}, F_{2} is satisfiable in $\mathcal{T}_{1} \cup \mathcal{T}_{2}$.

Corollary 1.2 If all paths in a derivation tree from F_{1}, F_{2} end in \perp, then $\exists \vec{x}\left(F_{1} \wedge F_{2}\right)$ is unsatisfiable in $\mathcal{T}_{1} \cup \mathcal{T}_{2}$.

For completeness we need to show that if one branch in a derivation terminates with an irreducible configuration F_{1}, F_{2} (different from \perp), then $\exists \vec{x}\left(F_{1} \wedge F_{2}\right)$ (and, thus, the initial formula of the derivation) is satisfiable in the combined theory.

As $\exists \vec{x}\left(F_{1} \wedge F_{2}\right)$ is irreducible by "Unsat", the two formulas are satisfiable in their respective component theories, that is, we have \mathcal{T}_{i}-models \mathcal{A}_{i} of $\exists \vec{x} F_{i}$ for $i \in\{1,2\}$. We are left with combining the models into a single one that is both a model of the combined theory and of the combined formula. These constructions are called amalgamations.

Let F be a Σ_{i}-formula and let S be a set of variables of $F . F$ is called compatible with an equivalence \sim on S if the formula

$$
\begin{equation*}
\exists \vec{z}\left(F \wedge \bigwedge_{x \sim y} x \approx y \wedge \bigwedge_{x, y \in S, x \nsim y} x \not \approx y\right) \tag{1}
\end{equation*}
$$

is \mathcal{T}_{i}-satisfiable whenever F is \mathcal{T}_{i}-satisfiable. This expresses that F does not contradict equalities between the variables in S as given by \sim.

Proposition 1.3 If F_{1}, F_{2} is a pair of conjunctions over \mathcal{T}_{1} and \mathcal{T}_{2}, respectively, that is irreducible by "Branch", then both F_{1} and F_{2} are compatible with some equivalence \sim on the shared variables S of F_{1} and F_{2}.

Proof. If F_{1}, F_{2} is irreducible by the branching rule, then for each pair of shared variables x and y, both F_{1} and F_{2} contain either $x \approx y$ or $x \not \approx y$. Choose \sim to be the equivalence given by all (positive) variable equations between shared variables that are contained in F_{1}.

Lemma 1.4 (Amalgamation Lemma) Let \mathcal{T}_{1} and \mathcal{T}_{2} be two stably infinite theories over disjoint signatures Σ_{1} and Σ_{2}. Furthermore let F_{1}, F_{2} be a pair of conjunctions of literals over \mathcal{T}_{1} and \mathcal{T}_{2}, respectively, both compatible with some equivalence \sim on the shared variables of F_{1} and F_{2}. Then $F_{1} \wedge F_{2}$ is $\left(\mathcal{T}_{1} \cup \mathcal{T}_{2}\right)$-satisfiable if and only if each F_{i} is \mathcal{T}_{i}-satisfiable.

Proof. The "only if" part is obvious.
For the "if" part, assume that each of the F_{i} is \mathcal{T}_{i}-satisfiable. That is, there exist models \mathcal{A}_{i} in \mathcal{T}_{i} and variable assigments β_{i} such that $\mathcal{A}_{i}, \beta_{i} \models F_{i}$. As the F_{i} are compatible with an equivalence \sim on their shared variables, we may assume that the β_{i} also satisfy the extended conjunctions in (1) with S the set of shared variables. In particular, whenever we have two shared variables x and $y, \beta_{1}(x)=\beta_{1}(y)$ if and only if $\beta_{2}(x)=\beta_{2}(y)$. Since the theories are stably infinite we may additionally assume that the \mathcal{A}_{i} are of cardinality ω, hence there are bijections ρ_{i} from the domain of \mathcal{A}_{i} to \mathbb{N} such that $\left.\rho_{1}\left(\beta_{1}(x)\right)\right)=$ $\rho_{2}\left(\beta_{2}(x)\right)$ for each shared variable x. Now define \mathcal{A} to be the algebra having \mathbb{N} as its domain; for f or P in Σ_{i} define $f_{\mathcal{A}}\left(n_{1}, \ldots, n_{k}\right)=\rho_{i}\left(f_{\mathcal{A}_{i}}\left(\rho_{i}^{-1}\left(n_{1}\right), \ldots, \rho_{i}^{-1}\left(n_{k}\right)\right)\right)$ and $P_{\mathcal{A}}\left(n_{1}, \ldots, n_{k}\right) \Leftrightarrow P_{\mathcal{A}_{i}}\left(\rho_{i}^{-1}\left(n_{1}\right), \ldots, \rho_{i}^{-1}\left(n_{k}\right)\right)$. Define $\beta(x)=\rho_{i}\left(\beta_{i}(x)\right)$ if x is a variable occurring in F_{i}. By construction of the ρ_{i} this definition is independent of the choice of i. Clearly $\left.\mathcal{A}\right|_{\Sigma_{i}}, \beta \models F_{i}$, for $i=1,2$, hence $\mathcal{A}, \beta \models F_{1} \wedge F_{2}$. Moreover, the reducts $\left.\mathcal{A}\right|_{\Sigma_{i}}$ are isomorphic (via ρ_{i}) to \mathcal{A}_{i} and thus are models of \mathcal{T}_{i}, so that \mathcal{A} is a model of $\mathcal{T}_{1} \cup \mathcal{T}_{2}$ as required.

Theorem 1.5 The non-deterministic Nelson-Oppen algorithm is terminating and complete for deciding satisfiability of pure conjunctions of literals F_{1} and F_{2} over $\mathcal{T}_{1} \cup \mathcal{T}_{2}$ for signature-disjoint, stably infinite theories \mathcal{T}_{1} and \mathcal{T}_{2}.

Proof. Suppose that F_{1}, F_{2} is irreducible by the inference rules of the Nelson-Oppen algorithm. Applying the amalgamation lemma in combination with Prop. 1.3 we infer that F_{1}, F_{2} is satisfiable w.r.t. $\mathcal{T}_{1} \cup \mathcal{T}_{2}$.

Convexity

The number of possible equivalences of shared variables grows superexponentially with the number of shared variables, so enumerating all possible equivalences non-deterministically is going to be inefficient.

A much faster variant of the Nelson-Oppen algorithm exists for convex theories.
A first-order theory \mathcal{T} is called convex w.r.t. equations, if for every conjunction Γ of Σ-equations and non-equational Σ-literals and for all Σ-equations $A_{i}(1 \leq i \leq n)$, whenever $\mathcal{T} \models \forall \vec{x}\left(\Gamma \rightarrow A_{1} \vee \ldots \vee A_{n}\right)$, then there exists some index j such that $\mathcal{T} \models \forall \vec{x}\left(\Gamma \rightarrow A_{j}\right)$.

Theorem 1.6 If a first-order theory \mathcal{T} is convex w.r.t. equations and has non-trivial models (i. e., models with more than one element), then \mathcal{T} is stably infinite.

Proof. We shall prove the contrapositive of the statement. Suppose \mathcal{T} is not stably infinite. Then there exists a satisfiable conjunction of literals $\exists \vec{x} F$ that has only finite models w.r.t. \mathcal{T}. We split F into two conjunctions F^{+}and F^{-}, such that F^{-}contains the negative equational literals in F and F^{+}contains the rest. As \mathcal{T} is a first-order theory, it is compact, hence all models of F are bounded in cardinality by some number m. Now consider the clause $C=F^{+} \rightarrow \neg F^{-} \vee \bigvee_{1 \leq i<j \leq m+1} y_{i} \approx y_{j}$, with fresh variables y_{1}, \ldots, y_{m+1} not occurring in F. $\mathcal{T} \models \forall \vec{x}, \vec{y} C$, as the clause exactly expresses that all models of F have size less than or equal to m. However, $\mathcal{T} \not \vDash \forall \vec{x}, \vec{y}\left(F^{+} \rightarrow A\right)$, for any literal A of $\neg F^{-}$(as otherwise F would not be satisfiable), and also $\mathcal{T} \not \models \forall \vec{x}, \vec{y}\left(F^{+} \rightarrow\right.$ $y_{i} \approx y_{j}$), for each i, j, as otherwise \mathcal{T} would have only trivial models, which we have excluded.

Lemma 1.7 Suppose \mathcal{T} is convex, F a conjunction of literals, and S a subset of its variables. Let, for any pair of variables x_{i} and x_{j} in $S, x_{i} \sim x_{j}$ if and only if $\mathcal{T} \models$ $\forall \vec{x}\left(F \rightarrow x_{i} \approx x_{j}\right)$. Then F is compatible with \sim.

Proof. We show that with this choice of \sim the constraint (1) is satisfiable in \mathcal{T} whenever F is. Suppose, to the contrary, that F is satisfiable but (1) is not, that is,

$$
\mathcal{T} \models \forall \vec{z}\left(F \rightarrow \bigvee_{x \sim y} x \not \approx y \vee \bigvee_{x, y \in S, x \nsim y} x \approx y\right)
$$

or, equivalently,

$$
\mathcal{T} \models \forall \vec{z}\left(F^{+} \wedge \bigwedge_{x \sim y} x \approx y \rightarrow \neg F^{-} \vee \bigvee_{x, y \in S, x \nsim y} x \approx y\right)
$$

By convexity of \mathcal{T}, the antecedent implies one of the equations of the succedent. Since the equations $x \approx y$, with $x \sim y$, are entailed by F and since F is satisfiable, this means that this equation must come from the last disjunct. In other words, there exists a pair of different variables x^{\prime} and y^{\prime} in S such that $x^{\prime} \nsim y^{\prime}$ and

$$
\mathcal{T} \models \forall \vec{z}\left(F^{+} \wedge \bigwedge_{x \sim y} x \approx y \rightarrow x^{\prime} \approx y^{\prime}\right) .
$$

Since

$$
\mathcal{T} \models \forall \vec{z}\left(F \rightarrow \bigwedge_{x \sim y} x \approx y\right),
$$

we derive $\mathcal{T} \models \forall \vec{z}\left(F \rightarrow x^{\prime} \approx y^{\prime}\right)$, which is impossible.

