
1.8 Combining Decision Procedures

Problem:

Let T1 and T2 be first-order theories over the signatures Σ1 and Σ2.

Assume that we have decision procedures for the satisfiability of existentially quanti-
fied formulas (or the validity of universally quantified formulas) w. r. t. T1 and T2.

Can we combine them to get a decision procedure for the satisfiability of existentially
quantified formulas w. r. t. T1 ∪ T2 ?

General assumption:

Σ1 and Σ2 are disjoint.

The only symbol shared by T1 and T2 is built-in equality.

We consider only conjunctions of literals.

For general formulas, convert to DNF first and consider each conjunction individually.

Abstraction

To be able to use the individual decision procedures, we have to transform the original
formula in such a way that each atom contains only symbols of one of the signatures
(plus variables).

This process is known as variable abstraction or purification.

We apply the following rule as long as possible:

∃~x (F [t])

∃~x, y (F [y] ∧ t ≈ y)

if the top symbol of t belongs to Σi and t occurs in F directly below a Σj-symbol
or in a (positive or negative) equation s ≈ t where the top symbol of s belongs to
Σj (i 6= j), and if y is a new variable.

It is easy to see that the original and the purified formula are equivalent.
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Stable Infiniteness

Problem:

Even if the Σ1-formula F1 and the Σ2-formula F2 do not share any symbols (not even
variables), and if F1 is T1-satisfiable and F2 is T2-satisfiable, we cannot conclude that
F1 ∧ F2 is (T1 ∪ T2)-satisfiable.

Example:

Consider

T1 = {∀x, y, z (x ≈ y ∨ x ≈ z ∨ y ≈ z)}

and

T2 = {∃x, y, z (x 6≈ y ∧ x 6≈ z ∧ y 6≈ z)}.

All T1-models have at most two elements, and all T2-models have at least three ele-
ments.

Since T1 ∪ T2 is contradictory, there are no (T1 ∪ T2)-satisfiable formulas.

To ensure that T1-models and T2-models can be combined to (T1 ∪ T2)-models, we require
that both T1 and T2 are stably infinite.

A first-order theory T is called stably infinite, if every existentially quantified formula
that has a T -model has also a T -model with a (countably) infinite universe.

Note: By the Löwenheim–Skolem theorem, “countable” is redundant here.

Shared Variables

Even if ∃~x F1 is T1-satisfiable and ∃~x F2 is T2-satisfiable, it can happen that ∃~x (F1 ∧ F2)
is not (T1 ∪ T2)-satisfiable, for instance because the shared variables x and y must be
equal in all T1-models of ∃~xF1 and different in all T2-models of ∃~x F2.

Example:

Consider

F1 = (x + (−y) ≈ 0),

and

F2 = (f(x) 6≈ f(y))

where T1 is linear rational arithmetic and T2 is EUF.

We must exchange information about shared variables to detect the contradiction.
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The Nelson–Oppen Algorithm (Non-deterministic Version)

Suppose that ∃~xF is a purified conjunction of Σ1 and Σ2-literals.

Let F1 be the conjunction of all literals of F that do not contain Σ2-symbols; let F2 be
the conjunction of all literals of F that do not contain Σ1-symbols. (Equations between
variables are in both F1 and F2.)

The Nelson–Oppen algorithm starts with the pair F1, F2 and applies the following infer-
ence rules.

Unsat:

F1, F2

⊥

if ∃~x Fi is unsatisfiable w. r. t. Ti for some i.

Branch:

F1, F2

F1 ∧ (x ≈ y), F2 ∧ (x ≈ y) | F1 ∧ (x 6≈ y), F2 ∧ (x 6≈ y)

if x and y are two different variables appearing in
both F1 and F2 such that neither x ≈ y nor x 6≈ y

occurs in both F1 and F2

“|” means non-deterministic (backtracking!) branching of the derivation into two sub-
derivations. Derivations are therefore trees. All branches need to be reduced until
termination.

Clearly, all derivation paths are finite since there are only finitely many shared variables
in F1 and F2, therefore the procedure represented by the rules is terminating.

We call a constraint configuration to which no rule applies irreducible.

Theorem 1.1 (Soundness) If “Branch” can be applied to F1, F2, then ∃~x (F1 ∧ F2)
is satisfiable in T1 ∪ T2 if and only if one of the successor configurations of F1, F2 is
satisfiable in T1 ∪ T2.

Corollary 1.2 If all paths in a derivation tree from F1, F2 end in ⊥, then ∃~x (F1 ∧ F2)
is unsatisfiable in T1 ∪ T2.

For completeness we need to show that if one branch in a derivation terminates with
an irreducible configuration F1, F2 (different from ⊥), then ∃~x (F1 ∧ F2) (and, thus, the
initial formula of the derivation) is satisfiable in the combined theory.
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As ∃~x (F1 ∧ F2) is irreducible by “Unsat”, the two formulas are satisfiable in their re-
spective component theories, that is, we have Ti-models Ai of ∃~xFi for i ∈ {1, 2}. We
are left with combining the models into a single one that is both a model of the combined
theory and of the combined formula. These constructions are called amalgamations.

Let F be a Σi-formula and let S be a set of variables of F . F is called compatible with
an equivalence ∼ on S if the formula

∃~z
(

F ∧
∧

x∼y

x ≈ y ∧
∧

x,y∈S, x 6∼y

x 6≈ y
)

(1)

is Ti-satisfiable whenever F is Ti-satisfiable. This expresses that F does not contradict
equalities between the variables in S as given by ∼.

Proposition 1.3 If F1, F2 is a pair of conjunctions over T1 and T2, respectively, that is
irreducible by “Branch”, then both F1 and F2 are compatible with some equivalence ∼
on the shared variables S of F1 and F2.

Proof. If F1, F2 is irreducible by the branching rule, then for each pair of shared vari-
ables x and y, both F1 and F2 contain either x ≈ y or x 6≈ y. Choose ∼ to be the
equivalence given by all (positive) variable equations between shared variables that are
contained in F1.

Lemma 1.4 (Amalgamation Lemma) Let T1 and T2 be two stably infinite theories
over disjoint signatures Σ1 and Σ2. Furthermore let F1, F2 be a pair of conjunctions of
literals over T1 and T2, respectively, both compatible with some equivalence ∼ on the
shared variables of F1 and F2. Then F1 ∧ F2 is (T1 ∪ T2)-satisfiable if and only if each
Fi is Ti-satisfiable.

Proof. The “only if” part is obvious.

For the “if” part, assume that each of the Fi is Ti-satisfiable. That is, there exist models
Ai in Ti and variable assigments βi such that Ai, βi |= Fi. As the Fi are compatible with
an equivalence ∼ on their shared variables, we may assume that the βi also satisfy the
extended conjunctions in (1) with S the set of shared variables. In particular, whenever
we have two shared variables x and y, β1(x) = β1(y) if and only if β2(x) = β2(y). Since
the theories are stably infinite we may additionally assume that the Ai are of cardinality
ω, hence there are bijections ρi from the domain of Ai to N such that ρ1(β1(x))) =
ρ2(β2(x)) for each shared variable x. Now define A to be the algebra having N as
its domain; for f or P in Σi define fA(n1, . . . , nk) = ρi(fAi

(ρ−1

i (n1), . . . , ρ
−1

i (nk))) and
PA(n1, . . . , nk) ⇔ PAi

(ρ−1

i (n1), . . . , ρ
−1

i (nk)). Define β(x) = ρi(βi(x)) if x is a variable
occurring in Fi. By construction of the ρi this definition is independent of the choice of
i. Clearly A|Σi

, β |= Fi, for i = 1, 2, hence A, β |= F1 ∧ F2. Moreover, the reducts A|Σi

are isomorphic (via ρi) to Ai and thus are models of Ti, so that A is a model of T1 ∪ T2

as required.
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Theorem 1.5 The non-deterministic Nelson–Oppen algorithm is terminating and com-
plete for deciding satisfiability of pure conjunctions of literals F1 and F2 over T1 ∪ T2 for
signature-disjoint, stably infinite theories T1 and T2.

Proof. Suppose that F1, F2 is irreducible by the inference rules of the Nelson–Oppen
algorithm. Applying the amalgamation lemma in combination with Prop. 1.3 we infer
that F1, F2 is satisfiable w. r. t. T1 ∪ T2.

Convexity

The number of possible equivalences of shared variables grows superexponentially with
the number of shared variables, so enumerating all possible equivalences non-deterministically
is going to be inefficient.

A much faster variant of the Nelson–Oppen algorithm exists for convex theories.

A first-order theory T is called convex w. r. t. equations, if for every conjunction Γ
of Σ-equations and non-equational Σ-literals and for all Σ-equations Ai (1 ≤ i ≤ n),
whenever T |= ∀~x (Γ → A1 ∨ . . . ∨ An), then there exists some index j such that
T |= ∀~x (Γ → Aj).

Theorem 1.6 If a first-order theory T is convex w. r. t. equations and has non-trivial
models (i. e., models with more than one element), then T is stably infinite.

Proof. We shall prove the contrapositive of the statement. Suppose T is not stably
infinite. Then there exists a satisfiable conjunction of literals ∃~xF that has only finite
models w. r. t. T . We split F into two conjunctions F+ and F−, such that F− contains
the negative equational literals in F and F+ contains the rest. As T is a first-order
theory, it is compact, hence all models of F are bounded in cardinality by some number
m. Now consider the clause C = F+ → ¬F− ∨

∨

1≤i<j≤m+1
yi ≈ yj, with fresh variables

y1, . . . , ym+1 not occurring in F . T |= ∀~x, ~y C, as the clause exactly expresses that all
models of F have size less than or equal to m. However, T 6|= ∀~x, ~y (F+ → A), for any
literal A of ¬F− (as otherwise F would not be satisfiable), and also T 6|= ∀~x, ~y (F+ →
yi ≈ yj), for each i, j, as otherwise T would have only trivial models, which we have
excluded.
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Lemma 1.7 Suppose T is convex, F a conjunction of literals, and S a subset of its
variables. Let, for any pair of variables xi and xj in S, xi ∼ xj if and only if T |=
∀~x (F → xi ≈ xj). Then F is compatible with ∼.

Proof. We show that with this choice of ∼ the constraint (1) is satisfiable in T whenever
F is. Suppose, to the contrary, that F is satisfiable but (1) is not, that is,

T |= ∀~z
(

F →
∨

x∼y

x 6≈ y ∨
∨

x,y∈S, x 6∼y

x ≈ y
)

or, equivalently,

T |= ∀~z
(

F+ ∧
∧

x∼y

x ≈ y → ¬F− ∨
∨

x,y∈S, x 6∼y

x ≈ y
)

.

By convexity of T , the antecedent implies one of the equations of the succedent. Since
the equations x ≈ y, with x ∼ y, are entailed by F and since F is satisfiable, this means
that this equation must come from the last disjunct. In other words, there exists a pair
of different variables x′ and y′ in S such that x′ 6∼ y′ and

T |= ∀~z
(

F+ ∧
∧

x∼y

x ≈ y → x′ ≈ y′
)

.

Since

T |= ∀~z
(

F →
∧

x∼y

x ≈ y
)

,

we derive T |= ∀~z
(

F → x′ ≈ y′
)

, which is impossible.
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