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Abstract. We address the problem of model checking hybrid systems
which exhibit nontrivial discrete behavior and thus cannot be treated by
considering the discrete states one by one, as most currently available ver-
ification tools do. Our procedure relies on a deep integration of several
techniques and tools. A first-order extension of AND-Inverter-Graphs
(AIGs) serves as a compact representation format for sets of configu-
rations which are composed of continuous regions and discrete states.
Boolean reasoning on the AIGs is complemented by first-order reasoning
in various forms and on various levels. These include subsumption checks
for simple constraints, test vector generation for fast inequality checks of
boolean combinations of constraints, and an exact implication check.

These techniques are integrated within a model checker for universal
CTL. Technically, it deals with discrete-time hybrid systems with lin-
ear differentials. The paper presents the approach, the architecture of a
prototype implementation, and first experimental data.

1 Introduction

The analysis of hybrid systems faces the difficulty of having to address not only
the continuous dynamics of mechanical, electrical and other physical phenom-
ena, but also the intricacies of discrete switching. Both of these two constituents
of hybrid systems alone often pose a major challenge for verification approaches,
and their combination is of course by no means simpler. For instance, the be-
havior of a car or airplane is usually beyond the scope of mathematically precise
assessment, even if attention is restricted to only one particular aspect like the
functioning of a braking assistant. Even though the continuous behavior might
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in such a case be rather simple – at least after it has been simplified by introduc-
ing worst-case assumptions to focus on the safety-critical aspects –, through the
interaction with discrete state control the result is in most cases unmanageable
by present-day techniques.

In this work, we address the analysis of hybrid systems with a focus on the
discrete part. Systems with non-trivial discrete state spaces arise naturally in
application classes where the overall control of system dynamics rests with a
finite-state supervisory control, and states represent knowledge about the global
system status. Examples of such global information encoded in states are phases
of a cooperation protocol in inter-vehicle communication (such as in platooning
maneuvers or in collision avoidance protocols), knowledge about global system
states (e. g., on-ground, initial ascent, ascent, cruising, . . . ), and/or information
about the degree of system degradation (e. g., due to occurrence of failures).
Jointly, these will govern the selection of appropriate maneuvers, carried out
by a low-level “reflex layer”. This reflex layer is the part of the control directly
connected to the controlled plant. We call the states of this layer modes to
distinguish them from the states of the supervisory control. While the selection
of the modes depends on the supervisory control, there is no direct relation
between the top-level discrete states and the continuous part.

In our approach, we intend to profit from the independence of the supervisory
control states and the continuous sections. We attempt to do so by represent-
ing discrete states symbolically, as in symbolic model checking [5], and combine
this with a first-order logic representation of the continuous part. In that way,
unnecessary distinctions between discrete states can be avoided and efficiency
gained.

This idea, which has already been pursued in a different setting in [14, 3], can
be seen as combining symbolic model checking with Hoare’s program logic [13].
The discrete part of the state is encoded in bit vectors of fixed length. Sets of
discrete states are represented in an efficient format for boolean functions, in our
case functionally reduced AND-inverter graphs (FRAIGs) [15]. The state vectors
are extended by additional components referring to first-order conditions. Model
checking works essentially as in [5, 17] on the discrete part, while in parallel for
the continuous part a Hoare-like calculus is applied. An important detail is that
the set of data conditions is dynamic: computing the effect of a system step
usually entails the creation of new conditions.

To make an automatic proof procedure out of this, we add diverse reasoning
procedures for the first-order components. Of central importance is the ability
to perform a subsumption check on our hybrid state-set representation in order
to detect whether a fixpoint has been reached during model checking. HySAT [9]
is one of the tools we use for that purpose.

In its current form, our approach is applicable to checking universal temporal
logic in discrete-time hybrid systems, where conditions and transitions contain
linear terms over the continuous variables. This corresponds to a discretization
of systems whose evolution is governed by linear differential equations, of which
the linear hybrid automata from [11] form a subset.
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We present our class of models formally in Section 2. Section 3 explains our
procedure on a semantical and logical level. The implementation is described in
Section 4, followed by a report on first experiments with our current prototype in
Section 5. Sections 6 and 7 discuss related work and possible future extensions.

2 System Model

2.1 Discretization

As mathematical model we use discrete-time hybrid automata, which in each
time step of fixed duration update a set of real-valued variables as determined
by assignments occurring as transition labels. Since assignments and transition
guards may use linear arithmetical expressions, this subsumes the capability
to describe the evolvement of plant variables by difference equations. Steps of
the automata are assumed to take a fixed time period (also called cycle-time),
intuitively corresponding to the sampling period of the control unit, and deter-
mine the new mode and new outputs (corresponding to actuators) based on the
sampled inputs (sensors).

The decision to base our analysis on discrete-time models of hybrid systems is
motivated from an application perspective. Industrial design flows for embedded
control software typically entail a transition from continuous time models in early
analysis addressing control law design, to discrete-time models in modeling tools
such as ScadeTM, ASCETTM, or Matlab/Simulink-StateFlowTM, as a basis for
subsequent autocode generation.

In this paper, we analyze closed loop systems with only discrete inputs, e. g.,
corresponding to discrete set points.

2.2 Formal model

Our analysis is based on discrete-time models of hybrid systems. Time is modeled
implicitly, in that each step corresponds to a fixed unit delay δ, as motivated in
the previous section.

We assume that a hybrid system operates over two disjoint finite sets of vari-
ables D and C. The elements of D = {d1, . . . , dn, dn+1, . . . , d`} (n ≤ `) are dis-
crete variables, which are interpreted over finite domains;Din = {dn+1, . . . , d`} ⊆
D is a finite set of discrete inputs. The elements of C = {c1, . . . , cm} are contin-
uous variables, which are interpreted over the reals R. Let D denote the set of all
valuations of D over the respective domains, C = Rm the set of all valuations of
C. The state space of a hybrid system is presented by the set D×C; a valuation
(d, c) ∈ D ×C is a state of the hybrid system.

A set of states of a hybrid system can be represented symbolically using
a suitable (quantifier-free) first-order logic formula over D and C. We assume
that the data structure for the discrete variables D is given by a signature
SD which introduces typed symbols for constants and functions, and by ID

which assigns a meaning to symbols. We denote by TD(D) the set of terms over
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D, and by B(D) the set of boolean expressions over D. The first-order part
on continuous variables is restricted to linear arithmetic of R, which has the
signature {Q,+,−,×,=, <,≤}, where Q is the set of rational numbers appearing
as constants, {+,−,×} is the set of function symbols, and {=, <,≤} is the set of
predicate symbols. The interpretation IC assigns meanings to these symbols as
usual. We define TC(C) as the set of linear terms over C. The set of first-order
predicates P(C) over C can be defined according to the following syntax:

1. Atomic formulas: φ ::= p ∼ 0, where ∼ ∈ {=, <,≤} and p ∈ TC(C);

2. Boolean combinations: φ ::= φ1 ∧ φ2 | φ1 ∨ φ2 | ¬φ.

We use ψ(D), φ(C), g(D), and t(C), possibly with subscripts, to denote boolean
expressions in B(D), first-order predicates in P(C), terms in TD(D), and terms
in TC(C), respectively; D and C may be omitted, if they are clear from the
context. We use ID � ψ(d) and IC � φ(c) to denote that ψ and φ are true
under the valuations d and c. Thus ψ ∧ φ represents the sets of states of a
hybrid system such that { (d, c) | ID � ψ(d), IC � φ(c) }. Assignments to the
variables D and C are given in the form of (d1, . . . , dn) := (g1, . . . , gn) and
(c1, . . . , cm) := (t1, . . . , tm); they may leave some variables unchanged.

Definition 1. A discrete-time hybrid system DTHS contains four components:

– D = {d1, . . . , dn, dn+1, . . . , d`} (n ≤ `) is a finite set of discrete variables,
Din = {dn+1, . . . , d`} ⊆ D is a finite set of discrete inputs;

– C = {c1, . . . , cm} is a finite set of continuous variables;

– Init is a set of initial states, given in the form of ψ0 ∧ φ0, where ψ0 ∈
B(D −Din);

– Trans is a union of a finite number of guarded assignments, each guarded
assignment ga i (i = 1, . . . , k and k ≥ 1) is in the form of

ψi ∧ φi → (d1, . . . , dn) := (gi,1, . . . , gi,n); (c1, . . . , cm) := (ti,1, . . . , ti,m).

Each ga i is a deterministic transition, namely for every state (d, c) there is
at most one state (d′, c′) such that ((d, c), (d′, c′)) ∈ ga i. The assignment of
ga i transforms (d, c) to (d′, c′). Moreover, such (d′, c′) exists if and only if
ID � ψi(d) and IC � φi(c).

We assume that the guards of the assignments defining the transition relation
are exclusive and exhaustive. Nondetermism from the transition relation can be
eliminated by introducing discrete resolution variables R ⊆ D.

A trajectory of a DTHS is a discrete-time sequence (di, ci) satisfying the
conditions (i) (d0, c0) ∈ Init and (ii) ((di, ci), (di+1, ci+1)) ∈ Trans for all i ∈
{0, 1, . . .}. Given a DTHS, we define the reachable set of states to be the set
of all states that are reachable by a trajectory of the DTHS. The purpose of
verification is to determine whether all possible behaviors of a system satisfy
some property, which is specified as formula in a temporal logic.
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3 Approach

3.1 Specification logic

We sketch a model checker for a temporal logic over discrete and quantifier-free
first-order atoms. Though we could build, from our basic ingredients, a procedure
handling full CTL (or a linear-time logic), we restrict ourselves to its universal
fragment ACTL with the temporal operators AX · (next), A[· U ·] (until) and
A[· W ·] (unless), with AG · (globally) and AF · (finally) as derived operators.

In practice, we expect the valuations of continuous variables to come from
bounded subsets of R. In other words, for each c ∈ C we assume a lower and an
upper bound lc and uc. Such restrictions can be captured in global constraints
GC . With global constraints present, the formula operators are interpreted as
follows:

AGCXφ = ¬GC ∨ AX (φ ∨ ¬GC )

AGC [φWψ] = A[φW (ψ ∨ ¬GC )]

AGC [φUψ] = A[φU (ψ ∨ ¬GC )]

3.2 Representation by First-Order AND-Inverter Graphs

First-Order AND-Inverter Graphs (FO-AIGs) are the data structure that we use
to represent predicates over states of hybrid systems in the model-checking pro-
cedure. States of hybrid systems consist of valuations of continuous variables C
and discrete variables D. For ease of exposition we assume that discrete vari-
ables are encoded by sets of boolean variables, thus we consider in the following
only continuous variables and boolean variables. Then a predicate over states of
hybrid systems may be expressed by a set of first-order conditions and a boolean
formula with two types of boolean variables: Boolean variables of the first type
represent encodings of discrete variables; boolean variables of the second type are
assigned to first-order conditions. We obtain the predicate described by this rep-
resentation by replacing the variables of the second type by their corresponding
first-order conditions.

In FO-AIGs boolean formulas are represented by Functionally Reduced AND-
Inverter Graphs (FRAIGs) [15]. FRAIGs are basically boolean circuits consisting
only of AND gates and inverters. In contrast to BDDs [3], they are not a canonical
representation for boolean functions, but they are “semi-canonical” in the sense
that every node in the FRAIG represents a unique boolean function. To achieve
this goal several techniques like structural hashing, simulation and SAT solving
are used [15, 17]. For the pure boolean case, enhanced with other techniques such
as quantifier scheduling, node selection heuristics and BDD sweeping, FRAIGs
proved to be a promising alternative to BDDs in the context of CTL model
checking, avoiding in many cases the well-known memory explosion problem
which may occur during BDD-based symbolic model checking [17].

The second component of FO-AIGs is the set of first-order conditions. In
our implementation these conditions are restricted to linear constraints on real
variables. We use normalization rules in order to identify equivalent conditions.
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3.3 Step computation

Our procedure works backwards, which means that it has to compute pre-images
of state sets. Since we are going to check ACTL, we compute

pre(S) =df { s | ∀s
′. s→ s′ ⇒ s′ ∈ S }

which corresponds to the temporal operator AX . In general, computing the
effect of a step would involve, on the data part, substitution and quantification
(universal for AX ), see [3]. Since we restrict ourselves to closed-loop systems,
there are no continuous inputs. Thus we do not have to perform first-order
quantification in a step: The effect on the data part is captured by a substitution.
There are, however, discrete inputs to be treated via quantification at the end
of the step computation.

Remember that the update of some dj ∈ D−Din has the form of the following
guarded choice.

[]k

i=1
ψi(D) ∧ φi(C) → dj := gi,j(D)

This translates to the update function:

pre(dj) =

k
∧

i=1

(ψi(D) ∧ φi(C) → gi,j(D))

For the continuous part, we do not have to update the variables C. Instead, the
operation has to be performed on the set of first-order conditions. The transitions

[]k

i=1
ψi(D) ∧ φi(C) → (c1, . . . , cm) := (ti,1(C), . . . , ti,m(C))

induce

pre(q) =

k
∧

i=1

(ψi(D) ∧ φi(C) → q[c1, . . . , cm/ti,1(C), . . . ti,m(C)])

as an update for each condition q.
Finally, the pre-image of a set of states S is computed by substituting in

parallel the pre-images for the respective variables, and afterwards universally
quantifying over the discrete inputs.

pre(S) = ∀Din. S[d1, . . . , dn, q1, . . . , q` / pre(d1), . . . , pre(dn), pre(q1), . . . , pre(q`)]

Note that the pre-image of a boolean variable is described by a quantifier-free
formula which does not change during model checking – it can be computed once
and for all. The same holds for each single condition variable: The right-hand
side remains constant. But the RHS may contain conditions not already present
in the current set of conditions represented as FRAIG variables. This necessitates
to add condition variables during model checking, and also to add corresponding
components to the step function. Intuitively, a condition might be a hyperplane
serving as a bound to define a polyhedron in the continuous state space. The
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pre-image of the polyhedron then is bounded by other hyperplanes, whose de-
scriptions are derived via substitution from the existing bounding conditions.

When computing a fixpoint approximatively, successively better approxima-
tions of the fixpoint are computed. In explicit or symbolic model checking, the
criterion for detecting whether a fixpoint has been reached, is simple: Two suc-
cessive approximations must be the same. Here, where constraints enter the state
set descriptions, one has to check for semantical equality. This means that one
has to check whether one boolean combination of conditions implies another
(usually, one direction of the equivalence holds by construction). In our imple-
mentation, HySAT is used for this check. HySAT [9] is a tool for bounded model
checking linear hybrid systems, which combines Davis-Putnam style SAT solving
techniques with linear programming, using state of the art optimizations.

Note the procedure described above can be applied to a broad class of sys-
tems. The logical treatment of the step function permits arbitrary linear terms
on the right-hand sides of assignments, like c := α1c+α2c

′ +α0 . The linear hy-
brid automata from [11] can be discretized using only the more restricted format
c := c+ α.

4 Realization

In order to implement the approach described in the previous section we use FO-

AIGs for representing sets of states (as introduced in Sect. 3.2). Using efficient
methods for keeping this representation as compact as possible is a key point for
our approach. This goal is achieved by a rather complex interaction of various
methods. In the following we give some more details on these concepts. The
methods are divided into three classes:

– methods dealing with the boolean part,
– methods dealing with the first-order part, and
– methods dealing with the interaction of the boolean and the first-order part.

Note that algorithms for model checking ACTL formulas can be implemented in
a straightforward manner, we omit the implementation details here.

4.1 Methods dealing with the boolean part

For the boolean part, we use a package implementing FRAIGs (Functionally
Reduced AND-Inverter-Graphs) [17], which offers various mechanisms to keep
the boolean part of the representation as compact as possible:

First, simple local transformation rules are used for node minimization. For
instance, we apply structural hashing for identifying isomorphic AND nodes
which have the same pairs of inputs.

Moreover, we maintain the so-called “functional reduction property”: Each
node in the FRAIG represents a unique boolean function (up to complementa-
tion). We use a SAT solver to check for equivalent nodes while constructing a
FRAIG and to merge equivalent nodes immediately. Of course, checking each
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possible pair of nodes would be quite inefficient. However, simulation using test
vectors restricts the number of candidates for SAT check to a great extent: If for
a given pair of nodes simulation is already able to prove non-equivalence, more
time consuming SAT checks are not needed. The simulation vectors are initially
random, but they are updated using feedback from satisfied SAT instances (i. e.,
from proofs of non-equivalence).

4.2 Methods dealing with the first-order part

The second component of FO-AIGs is a representation of first-order conditions
connected to the boolean part by boolean variables. As already mentioned in the
previous section we restrict the first-order conditions to linear real arithmetic,
i. e., our first-order conditions are linear constraints of the form

∑n

i=1
αici +

α0 ∼ 0 with real constants αj , real variables ci, and ∼ ∈ {=, <,≤}. When new
linear constraints are computed by substitution during the step computation
(see Sect. 3), we avoid introducing new linear constraints which are equivalent to
existing constraints. The restriction to linear constraints makes this task simple,
since it reduces to the application of normalization rules.

4.3 Methods dealing with the interaction of the boolean and the

first-order part

Of course, a strict separation between the boolean part and the first-order part
of FO-AIGs gives us usually not enough information, for instance when we have
to check whether two sets of states are equivalent during the fixpoint check of
the model checking procedure. As a simple example consider the two predicates
P1 = (c < 5) and P2 = (c < 10)∧ (c < 5). If c < 5 is represented by the boolean
variable a and c < 10 by variable b, then the corresponding boolean formulas a
and a∧b are not equivalent, whereas P1 and P2 are certainly equivalent. Both as a
means for further compaction of our representations and as a means for detecting
fixpoints we need methods for transferring knowledge from the first-order part to
the boolean part. (In the example above this may be the information that a = 1
and b = 0 can not be true at the same time or that P1 and P2 are equivalent
when replacing boolean variables by their first-order interpretations.)

Computing implications between linear constraints. In our first method
we consider dependencies between linear constraints that are easy to detect a
priori and transfer them to the boolean part. It is not known initially, which
dependencies are actually needed in the rest of the computation; for this reason
we restrict to two simple cases: First, we compute unconditional implications
between linear constraints α1c1+. . .+αncn+α0 ≤ 0 and α1c1+. . .+αncn+α′

0 ≤
0, where α0 > α′

0 (and analogously implications involving negations of linear
constraints). Second, we consider implications modulo global constraints, where a
linear constraint α′

1c1+. . .+α′

ncn+α′

0 ≤ 0 follows from α1c1+. . .+αncn+α0 ≤ 0
and the global lower and upper bounds li ≤ ci ≤ ui for the first-order variables.
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Using implications between linear constraints. Suppose we have found a
pair of linear constraints lc1 and lc2 with lc1 → lc2, and in the boolean part lc1 is
represented by variable a, lc2 by variable b. Then we know that the combination
of values a = 1 and b = 0 is inconsistent w. r. t. the first-order part, i. e., it
will never be applied to inputs a and b of the boolean part. We transfer this
knowledge to the boolean part by a modified behavior of the FRAIG package:
First we adjust our simulation vectors, replacing vectors with a = 1 and b = 0
by corresponding vectors with a = 1 and b = 1 (potentially leading to the fact
that proofs of non-equivalence by simulation will not hold any longer for certain
pairs of nodes) and second we introduce the implication a→ b as an additional
clause in every SAT problem checking equivalence of two nodes depending on
a and b. In that way non-equivalences of AIG nodes which are only caused by
differences w. r. t. inconsistent input value combinations with a = 1 and b = 0
will be turned into equivalences, removing redundant nodes in the AIG.

Using a decision procedure for deciding equivalence. In addition to the
eager dependency check for linear constraints, we use HySAT [9] as a decision
procedure for the equivalence of nodes in FO-AIGs (representing boolean combi-
nations of linear constraints). If two nodes are proven to be equivalent (taking
the linear constraints into account), then these nodes can be merged, leading to
a compaction of the representation or leading to the detection of a fixpoint in
the model checking computation.

In principle, we could use HySAT in an eager manner every time when a new
node is inserted into the FO-AIG representation, just like SAT (together with
simulation) is used in the FRAIG representation of the boolean part. This would
lead to a FO-AIG representation where different nodes in the FRAIG part always
represent different first-order predicates. However, we decided to use HySAT

only in a lazy manner (i. e., only from time to time) in order to avoid too many
potentially expensive applications of HySAT (taking the linear constraints into
account). The HySAT checks used in our first implementation include the fixpoint
checks of the model checking procedure.

Using test vectors to increase efficiency. As in the boolean case (see
Sect. 4.1), we use simulation with test vectors as an incomplete but cheap method
to show the non-equivalence of FO-AIG nodes, thus reducing the number of ex-
pensive calls to HySAT. However, note that the boolean simulation vectors which
we apply to the boolean variables corresponding to linear constraints must now
be consistent with respect to the linear constraints, since otherwise our proof of
non-equivalence could be incorrect. This means that we need an appropriate set
of test vectors in terms of real variables leading to consistent boolean simulation
vectors.

Trying to find an optimal set of test vectors that allows us to distinguish
between any two boolean combination of linear constraints is at least as hard as
solving our main problem, the implication check between such boolean combi-
nations, and therefore unpractical. On the other hand, if test vectors are picked
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randomly with a uniform distribution over the polyhedron of permitted values,
a large number of them fall into “uninteresting regions” of this polyhedron.

Our solution is to choose test vectors randomly in the proximity of relevant
hyperplanes: Assume that every variable ci has a global lower and upper bound
li ≤ ci ≤ ui, so that the polyhedron of permitted values is Q = {~c | ~c =
(c1, . . . , cn), li ≤ ci ≤ ui }. For each linear constraint f(~c) ≤ 0 with f(~c) =
α1c1 + . . . + αncn + α0 we determine a set of test vectors by first computing
random points ~t ∈ Q and then interpolating between ~t and ~r (if f(~t) < 0) or ~t
and ~s (otherwise), where ~r and ~s are the vertices of Q for which f is maximal
or minimal, respectively. (Without loss of generality, f(~r) > 0 > f(~s).)

Similarly to the boolean case, we learn additional boolean simulation vectors
from satisfied HySAT instances (i. e., from proofs of non-equivalence). The satis-
fying assignments computed by HySAT are guaranteed to be consistent w. r. t. lin-
ear constraints and they are able to separate at least the pair of nodes which are
currently proven to be non-equivalent.

4.4 Software architecture

Figure 1 gives an overview of the software architecture of our implementation and
summarizes the various components described in the last two sections. Arrows
depict the flow of information between the different parts.

First order
model

Parser

FOMC
procedureInitial state Step function

CTL formula

Global constraints

Implication check
for linear constraints

next sta
te set

FO-AIGs

Linear constraints

AIGs

Normalization of
linear constraints

Generation of Boolean
simulation vectors

Test vector generation
for linear constraints

SAT based
redundancy elimination

HYSAT based
redundancy elimination

current sta
te set

Fig. 1. Software architecture. Gray shaded boxes represent data structures, white boxes
represent algorithmic methods.
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5 Experimental Results

We implemented a prototype model checker based on the concepts mentioned
above and applied it both to several small examples taken from literature and to
a model derived from an industrial case study. In this section we will report on
results for the case study; more details about this example (a controller for the
flaps of an aircraft [4]) are given in Appendix A. We were able to successfully
model check the flap controller showing that the system remains in the safe
region. Using all the concepts presented in Section 4 our model checking run
was completed after 46 steps within 4.7 minutes of CPU time.5
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In a first experiment we evaluated the effect of integrating knowledge of impli-
cations between linear constraints into the FO-AIG representation. We compared
two cases: Case no impl when no implications were computed and integrated and
case impl when implications were computed and integrated as described in Sec-
tion 4.3. Figure 2 depicts the number of AIG nodes used during the different
steps of the model checking procedure both for case no impl (dashed line) and
case impl (solid line). For case no impl the maximal number of active AIG nodes
was 192, 630 whereas for case impl the maximal number was only 59, 372. This
clearly shows that integrating knowledge of linear constraints pays off in terms
of node counts: By using implications it was possible to simplify the represen-
tation to a great extent, since AIG nodes were identified which were equivalent
taking the linear constraints into account. Figure 3 shows that making use of
implications not only improves node counts, but run times as well: It presents
the run times needed for the different steps in both cases. The total run time for
case no impl was 37.9 CPU minutes whereas the total run time for case impl was
4.7 CPU minutes. (The total number of implications between linear constraints
computed by our tool was 622 (implications due to transitivity not taken into
account).)

5 All experiments were performed on a dual Opteron 250, 2.4 GHz with 4 GB memory.
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In the following we will confine ourselves to case impl and we will perform
a more detailed analysis of the behavior of our representation of states con-
taining discrete and continuous variables. The efficiency of our FO-AIGs relies
both on efficient methods for Boolean manipulations and on efficient methods
for integrating knowledge of linear constraints avoiding the application of more
expensive calls to a linear constraint solver as much as possible.

We could observe that the number of SAT checks divided by the total number
of attempts to insert a node into the FRAIG was only 0.24% in our experiment.
The fraction of SAT checks which led to the result that the compared nodes
were functionally equivalent was 59%. This means that – although we are always
maintaining the functional reduction property of FRAIGs – the assistance of SAT

by simulation and structural hashing as described in Sect. 4.1 assures that SAT

is applied only for a small fraction of all node insertions. Moreover, the high
percentage of SAT checks proving functional equivalence of two nodes shows the
effectiveness of simulation in avoiding unnecessary SAT checks for nodes which
are not equivalent.

In a last experiment we analyzed how often the application of calls to the lin-
ear constraint solver HySAT was saved by incomplete (but inexpensive) methods.
In our method HySAT calls can be saved for two reasons:

1. The equivalence of two Boolean combinations of linear constraints can be
proven just by considering the Boolean part (without interpreting the vari-
ables representing linear constraints).

2. The non-equivalence of two Boolean combinations of linear constraints can
be proven by simulation with test vectors as described in Section 4.3.

Our model checking run involved 5374 equivalence checks for Boolean combi-
nations of linear constraints. However, for only 22 out of these 5374 checks it
turned out to be necessary to call the linear constraint solver in HySAT (i. e., in
0.41% of all cases). In 42.91% of all cases the call to HySAT could be avoided
due to reason (1) and in 56.68% of all cases due to reason (2).

Although we believe that the complex interaction of different methods in
our approach to first-order model checking still leaves room for improvement,
our first experiments provide promising results confirming our idea of increasing
efficiency by incomplete but inexpensive methods.

6 Related Work

We address hybrid systems consisting not only of a continuous part, but also of a
potentially complex discrete part. Tools like HyTech [12], d/dt [1], PHAver [10]
based on the notion of hybrid automaton [11] fail when dealing with complex
hybrid controllers, since only the continuous part of the system is represented
symbolically, while the discrete states are represented explicitly. Thus, these tools
cannot take advantage of the breakthrough achieved for symbolic model checkers
[5]. In this section, we discuss those verification tools which can (potentially) deal
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with hybrid systems with large discrete parts, and compare them with our work
in the end of this section.

CheckMate [19] is a Matlab-based tool for simulation and verification of
threshold-event driven hybrid systems (TEDHSs). A TEDHS has a clear separa-
tion between purely continuous blocks representing the dynamics in a given mode
and discrete controllers. The changes in the discrete state can occur only when
continuous state variables encounter specified thresholds. CheckMate converts
the TEDHS model into a polyhedral-invariant hybrid automaton [6], computes the
sets of reachable states for the continuous dynamics using flowpipe approxima-
tions [7], and performs search in a completely constructed approximate quotient
transition system. This approach was adapted for discrete-time controllers with
fixed sampling rate [18], where the sampled behavior only applies to conditions
for discrete-state transitions.

Separation of continuous dynamics and control by observing threshold pred-
icates as guards of transitions was also taken in [3, 2], which extended symbolic
model checking with dynamically generated first-order predicates. Those pred-
icates express sets of valuations over large data domains like reals. BDDs are
used to encode discrete states, and specific variables within the BDDs are used
to present those first-order formulas, which are maintained separately.

The SAL verification tool [16] for hybrid systems builds on a symbolic repre-
sentation of polynomial hybrid systems in PVS, the guards on discrete transitions
and the continuous flows in all modes can be specified using arbitrary polyno-
mial expressions over the continuous variables. SAL applies hybrid abstraction
[20] to construct a sound discrete approximation using a set of polynomial ex-
pressions to partition the continuous state space into sign-invariant zones. This
abstract discrete system is passed to a symbolic model checker. SAL also uses
other techniques like quantifier elimination and invariant generation.

HySAT [9] is a bounded model checker for linear hybrid systems. It combines
Davis-Putnam style SAT solving techniques with linear programming, and im-
plements state of the art optimizations such at nonchronological backjumping
conflict driven learning and lazy clause evaluation.

HYSDEL [21] is a model language for describing discrete-time hybrid systems
by interconnections of linear dynamic systems, finite-state automata, if-then-else
and propositional logic rules. The description can be transformed into a Mixed
Logical Dynamical (MLD) system. HYSDEL uses mathematical programming to
perform reachability analysis for MLD systems. The algorithms determines the
reachable set by solving a mixed-integer optimization problems.

Both CheckMate and SAL construct a discrete approximation in order to per-
form model checking. Our approach checks properties directly on a computed
reachable state space, which includes both discrete and continuous parts, with-
out using any approximation. Moreover, instead of using BDDs as in [3, 2], we use
FO-AIGs as symbolic representation of hybrid state spaces. Various techniques
like implication test and test vector generation are tightly integrated to iden-
tify equivalent and non-equivalent linear constraints efficiently. This approach
allows us to deal with large discrete state spaces, while smoothly incorporating

13



reasoning about continuous variables (linear constraints). From this perspective,
our approach is different with all the aforementioned works. Unlike bounded
model checking in HySAT, we perform verification on a completely constructed
state space. Tools like CheckMate and SAL deal with continuous-time hybrid
systems. Our approach focuses on discrete-time hybrid systems as HYSDEL, but
the analysis procedure in HYSDEL is different from ours.

7 Concluding Remarks

In this paper, we have proposed an approach for model checking safety pro-
preties of discrete-time hybrid systems. It uses a first-order extension of AIGs as
a compact representation for sets of configurations, which are composed of both
continuous regions and discrete states. Several efficient methods for keeping this
representation as compact as possible have been tightly integrated. For instance,
we have implemented techniques to keep the discrete part functionally reduced,
to detect implications between linear constraints, to use a decision procedure to
perform equivalence checks on our hybrid state-set representation, to generate
test vectors to distinguish between any two boolean combination of linear con-
straints. The typical application domain of our approach is hybrid systems with
non-trivial discrete state spaces.

The implementation of our approach has only been used to check an indus-
trial case study with limited size and several small examples taken from the
literature. More sophisticated examples will be checked within our project. We
expect to report more experience, and to compare a mature implementation with
other tools (see Sect. 6). Our tool computes the set of reachable states exactly.
Our previous works [3, 2] have already used predicate abstraction to derive a
finite-state abstraction of the hybrid system either on-the-fly or at a separate
initial abstraction step. These techniques can be integrated without much diffi-
culties. The exectution time of our tool heavily relies on discretization. Currently,
techniques like acceleration to speed up step computation are under our inves-
tigation. We also plan to use counter-example guided abstraction refinement, as
it has been added to CheckMate [8] recently.
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A Appendix: Case study

In this appendix we give some more details concerning the example used in
Section 5. The example is derived from an industrial case study, a controller for
the flaps of an aircraft [4]. The flaps are extended during take-off and landing to
generate more lift at low velocity. They are not robust enough for high velocity, so
they must be retracted. It is the controller’s task to correct the pilot’s commands
if he endangers the flaps. In the industrial case study performed for Airbus, a
rather elaborate model was analyzed. We extracted a simplified system with four
components to model, i. e., the pilot behavior, the controller, the flap mechanism,
and the rest of the aircraft. It contains two continuous variables v (velocity) and
f (flap angle), and two discrete variables ` (lever position set by the pilot) and
c (corrected position, set by the controller). For each lever position, there is a
pre-defined flap position and a pre-defined nominal (maximal) velocity.

A typical aircraft-level safety requirement related to the example is the fol-
lowing: “For the current flap setting, CAS shall not exceed VF”, where CAS is
the Calibrated Air Speed, modeled by v in our case, and VF is the maximum
allowed velocity for a given flap position plus 7 knots.

The flap controller is not supposed to guarantee safety under all circum-
stances. The pilot gets corrected, but not eliminated. To enable manoeuvres
risking aircraft integrity in critical situations, the controller is limited to only
modify the pilot’s command by one notch. Therefore, the property we aim to
establish is that the flaps will always be in a safe position provided the pilot acts
reasonably, that is, if he deviates only moderately from a safe behavior. Whether
this requirement holds for our model depends on a “race” between flap retrac-
tion and speed increase. The controller is correct, if it initiates flap retraction
(by correcting the pilot) early enough.

The pilot component in our model ensures “reasonable” lever positions, by
guaranteeing that the lever is at most one notch too high. The behavior of the
controller depends on both ` and v: When the velocity is greater than the nominal
max value (nominal + slack ), the modification of the pilot behavior is activated
(c = ` − 1); when the velocity has changed to less than the nominal min value
(nominal − slack ), the modification is turned off (c = `). The flap mechanism
controls the continuous variable f , and depends on the discrete variable c. It
models the mechatronic which adapts the physical flap angle f to the position
commanded by c. This is a process which takes time. f has a range from 0 to 55.0.
At each discrete time step (the sampling rate is δ = 100 ms in this example),
the flap angle may change by ∆f = 0.15625. At the same time, the rest of the
aircraft might increase the velocity by 0.5 knots within a range from 150.0 to
340.0 knots.

This defines the “races” mentioned above. Our specification of the model
is simply AG safe. Our current prototype successfully model checked the flap
controller with 3 lever positions, 220.0 ≤ v ≤ 340.0, and 0.0 ≤ f ≤ 20.0, showing
that the system remains in the safe region.
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