A New Input Technique for Accented Letters
in Alphabetical Scripts

Uwe Waldmann
Max-Planck-Institut fur Informatik
Stuhlsatzenhausweg 85
66123 Saarbriicken, GERMANY
+49 681 9325227
uwe@mpi-sb.mpg.de

Abstract

SITMO is a new input technique for accented and special letters of the Latin alpha-
bet (or other alphabets of comparable size), which combines in a uniform way short
key sequences for frequently used characters with an easily memorizable scheme to
enter rarely used characters. Compared with traditional modifier techniques, SITMO
requires less additional keys and allows to access more characters, while for most Eu-
ropean languages, the average number of keystrokes per derived letter is similar (that
is, close to 2).

1 The Problem

For most computer users worldwide, the number of characters that they need to input more
or less regularly exceeds the number of (possibly shifted) keys on a keyboard. This has been
true since the transition from 7-bit character codexX|l and its national variants, with 95
printable characters) to 8-bit character codes, and it is even more of a problem in the age
of Unicode. While the number of keys on commercially available keyboards has increased
during the last decades, the number of keys that can be put on a newly designed keyboard is
obviously limited, and the number of keys that can be conveniently accessed from the home
row is even more limited. As a simple one-to-one translation from individual keystrokes to
characters is impossible, using more complex input methods is unavoidable.

There is no uniform input method that is well-suited for, say, entering Czech text (one
alphabet, 82 letters), classical Greek text (one alphabet, at least 166 letters), mixed English
and Russian text (two alphabets, 116 letters), and Japanese text (four writing systems, at
least some thousands of letters and ideographs). These different tasks clearly require differ-
ent solutions (cf. Leisher [4]). In this paper we restrict to the case of a single language using
the Latin alphabet (or another alphabet of comparable size), plus a small number of dia-
critical marks occurring in native words, plus a possibly large number of diacritical marks
occurring only in borrowed words, proper nouns, quotes from other languages, etc. Our
goal is to find a technique to enter accented and special letters efficiently and conveniently
using a conventional keyboard.

20th International Unicode Conference 1 Washington, DC, January 2002

A New Input Technique for Accented Letters in Alphabetical Scripts

2 Terminology

We call a characterlaase characteiif it has its own key on the keyboard (possibly shifted),
and anon-base charactemtherwise. Often, a non-base charaagican be associated
in some natural way with a base charaatgrfor instance becausg is typographically
similar to ¢;, or becausey, is commonly replaced byg; (or by a sequence; .. .c, of
base characters) @ is not available in a given character set. In such a case, wegcall
charactederived from g.

We emphasize that the division into base characters and derived characters need not
match the conventions of a particular language or orthography. For instance, “6” is consid-
ered as a first-class letter in Swedish, as a second-class letter in German, and as the letter
“0” with a diacritical mark indicating separate pronunciation in Dutch. For our purposes,
this distinction is irrelevant: In the context of a keyboard that does not haye)&ey we
would always take “6” as a character derived from “0”.

Unless explicitly said otherwise, we assume in this paper that the set of base letters is
{A,...,Z,a,...,%. Our results apply mutatis mutandis to other sets of base letters, say
{A...,Z,AAQa,...,z,44p0r {A....Qaq,...w}

3 Requirements

3.1 Primary Requirements

The primary requirements that an input method should satisfy can be summarized as fol-
lows. (As we will see in the sequel, these desiderata are not fully compatible.)

It should allow fast typing with a small number of errors.

It should be easy to learn and to memorize.

It should induce little mental and physical stress.

It should have a large scope.

It should have the prefix property.

It should be usable independently of language-specific hardware.

While the first three objectives are obvious, the last three ones need perhaps some more
explanation and motivation:

The scope of an input method is the set of characters for which it is applicable. Ideally,
an input method is complete — it allows to accascharacters of the given character set.

For large character sets such as Unicode, however, this demand may be rather high. Of
course, in practice completeness can always be reached by supplementing a given incom-
plete input method with a complete fallback method. This destroys uniformity, however
(and is thus detrimental to memaorizability).

An input method has the prefix property, if there is no pair of characters that are to
be entered using key or event sequences that are proper prefixes of each other. If the
input method satisfies this technical condition, then an application can always determine
unambiguously whether a character has been entered completely or not. Obviously this is
useful for menu selections and yes/no questions without trgiegrn). Furthermore, itis
necessary if the input method is to be implemented transparently as a finite transducer, so

20th International Unicode Conference 2 Washington, DC, January 2002

A New Input Technique for Accented Letters in Alphabetical Scripts

that application programs see only the completely entered characters, not the intermediate
steps. For example, an input method with the prefix property can be integrated into a
window system in such a way that applications need not even be aware of the existence
of the input method, whereas an input method without the prefix property requires at least
some kind of cooperation between the applications and the window system.

Independence from language-specific hardware is desirable since we can not assume
that everybody who is writing in a particular language uses a keyboard that is specifically
tuned to the orthography of that language — first, since there are users who switch between
different languages (and who prefer not having to switch the physical keyboard, too); sec-
ond, since some users want to write in languages that are used so rarely (globally, or in a
particular region) that specialized keyboards are not commercially available.

3.2 Consequences

What are the concrete consequences of the general requirements listed above?

To improve learnability and memorizability and to reduce mental stress and the fre-
qguency of typing errors, the key sequences should of coursenaenonic Note that, if
the input method is sufficientlyniform, learning its general principle tends to be rather
trivial. Learning and memorizing how to input individual characters may be a problem,
though, in particular for infrequently used characfeBurthermore, it is advantageous if
the key sequences amatural, that is, if they correspond intuitively to the way in which the
characters are written by hand.

Short key sequenceat least for frequent letters, are indispensable for rapid typing.
While it is clear that shorter key sequences imply a smaller number of keystrokes for a
given text, this is not the only reason: Long key sequences carry also a much higher risk of
interrupting the user’s train of thought, and the memory recovery process that is necessary
afterwards adds to the mental stress and slows down the typist in addition. On the other
hand, for a rarely used character, a long but mnemonic key sequence seems to be preferable
to a short key sequence that has to be looked up in the manual.

It should be mentioned here that there is no user-independent notion of “rarely used
characters”: Even though the frequency of the lettétof “€” in average French texts
is close to zero, a French author writing about Czech composers or Balkan politics may
need to use these characters rather often. It is therefore necessary that the input method is
suitable for individualization

To avoid typing errors, the input method should furthermorafembiguousin other
words, users must know what character they enter or have entered. This may look trivial —
but it is not, if some characters in the character repertoire are visually indistinguishable.

To simplify learning and to reduce mental stress and the number of typing errors, it is
also desirable that the input methddes not interferavith the default way of using the
keyboard: Anything that can be typed with the input method disabled using a certain key
sequence should also be typable using the same key sequence if the input method is enabled.

Conveniently located keyse necessary both for fast typing and to reduce the physical
stress. Having to move fingers far away from the home row (or even worse, having to move
the hand away from the keyboard to reach the mouse) slows down typing.

Chording, that is, simultaneous pressing of several4isys double-edged sword. Un-

LFor instance, it is easy to remember that accented characters are entered by tyfiGgrfigste), then the
accent, then the base letter. It is not so obvious that in the absend&)oftey, the character “4” is obtained by

typing @
2For instance, using t key to produce uppercase letters.

20th International Unicode Conference 3 Washington, DC, January 2002

A New Input Technique for Accented Letters in Alphabetical Scripts

der optimal conditions — if the typist is sufficiently trained and the keys can be conveniently
reached — the overhead for the second key is small. For an untrained typist, or for key com-
binations that require heavy distortion of the hand(s), both the typing time and the physical
stress may be even larger than for two sequential keystfokes.

In the rest of this paper, we abstract from the concrete positions of the keys on the key-
board: Every input method can be spoiled by assigning a crucial function to a sufficiently
inconveniently located key. Furthermore, personal taste, anatomy, and previous accustom-
ing have a great influence on which key positions are considered convenient. On the other
hand, the number of keys that can be put on a keyboard is clearly limited, and the number of
keys that can be conveniently accessed from the home row is even more limited. Usurping
a key already in use means that some other character becomes less easily typable, so the
problem is deferred, but not solved. It is therefore desirable that the input nretingices
few (additional) keys- the more keys it requires, the more likely some of them will be
located inconveniently.

4 Traditional Techniques

The vast majority of keyboard-based approachesto tackle our problem falls into five groups.
A one-to-ondranslation from keystrokes to characters is the simplest way to deal with
derived characters: The derived character gets its own dedicated key on the keyboard, that

is, itis turned into a base character.
The second group of approaches uses some kindatfifier keys, also called dead
keys. Two variants are common: Either there is one modifier key per accerft; sy
the umlaut (two dots) accerit;) for the grave accent, and so on. Then the letter “6” can
for instance be typed s (o) (“leading modifiers”, e. g. using the input methtadin-
1-prefixin the editor Emacs) do] ("] (“trailing modifiers”, e. g. using the input method
latin-1-postfixin Emacs). Alternatively, one restricts to a a single modifier key (usually
with chording, sayAltGr-press)(o)(AltGr-release]). The additional derived characters that can
be obtained in this way are then often engraved in the key caps.
The third group is characterized by using one spematposdey for initiating a (more
or less)mnemonidey sequence that yields a derived character. For instance, “6” can be
typed agCompose)(")(o] on a Sun keyboard. Again there are numerous variants of this
scheme: Microsoft Word usgstrl) with chording instead and(:] instead of
("), so that “0” is typed afCtri-press)(:](Ctrl-release)(0; ISO 9995-3 definefaltGr-press]([)
(AltGr-release] (o). Sometimes, a composite key sequence takes the role of the compose key,
€. g. in EmacgCtrl-press)(x)(Ctrl-release](8](") (o).
Numericinput schemes constitute the fourth group of approaches. They allow to access
a character by entering its code number in a given character set. Again, there are several
variants, with or without chording, using decimal digits (Microsoft Windowst-press)
(0) (6] (Alt-release]), octal digits (Emacs{Ctrl-press) (q] (Ctrl-release) (3] (6](6)), or
hexadecimal digitsi$O 14755:(Shift-press) (Ctrl-press](f)(6] (Ctrl-release](Shift-release] [3]).
Permanently switchinffom one input method (“keyboard”) to another one can be con-
sidered as a meta-method; usually it combines several one-to-one or modifier techniques.
Apart from these keyboard-based approaches, there are selection-based techniques,
where characters are copied from some panel (for instance the Microsoft Windows “Char-

3The ergonomic problems of chording keys can be alleviated by duplicating the keys so that they can be
pressed alternatively with the left or the right hand. (It is highly regrettable thgitf@) key is not duplicated
on standard PC keyboards.)

20th International Unicode Conference 4 Washington, DC, January 2002

A New Input Technique for Accented Letters in Alphabetical Scripts

acter Map”) to the editing region using the mouse or another pointing device, or where the
mouse is used to switch permanently between different keyboards.

How do the traditional techniques compare with respect to the requirements listed be-
fore? Obviously the numeric schemes have the largest scégmwed by mnemonic
compose, followed by modifier methods. One-to-one translation is only applicable for ex-
tremely few characters.

Another advantage of the numeric schemes is shared by the mnemonic compose method:
both occupy only one additional key. By contrast, modifier approaches usually occupy one
key per diacritical mark, and one-to-one methods need even one key per character. (Even
then the new base character will most likely displace some other character, and unless one-
to-one methods are combined with permanent switching, the problem is only deferred.)

When we compare the techniques with respect to mnemonicity and to the length of
the key sequences, the order is essentially reversed. One-to-one techniques are the most
mnemonic (provided that the characters are engraved in the key caps), numeric techniques
are the least mnemonic, and modifier and mnemonic compose methods range in between.
The length of the key sequences is 1 for one-to-one input methods, at least 2 for mod-
ifier methods, and at least 3 for mnemonic compose methods; numeric schemes require
generally the largest number of keystrokes. Permanent switching is rather poor for iso-
lated characters (at least one keystroke to switch, one keystroke to type the character, one
keystroke to switch back), but it becomes much better for longer runs.

Leading and trailing modifier methods differ essentially in two ways: Trailing modifiers
follow the model of handwriting more closely, where the base letter is written before the
accent. They are thus more natural than leading modifiers. On the other hand, in contrast
to all other traditional input methods, trailing modifier methods do not have the prefix
property, so that the implementation is more expensive.

Numeric schemes and one-to-one methods are the two extremes among the traditional
techniques. It is obvious that both the short key sequences of one-to-one methods and the
large scope of numeric schemes do not come for free — and it is also obvious that both
properties are out of reach for other approaches. In the next section we will show, however,
that the relative advantages of (trailing) modifier and mnemonic compose methoux are
mutually exclusive: The input method that we will introduce yields natural, mnemonic and
short key sequences (like trailing modifier methods), still it requires only a single additional
key (like mnemonic compose methods) and provides a relatively large scope.

5 The SITMO Technique

5.1 Theldea

TheSITMO (Single Iteratable Trailing Modifigrtechnique requires a single additional key
labelled(Accent) on the keyboard. Typinfpccent) replaces the character immediately be-
fore the cursor by another character, usually derived from the same base character. For
instanceAccent] might replace “a” by “a”, “a” by “a”, and “a” by “a”. The cursor is not
moved during this operation, so it is possible to type the letter “a” using the key sequence
(a) (Accent]. Typing (Ctrl-press] (Accent] (Ctrl-release] gives rise to the inverse trans-
formation, hencéa](Accent)(Accent] (Ctrl-press)(Accent] (Ctrl-release] and(a] are two

ways to produce the letter “a”.

4For a character set as large as Unicode, numeric schemes seem to be the only keyboard-based input methods
that are both uniform and complete.

20th International Unicode Conference 5 Washington, DC, January 2002

A New Input Technique for Accented Letters in Alphabetical Scripts

Having to typgAccent) a dozen of times may look like a rather clumsy way to access a
single letter. However, as we will show below, being able to access frequently used letters
using only two or three keystrokes greatly outweighs this inconvenience.

TheSITMO technique is parameterized by a “replacement scheme”. To define the latter,
we first need the notion of a “row”; Aow is a string in which no character occurs more
than once. Usually the first character of a row is a base character and all further characters
are derived from this base character.

Example 1 A row starting with the base character “a”, followed by ten derived characters:
adadaaaxzagaa

Intuitively, rows are thought to be cyclic. If a romhas lengthn, then the successor of the

i-th characteri(< n) inr is defined as thé +1)-th character of, and the successor of the

n-th character is defined as the first charactar. #&nalogously, the predecessor of the first

character of is defined as the-th character of.

A replacement schenig a set of rows, such that no character occurs in more than one
row.

Example 2 An excerpt of a replacement scheme containing Latin letters used in European

languages (MES-1, [1]):
AAAAAAREA
adaaasamxas
cccCcc
cgcccec
DPDD
dodda
EEEEEEEEE
eéeéééeee

P I>c
D >

o ()

| My

Given a replacement scherm@&nd a character, the successor su@gs) of cin sis
defined as the successoraif r, if ¢ occurs in some row of s, and a< itself otherwise.
The predecessor afin sis defined analogously, it is denoted by pied).

Typing replaces the characterimmediately before the cursor by sycs),
wheresis the currently selected replacement scheme; tyfaitigpress)(Accent)(Ctrl-release]
replaces by predc, s).

Example 3 Given the replacement scheme of Example 2,
typing (D) produces D _

(e) De_

Dé_

0 Déj_

(a) Déja_
Déja_
Déja_
(-) Déja-_
Déja-v_
Déja-vu_

where_ symbolizes the cursor.

20th International Unicode Conference 6 Washington, DC, January 2002

A New Input Technique for Accented Letters in Alphabetical Scripts

5.2 Implementation

Unfortunately, thesSITMO technique does not have the prefix property. For this reason, a
transparent implementation is not possible, and the input method has to be integrated into
the application programs. Fortunately, this integration is straightforward: Suppose that the
key is bound to the functiobeletePreviousChar() and any printable
characterc) is bound tolnsert(c) , and thatGetCharBeforeCursor() returns

the character before the cursor, then(#egent) key is bound to

if (not CursorAtBeginningOfLine()) then
¢ := GetCharBeforeCursor();
DeletePreviousChar();
Insert(succ(c,s));

endif

wheres is the currently selected replacement scheme.

5.3 Improving the Feedback

Optionally, the functions “sugc, s)” and “predc, s)” can be extended in such a way that,

as a side effect, the list of characters in the current row (with the current character high-
lighted), the code number of the current character, and its name are displayed in a dedicated
further window.

Example 4 Typing(D)(e] (i)(a) in the window “Main” displays

Swap Accent
alaglaaaaaeaaa
OOE4: Latin small letter a with diaeresis

Main

Déja_

After typing(Accent] once more, the display changes to

Swap Accent
a aé Adaeagaa

O00EOQ: Latin small letter a with grave

Main

Déja_

20th International Unicode Conference 7 Washington, DC, January 2002

A New Input Technique for Accented Letters in Alphabetical Scripts

In this way, the user can see in advance when the desired character will appear. In par-
ticular, to enter a character located at the end of the row one can either kéapdhekey
pressed until the desired character is reached, or one can pick it from the “Swap Accent”
window and paste it into the active window using the mouse. Besides, displaying the full
name of the character eliminates ambiguity, especially, if the character repertoire contains
characters that are (almost) visually indistinguishable. For instance, in certain fonts it may
be difficult to tell “€” (“e with caron”) from ‘€” (“e with breve”), and the upper case forms
of the Icelandic letter “8” and the Croatian lettef'share even the same glyph “D”.

5.4 User Configuration

To be conveniently usable, it is essential that an input method is configurable and suitable
for individualization. For theSITMO technique, this happens in two ways: First of all,
every user can (or rather: must) pick a predefined replacement scheme for the language
in which he wants to write. Starting from such a predefined replacement scheme, a more
extensive configuration is possible by rearranging characters in the scheme according to
personal needs. Using a drag-and-drop interface, it is relatively easy to ensure that no
character occurs more than once in the replacement scheme. It should be noticed that by
moving a character into a particular row, the remaining characters are shifted by one posi-
tion, but they remain accessible using the standard rule: “type the base character and then
type (Accent] sufficiently often.” By contrast, when a key sequence in, say, the mnemonic
compose technique is redefined, then the character that was previously accessed using that
key sequence becomes inaccessible.

6 Evaluation

Like the trailing modifier method, th&®TMO technique allows to enter accented characters
in the “natural order” (first the letter, then the accent), and like the trailing modifier method,
the price it has to pay for this is that it lacks the prefix property. The technique is obviously
uniform, and the effort required to learn tBENMO principle seems to be negligible: our
test subjects usually became comfortable with it within a few minutes. As for the numeric
and the mnemonic compose method, a single additional key is sufficient. While being
unlimited in theory, the scope &fiTMO ranges in practice between mnemonic compose
and modifier methods. Character repertoires where multiple accents on a single letter are
common (such as Viethamese or polytonic Greek) are an exception; in this case, modifier
methods are superior.

There are two requirements for which it is not obvious how \B&IMO satisfies them:
Does it allow fast typing, that is, are the average key sequences short enough? And, are
the key sequences sufficiently easy to learn? For rare derived letters foreign to the given
language this is not a problem: in contrast to the mnemonic compose method, the user
need not learn the exact key sequence by heart; it suffices to figure out the base letter and to
type (Accent] until the desired derived letter appears. Key sequences for characters that are
used in the standard orthography must be fairly regular, however, otherwise touch typing
becomes impossible.

The number of letters that are derived from a single base letter varies enormously be-
tween different languages. In Vietnamese (Q0@l), the letter “0” has 17 derived letters
(it can optionally carry a circumflex or a horn, plus optionally an acute, a grave, a hook,
a tilde, or an underdot). In the old (polytonic) orthography of Greek, the lettéican

20th International Unicode Conference 8 Washington, DC, January 2002

A New Input Technique for Accented Letters in Alphabetical Scripts

optionally carry one out of two breathings, plus optionally one out of three accents, plus
optionally a iota subscriptum, yielding altogether 23 derived letters. ObviasigIMO is
not suited for such cases, and specialized modifier techniques [4] are a much better choice
here. Fortunately, for many languages, these figures are much smaller. Most European
languages, for instance, use orthographies in which the number of derived letters per base
letter lies between one and three, rarely four. The question is now how to arrange these
derived letters in a replacement scheme.

Let p;; be the frequency with which theth letter in thei-th row of a replacement
schemes occurs in some fixed orthographyThen the average number of keystrokes for
derived letters is

_ i 22<j<n 1Pij
2i22<j<n Pi

Provided the association from derived letters to base letters is fixed, then we can minimize
this fraction by arranging the derived letters for any base letter by order of decreasing letter
frequency (in the given orthography). We call this replacement schenfiretheency-based
replacement schenfer the orthography.

Unfortunately, a small average number of keystrokes is not enough for our purposes.
If we want the input method to be fast and memorizable, we need to find replacement
schemes that yield a small average number of keystralkesin which the derived letters
are arranged in a sufficiently mnemonic orfler.

For which languages is this possible? To evaluate the method, we have inspected sam-
ple texts in 28 European languageNine of these languages use at most one derived letter
per base letter (e. g. in Latviam;¢,e, g 1, k, |, n, §,u, Z), exceptin foreign words. For these
languages, the frequency-based replacement scheme is obviously sufficiently mnemonic:
the typist only has to remember the rule “to type an accented letter of the given language,
type its base letter, followed oncé. The following table shows the percentagdje
of derived letters in the sample texts and the average nukakguf keystrokes per derived
letter® As expected, for all nine languagles, is very close to 2, the difference being due
to occasional foreign words and proper names in the sample texts.

ks

Language d Kereq

Albanian 7.5 2.0000
Azeri 15.5 2.0001
Finnish 3.9 2.0005
German 1.6 2.0006
Irish Gaelic 5.7 2.0000
Latvian 9.0 2.0000
Maltese 3.8 2.0000
Slovene 2.5 2.0000
Turkish 9.3 2.0001

SRecall that rows start with a base character.
6As explained above, the order of rare derived letfersign to the given languageeednot be mnemonic.
We will leave out those derived letters in the following examples.
"That is, all European languages using some extension of the Latin alppbet ,Z, a, ..., 2, for which
the author could find a 100,000 character sample of newspaper texts (in standard orthography) on the web.
8More precisely: per derived lowercase letter. The key sequence for an uppercase letter differs from the key
sequence for the corresponding lowercase letter by one ch@gtlég keystroke (except for the letter pairsi
and |, 1 in Turkish and Azeri).

20th International Unicode Conference 9 Washington, DC, January 2002

A New Input Technique for Accented Letters in Alphabetical Scripts

Icelandic is an example of a language where some base letters have two derived letters.
It uses the consonants “8” (eth) and “p” (thorn), six vowels with an acute accent (4, &, i, 6, 4,
y), and two more derived vowels, namely “&e” and “6”. The frequency-based replacement
scheme is

8

<K CcC~+~0 —0® O
< CT O — D Ox O
o

For this scheme, there is again a memorizable rule: “for the derived consonants, type
once, to put an acute accent over a vowel, tjgzeent] once, to obtairthe other
derived vowels, typ@Accent) twice”.

For Italian, Norwegian, and Spanish the situation is similar. In all these languages, the
frequency-based replacement scheme is sufficiently mnerfionic.

Language d Kireq
Icelandic 10.7 2.1354
Italian 0.6 2.0717
Norwegian 21 2.0814
Spanish 2.0 2.0005

The frequency-based replacement scheme for Estonian is not quite as regular as for the
languages considered so far:

N CcCwnwo®
N« C: ¢« O Q:
o:

With this scheme, “6” requires typirigccent) twice, whereas the other doubly-dotted letters
“a” and “0” require typingAccent) only once. By swapping two characters in the “o"-row

NCcCwnwo®
N« C: ¢« O QO

9All letter frequency tables and replacement schemes are availabkepatwww.mpi-sb.mpg.de/
~uwe/paper/Acclnput-bibl.html

20th International Unicode Conference 10 Washington, DC, January 2002

A New Input Technique for Accented Letters in Alphabetical Scripts

this can easily be fixed. The drawback is, however, that using the new scheme the average
number of keystrokes increases from 2.1271 to 2.2867.

For Estonian both the frequency-based and the regularized replacement scheme seem to
be acceptable. This holds likewise for Catalan and Polish. For Romanian, regularizing the
rows leads to such a significant loss of efficiency, that working with a very slightly irregular
replacement scheme appears to be a better choice. On the other hand, for Czech, Slovak,
Dutch, and West Frisian, the frequency-based replacement schemes are so irregular that
the advantages of regularizing clearly outweigh the increased number of keystrokes. The
following table shows the average numbers of keystrdkggandk. for the frequency-
based and the regularized replacement schemes, respectively. An asterisk (*) marks non-

recommended replacement schemes.

Language d kreq Kreg

Romanian 5.6 2.0833 2.4049*
Catalan 1.9 22312 2.3696
Estonian 3.1 21271 2.2867
Polish 5.6 2.0093 2.1228
Czech 9.7 2.0899* 2.1430
Dutch 0.1 2.3265* 2.3878
Slovak 8.4 2.0226* 2.0282

West Frisian 1.1 2.2213* 2.2342

In Croatian, Danish, Swedish, Lithuanian, and Hungarian, the frequency-based replace-
ment schemes are either quite regular or can be regularized as above. However, both the
resulting average numbers of keystrokes and the frequency of derived letters in these lan-
guages are comparatively high. In such a case, shifting a few derived letters from their
default row to a different one may lead to a significantly faster input method. For instance
in Swedish, by shifting the letter “4” from the “a’-row in the frequency-based replacement

scheme

to an arbitrary other row, say, the “s”-row, the average number of keystrokes is reduced
from 2.3198 to 2.0005:

C OO ww
C: O Dy Qo

We denote the average number of keystrokes for the shifted replacement schieymie by

Of course, we have to pay for the increased speed by a slightly less mnemonic and
uniform input method, but since the irregularity affects only a single frequently-used letter,
this seems to be acceptable. Alternatively, this problem could be fixed by m8ximgo

20th International Unicode Conference 11 Washington, DC, January 2002

A New Input Technique for Accented Letters in Alphabetical Scripts

with the one-to-one technique, that is, by turning “4” into a base letter. (This would be
particularly useful for Hungarian “6” and “u".)

Language d kreq Kreg Kshift
Croatian 2.6 2.2226 2.0004
Danish 2.3 2.2674 2.0114

Hungarian 10.0 2.2739* 2.3089 2.0840
Lithuanian 6.1 2.0976* 2.3112 2.0700
Swedish 42 2.3198 2.0005

In French and Portuguese, the sets of accents that can be combined with a particular
base letter vary so widely that it is almost impossible to arrange the derived letters in a
mnemonical order, much less in a mnemonical and efficient order. To handle these two
languages witt8ITMO, shifting one or two derived letters to alternative base letters or
turning them into base lettéfSis inevitable.

Language d Kireq Kreg Kshift

French 29 2.2562* 2.4778* 2.1163
Portuguese 2.8 2.3428* 2.1456

Summarizing, we see that for those 28 European languages we have investigated, the
average numbers of keystrokes per derived letter range between 2.0 and 2.4; for 25 lan-
guages they are below 2.2; for 20 languages even below 2.1. Concerning the average
number of keystrokesSITMO is thus comparable to the leading or the trailing modifier
technique; if the modifier technique requires the use ofs$hi) key to type some of the
modifiers,SITMO may even be superior.

One may ask to what extent our results are biased by the fact that we have used the
same sample texts to generate the frequency-based replacement schemes and to test them.
Would we have obtained substantially different results if the frequency-based replacement
schemes had been generated using a different collection of sample texts? This is unlikely
for the following reason: The order of the frequent characters is rather stable for sufficiently
large sample texts. The selection of rare characters occurring in sample texts varies widely,
but its influence on the average number of keystrokes is minute. For example, our 100,000
character sample text for German contained exactly two letters derived from “e”, namely
“é” (14 occurrences) and “€” (1 occurrencé).There is no doubt that “¢” is the most
frequent letter derived from “e” in German and that it ought to be the second element of
the “e”-row. However, there is no uncontested second most frequent letter, so “&” might
conceivably have turned out to be the fourth or sixth element of the “e”-row. But even
under the unrealistic assumption that “é” were the tenth element of the “e”-row, and even
if there had been 10 occurrences of “é” rather than a single one, the average number of
keystrokes for the sample text would increase only from 2.0006 to 2.0501.

10A very regular replacement scheme for French can be obtained if “é” gets its own key on the keyboard. In this
case, the average number of keystrokes for derived letters including “é” drops to 1.4979 (excluding “é": 2.3047).
HOccurring in a few French proper names.

20th International Unicode Conference 12 Washington, DC, January 2002

A New Input Technique for Accented Letters in Alphabetical Scripts

7 Extensions

7.1 Beyond European Languages using the Latin Alphabet

The SITMO technique works of course also for non-European languages and for alphabets
different from the Latin one — provided the character repertoire has about the same size and
the number of derived letters per base letter is small. So syllabaries and ideographic writing
systems must be excluded, just as Vietnamese, polytonic Greek, fully pointed Hebrew, or
other orthographies where the number of diacritical marks that can be put on a letter is too
large. Even four or five derived letters (e.g. in Yoruba: &, & €) are already too much,
unless some of these derived letters are extremely rare. Still this restriction leaves for
instance monotonic Greek, Yiddish (using the Hebrew alphabet with a very limited number
of points), and numerous East European and Asian languages that employ variants of the
Cyrillic alphabet. Of course, for changing between different alphabets, some permanent
switching mechanism is required: all character-by-character input methods discussed in
this paper are too clumsy for typing, say, Greek phrases within an English text.

7.2 Beyond Letters

Until now, we have considered only letters — characters that are part of some alphabetical
script. Apart from that, letter-like symbols, such as¥£,©, ®, ™, or § can of course be
included in the respective rows. Furthermore, many punctuation or mathematical characters
have some “closest relative” in tReCII character set, and could be accessed for instance
using a replacement scheme like

!

? ¢

<« <«—<«=CCerclC<x=x«xd
>» >2—==D2>313d>=-n>"Db>
* X *x @

=#4 ==&

On the other han&ITMO is rather unsuited for characters for which there is no obvious
mapping to base characters, for example line graphics or dingbats.

7.3 Beyond Typing

While we have considered only keyboard-based input methods so f&iTiHe technique

is also applicable to pen-based input systems, such as Unistrokes [2] or Graffiti [5, 6]. Here
we have to cope with the fact that the stroke patterns should be both simple and memo-
rizable for the user and reliably distinguishable for the stroke recognition software. The
number of such stroke patterns is again limited, however, so representing every possible
diacritical mark by an individual stroke pattern becomes problematic. USINgO, any
number of diacritical marks can be produced with a single stroke pattern (or a tip into a
particular spot of the writing area) that takes the role of(flagent] key.

20th International Unicode Conference 13 Washington, DC, January 2002

A New Input Technique for Accented Letters in Alphabetical Scripts

8 Conclusions

The SITMO technique combines in a uniform way short key sequences for frequently used
characters with an easily memorizable scheme to enter rarely used characters. As we have
shown in this paper, for most European languages the frequency distributions of derived let-
ters are sufficiently unbalanced that the resulting average numbers of keystrokes per derived
letter are close to 2. With respect to the number of keystrak@s/O is thus comparable

to leading or trailing modifier techniques. Its scope, however, is much larger. Further-
more, like the mnemonic compose technigsidFMO requires only a single additional key,
whereas leading or trailing modifier techniques require usually one key per accent.

The main drawback of th8ITMO technique is that it lacks the prefix property, so a
transparent implementation is not possible. This is the price we have to pay for a more
natural input technique. In this respesitTMO shares the advantages and the disadvantages
of trailing modifiers compared with leading modifiers.

References

[1] European Committee for Standardization. Multilingual European Subsets in
ISO/IEC 10646-1.CEN Workshop Agreement CWA 13873:2000, March 1,
2000. Available athttp://www.evertype.com/standards/iso10646/
pdf/cwal3873.pdf

[2] David Goldberg and Cate Richardson. Touch-typing with a stylusCdnference on
Human Factors in Computing Systems, INTERCHI'Afsterdam, The Netherlands,
April 24-29, 1993, pp. 80-87. ACM.

[3] International Organization for Standardizatibmput methods to enter characters from
the repertoire of ISO/IEC 10646 with a keyboard or other input devite®/IEC
14755:1997, 1997.

[4] Mark Leisher. Input metthod design. Pre-conference tutorials proceedings: Soft-
ware development + the Internet: going global with Unicode: Ninth International
Unicode ConferengeSan Jose, CA, USA, September 4-6, 1996. The Unicode Con-
sortium. Available atftp://crl.nmsu.edu/CLR/multiling/unicode/
tutorial.ps.gz

[5] I. Scott MacKenzie and Shawn X. Zhang. The immediate usability of Graffiti. In
Wayne A. Davis, Marilyn Mantei, and R. Victor Klassen, edaphics Interface '97
Kelowna, B.C., Canada, May 21-23, 1997, pp. 129-137.

[6] Palm, Inc. Graffiti.http://www.palm.com/products/input/ , 2000.

20th International Unicode Conference 14 Washington, DC, January 2002

