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Abstract. The Knuth-Bendix ordering is usually preferred over the lex-
icographic path ordering in successful implementations of resolution and
superposition, but it is incompatible with certain requirements of hierar-
chic superposition calculi. Moreover, it does not allow non-linear defini-
tion equations to be oriented in a natural way. We present an extension
of the Knuth-Bendix ordering that makes it possible to overcome these
restrictions.

1 Introduction

In theorem proving calculi like Knuth-Bendix completion, resolution, or super-
position, reduction orderings such as the Knuth-Bendix ordering (KBO) or the
lexicographic path ordering (LPO) are crucial to reduce the search space. Among
these orderings, the Knuth-Bendix ordering is usually preferred in state-of-the-
art implementations of theorem provers. There are several reasons for this: it
can be efficiently implemented – the most efficient known algorithm needs only
linear time – and it correlates well with the sizes of terms; so, reductions w. r. t.
a KBO usually lead to terms with fewer occurrences. In comparison, computing
term comparisons for the lexicographic path ordering requires at least quadratic
time and reductions w. r. t. an LPO may result in arbitrarily larger terms.

On the other hand, it is exactly this correlation between the KBO and term
sizes that renders the KBO incompatible with special requirements occurring in
certain applications. One example is hierarchic theorem proving [2, 4, 11], where
one considers two signatures Σ ⊇ Σ0 and needs an ordering in which every
ground term involving a symbol from Σ \ Σ0 is larger than every ground term
over Σ0. With an LPO, this property is easy to establish, with a KBO it is
usually impossible.

A second example are definitions of the form f(t1, . . . , tn) ≈ t0 where f does
not occur in t0. Such definitions can easily be ordered from left to right using
an LPO where f is larger in the precedence than every symbol occurring in
t0. With a KBO, however, we have the additional requirement that no variable
occurs more often in t0 than in f(t1, . . . , tn); non-linear definitions cannot be
handled adequately using a KBO.



In this paper, we present a variant of the Knuth-Bendix ordering that pre-
serves as much as possible of the spirit of KBO, yet satisfies the requirements
for hierarchic theorem proving or non-linear definitions. Like the original KBO,
our ordering is a simplification ordering that can optionally be made total on
ground terms.

Due to lack of space we cannot give complete proofs in this paper, for which
we refer the reader to (Ludwig [9]).

2 Preliminaries

We assume that the reader is familiar with standard concepts and notations in
the area of rewriting (see Baader and Nipkow [1]). We use the notation f/n ∈ Σ
to denote that the signature Σ contains the n-ary function symbol f ; if n = 0,
f is also called a constant symbol. The set of terms over a signature Σ and a set
X of variables is written TΣ(X); TΣ(∅) is the set of ground terms over Σ. For a
term t ∈ TΣ(X), |t| denotes the size of t; if x is a variable in X , |t|x denotes the
number of occurrences of x in t. Signatures are assumed to be finite.

Definition 1. Let X be a set of variables, let Σ be a signature, and let �⊆
TΣ(X)×TΣ(X) be a binary relation on the terms over X and Σ. Then � is said to
be compatible with Σ-operations , if s � s′ implies f(t1, . . . , ti−1, s, ti+1, . . . , tn) �
f(t1, . . . , ti−1, s

′, ti+1, . . . , tn) for all symbols f/n ∈ Σ with arity n ∈ N, for all
terms s, s′, t1, . . . , tn ∈ TΣ(X) and for all coefficients i ∈ N, 1 ≤ i ≤ n; �
is called stable under substitutions if s � s′ implies sσ � s′σ for all terms
s, s′ ∈ TΣ(X) and for all substitutions σ : X → TΣ(X). The relation � has the
subterm property if s � s′ whenever s′ is a proper subterm of s; � is a rewrite
relation if � is compatible with Σ-operations and stable under substitutions; it
is a rewrite ordering if it is a strict partial ordering and a rewrite relation; it is a
simplification ordering if � is a rewrite ordering and has the subterm property.

The Knuth-Bendix ordering (KBO) is an example of a simplification order-
ing. It is parameterized by a “precedence” on signature symbols, and a weight
function. The KBO was originally introduced by Knuth and Bendix [7] with a
stricter variable condition; the version presented in this document can be found
in (Dick, Kalmus, and Martin [3]) and also in (Baader and Nipkow [1]).1

First of all, in order to develop a function later that computes the weight of
terms, we need to assign weights to signature symbols, which will be positive
real numbers in the case of the KBO.

Let X be a set of variables and let Σ be a signature. Then, a (regular) symbol
weight assignment is a function λ : Σ ∪ X → N.

Let Σ be a signature, let X be a set of variables and let > be a strict partial
ordering on Σ. Let additionally λ : Σ ∪ X → N be a regular symbol weight
assignment. We say that λ is admissible for > if and only if the following two
conditions are satisfied:
1 In fact, Dick, Kalmus, and Martin [3] and Baader and Nipkow [1] also permit positive

real coefficients.
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(i) ∃λ0 ∈ N>0 such that ∀x ∈ X : λ(x) = λ0 and ∀ c/0 ∈ Σ : λ(c) ≥ λ0

(ii) If there is f/1 ∈ Σ such that λ(f) = 0, then we must have: ∀ g ∈ Σ : f ≥ g

Symbol weight assignments are extended to weight functions on terms as
follows: Let X be a set of variables and let Σ be a signature. Furthermore, let
λ : Σ ∪ X → N be a regular symbol weight assignment. Then, we recursively
define a function

wλ : TΣ(X) → N

which computes the (regular) weight of a term in the following way:

– For x ∈ X :

wλ(x) = λ(x)

– For n ∈ N, t1, . . . , tn ∈ TΣ(X):

wλ

(

f(t1, . . . , tn)
)

= λ(f) +
∑n

i=1
wλ(ti)

At first, the Knuth-Bendix ordering compares two terms by using the weight
function. If both terms have the same weight, the precedence is considered, and
only ultimately, if the top symbol is equal as well, recursion is used to compare
two terms.

Definition 2 (Knuth-Bendix Ordering). Let Σ be a signature and let X be
a set of variables. Additionally, let > be a strict partial ordering, the precedence,
on Σ and λ : Σ∪X → N be a regular symbol weight assignment that is admissible
for >. Finally, let w = wλ : TΣ(X) → N be the regular term weight function
induced by λ.

We define the Knuth-Bendix ordering �KBO ⊆ TΣ(X) × TΣ(X) induced by
(>, λ) on terms s, t ∈ TΣ(X) in the following way: s �KBO t if and only if

(KBO1) ∀x ∈ X : |s|x ≥ |t|x and w(s) > w(t)
or

(KBO2) ∀x ∈ X : |s|x ≥ |t|x, w(s) = w(t) and one of the following cases holds:

(KBO2a) ∃ f/1 ∈ Σ, ∃x ∈ X , ∃n ∈ N>0 such that s = fn(x) and t = x
(KBO2b) ∃ f/m, g/n ∈ Σ (m, n ∈ N), ∃ s1, . . . , sm, t1, . . . , tn ∈ TΣ(X)

such that s = f(s1, . . . , sm), t = g(t1, . . . , tn) with f > g
(KBO2c) ∃ f/m ∈ Σ (m ∈ N>0), ∃ s1, . . . , sm, t1, . . . , tm ∈ TΣ(X), ∃ i, 1 ≤

i ≤ m such that s = f(s1, . . . , sm), t = f(t1, . . . , tm) and such that
s1 = t1,. . . ,si−1 = ti−1, si �KBO ti

The Knuth-Bendix ordering is a simplification ordering; moreover, if the
precedence is a total ordering, it is total on ground terms. As shown by Löchner [8],
it can be computed in time O(|s| + |t|), where s and t are the terms to be com-
pared.2

2 Using a machine model in which addition of numbers takes constant time.
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3 Transfinite KBO

3.1 Motivation

The Knuth-Bendix ordering correlates well with the sizes of terms, which is
usually a desirable property, since it implies that reductions w. r. t. a KBO lead
to terms with fewer occurrences. On the other hand, it is exactly this correlation
between the KBO and term sizes that renders the KBO incompatible with some
special requirements for certain applications.

One example is the problem of orienting definition equations in an intuitive
direction. Suppose that we are given a sequence of signatures Σi (0 ≤ i ≤ n)
where Σi = {fi} ∪ Σi−1 for i ≥ 1, and that we have a set of non-recursive
definition equations of the form fi(si1, . . . , sik) ≈ ti, with ti, sij ∈ TΣi−1

(X)
and Var(ti) ⊆ Var(fi(si1, . . . , sik)) (where the sij are often, but not necessarily,
variables). If we use a lexicographic path ordering with a precedence fn > · · · >
f2 > f1 > . . . , then every term t with a top symbol fi is larger than every term
in TΣi−1

(Var(t)), i. e., all these equations can be oriented from left to right (and
can hopefully be used to eliminate all occurrences of the fi in the remainder of
the specification completely). If we try to get a similar effect with a KBO, we
face two problems: the KBO correlates with term sizes, so in general, a term
cannot be larger than every term over some subsignature, and moreover a term
cannot be larger than another term in which some variable occurs more often.

Another scenario where where the Knuth-Bendix ordering does not work sat-
isfactorily is hierarchic theorem proving. Standard first-order theorem provers
are notoriously bad at dealing with integer or real arithmetic – encoding numbers
in binary or unary is not really a viable solution in most application contexts. A
hierarchic proof system adds theory knowledge to a saturation-based calculus by
using a proof system for a base theory, say, a decision procedure for real arith-
metic as a black box. The proof system is initially given a set of formulas over
some extension of the base theory, e. g., over real arithmetic extended with data
structures, free function symbols, etc. As usual, the deduction rules of the cal-
culus are employed to generate formulas from premises and the conclusions are
added to the set of formulas; in addition, all derived formulas belonging to the
base domain are passed to the decision procedure. As soon as one of the two sys-
tems encounters a contradiction, the problem is solved. (Bachmair, Ganzinger,
and Waldmann [2], Ganzinger, Sofronie-Stokkermans, and Waldmann [4], Pre-
vosto and Waldmann [11]).

In hierarchic theorem proving calculi, one usually considers a signature Σ0

of base symbols and a signature Σ ⊇ Σ0 that extends Σ0. Similarly to the ordi-
nary superposition calculus, hierarchic superposition calculi are parameterized
by a reduction ordering � that is total on ground terms. In order to ensure refu-
tational completeness, this ordering must have the property that every ground
term in TΣ0

(∅) is strictly smaller than every ground term in TΣ(∅) \ TΣ0
(∅).

This requirement is easy to establish with a LPO – the precedence just needs
to be defined in such a way that all the symbols from Σ0 are smaller than all
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the symbols from Σ – but it is generally incompatible with the definition of the
Knuth-Bendix ordering.3

Our goal is to find a computable (total) simplification ordering that gen-
eralises the KBO and satisfies the requirements of hierarchic theorem proving.
We will show that such an ordering can be constructed using certain ordinal
numbers as weights.

In the next sections, we start by presenting a very general version of the or-
dering, which is computable, but unfortunately not very efficiently. Restrictions
that lead to a better runtime behaviour are discussed later.

3.2 Ordinal Numbers

A set α is an ordinal if and only if α is totally ordered with respect to the subset
relation and every element of α is also a subset of α. The class of all ordinals is
denoted by ON. Ordinals are ordered by the element relation, or equivalently,
by the subset relation, i. e., α < β if and only if α ∈ β if and only if α ( β.

If a non-empty ordinal β has a largest element α, then it can be written as
β = α ∪ {α}. We say that β is the successor of α, denoted by β = S(α). A
non-empty ordinal γ that is not a successor of another ordinal is called a limit
ordinal. Every limit ordinal γ is the union (or least upper bound) of all ordinals
that are smaller than γ.

The ordinals ∅, {∅}, {∅, {∅}}, and so on, are identified with the natural num-
bers 0, 1, 2, . . .. The smallest limit ordinal is denoted by ω, it corresponds to the
set of all natural numbers.

The following operations on ordinal numbers can be seen as the standard
extensions of the addition, multiplication and exponentiation on natural num-
bers, in particular they coincide with the latter if their arguments are natural
numbers. For more information we refer to (Just and Weese [6]).

Definition 3 (Regular Ordinal Addition). Let α, β ∈ ON be ordinals. We
define an ordinal α + β by recursion over β:

(i) α + 0 = α
(ii) α + β = S(α + γ) if β = S(γ)
(iii) α + β =

⋃

γ<β (α + γ) if β is a limit ordinal > 0

Definition 4 (Regular Ordinal Multiplication). Let α, β ∈ ON be ordi-
nals. We define an ordinal α · β by recursion over β:

(i) α · 0 = 0
(ii) α · β = (α · γ) + α if β = S(γ)
(iii) α · β =

⋃

γ<β (α · γ) if β is a limit ordinal > 0

Definition 5 (Regular Ordinal Exponentiation). Let α, β ∈ ON be ordi-
nals. We define an ordinal αβ by recursion over β:

3 Except if Σ0 consists only of constant symbols and at most one unary function
symbol.
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(i) α0 = 1
(ii) αβ = αγ · α if β = S(γ)

(iii) αβ =

{

0 if β is a limit ordinal > 0 and α = 0
⋃

γ<β αγ if β is a limit ordinal > 0 and α > 0

We cannot use the regular operations on ordinals to compute the weight of
a term from the weights of its subterms, which is mainly due to the fact that
they are only weakly monotonic with respect to >. For instance, 1 < 0, but
1 + ω = ω = 0 + ω. There is an alternative set of operations on ordinals that is
better suited for our purposes. Let us first define a subset of the ordinal numbers
on which we will define those operations:

Definition 6 (Set O). We set O ⊆ ON to be the following inductively defined
set:

– Let 0 ∈ O.
– If ∃m ∈ N>0 such that ∃n1, . . . , nm ∈ N>0, ∃ b1, . . . , bm ∈ O with b1 > b2 >

· · · > bm, then let
∑m

i=1
(ωbi · ni) ∈ O

The set O exactly contains those ordinals that are smaller than ε0, where
ε0 is the smallest ordinal such that ε0 = ωε0 . Elements of O are sums of finite
sequences of ordinals ωβi · ni, which we call the basic building blocks. The de-
composition of an ordinal α into a sum

∑m
i=1 (ωbi · ni) with b1 > b2 > · · · > bm

is called the Cantor normal form of α; it is unique. We define

– deg(α) = b1,
– Exponents(α) = {b1, b2, . . . , bm},

– coeff(α, β) =

{

ni if ∃ i, 1 ≤ i ≤ m : bi = β

0 otherwise

For α = 0, we define deg(α) = −∞, Exponents(α) = ∅, and coeff(α, β) = 0.
The following operations on ordinals were introduced by Gerhard Hessen-

berg [5].

Definition 7 (Hessenberg Addition). Let ⊕ : O×O → O be the following
function:

– For α ∈ O \ {0} we define:

0 ⊕ 0 = 0

0 ⊕ α = α

α ⊕ 0 = α

– Let for natural numbers m, m′ ∈ N>0, n1, . . . , nm, n′
1, . . . , n

′
m′ ∈ N>0, or-

dinals b1, . . . , bm, b′1, . . . , b
′
m′ ∈ O such that b1 > b2 > · · · > bm and

b′1 > b′2 > · · · > b′m′ ,

α =
∑m

i=1
(ωbi · ni), β =

∑m′

i=1
(ωb′i · n′

i) ∈ O
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We define then

α ⊕ β =
∑m′′

i=1

(

ωci ·
(

coeff(α, ci) + coeff(β, ci)
)

)

where we set Exponents(α) ∪ Exponents(β) = {c1, c2, . . . , cm′′} such that
m′′ ∈ N and c1 > c2 > · · · > cm′′ .

Definition 8 (Hessenberg Multiplication). Let � : O × O → O be the
following function:

– For α ∈ O \ {0} we define:

0 � 0 = 0

0 � α = 0

α � 0 = 0

– Let for m, m′ ∈ N>0, n1, . . . , nm, n′
1, . . . , n

′
m′ ∈ N>0, b1, . . . , bm, b′1, . . . , b

′
m′ ∈

O such that b1 > b2 > · · · > bm and b′1 > b′2 > · · · > b′m′ ,

α =
∑m

i=1
(ωbi · ni), β =

∑m′

j=1
(ωb′j · n′

j)

We define then

α � β =

m
⊕

i=1

m′

⊕

j=1

(

ωbi⊕b′j ·
(

coeff(α, bi) · coeff(β, b′j)
)

)

Lemma 9. The following properties hold for all α, β, γ ∈ O:

– α ⊕ β = β ⊕ α.

– α � β = β � α.

– α ⊕ (β ⊕ γ) = (α ⊕ β) ⊕ γ.

– α � (β � γ) = (α � β) � γ.

– α � (β ⊕ γ) = α � β ⊕ α � γ.

– α < β implies α ⊕ γ < β ⊕ γ.

– α < β and γ > 0 imply α � γ < β � γ.

It is important to note that the Hessenberg addition ⊕ on the set O does not
possess the continuity property, i. e., for two ordinals α, β ∈ O such that α < β
there does not necessarily exist an ordinal γ ∈ O such that α⊕ γ = β. A simple
example consists in the two ordinals 1 and ω: there is no ordinal α ∈ O such that
1⊕ α = ω. This fact makes the proof of the following lemma (which is essential
for proving that our ordering is closed under substitutions) rather tedious:

Lemma 10. Let α, β, γ, δ, ε ∈ O be ordinals such that β ≤ ε and

α ⊕ β � γ < δ ⊕ ε � γ

Furthermore, let η ∈ O be an ordinal such that deg(η) > deg(γ). Then

α ⊕ β � η < δ ⊕ ε � η
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3.3 Constructing the Ordering

We start by introducing two functions. Firstly, we assign an ordinal number, the
so-called symbol weight, to every symbol in the signature and to every variable.

Definition 11 (Ordinal Symbol Weight Assignment). Let X be a set of
variables and Σ be a signature. Then, an ordinal symbol weight assignment is a
function

Ω : Σ ∪ X → O

Adding up ordinals as weights is sufficient for hierarchic theorem proving,
but it is not sufficient for dealing with non-linear definitions. In addition, for a
given signature symbol we need a specific factor, called subterm coefficient, with
which we multiply the weights of subterms before the weight of the top symbol
is added:4

Definition 12 (Subterm Coefficient Function). Let Σ be a signature. Then,
a subterm coefficient function is a mapping

Ψ : Σ → O \ {0}

Using the two previous definitions, we can construct a function that computes
the (ordinal) weight of terms.

Definition 13 (Ordinal Term Weight). Let X be a set of variables and Σ
be a signature. Furthermore, let Ω : Σ ∪ X → O be an ordinal symbol weight
assignment and Ψ : Σ → O \ {0} be a subterm coefficient function. Then, we
inductively define a function

W = W(Ω, Ψ) : TΣ(X) → O

which computes the (ordinal) weight of a term in the following way:

– For x ∈ X :

W(Ω, Ψ)(x) = Ω(x)

– For n ∈ N and terms t1, . . . , tn ∈ TΣ(X):

W(Ω, Ψ)

(

f(t1, . . . , tn)
)

= Ω(f) ⊕
(

Ψ(f) �
n

⊕

i=1

W(Ω, Ψ)(ti)
)

Remark 14. For constants c/0 ∈ TΣ(X) we have W (c) = Ω(c).

We define now when an ordinal symbol weight assignment is admissible for
a strict partial ordering on signature symbols.

4 The idea of multiplying weights of subterms by some factor can also be found in
Otter’s ad hoc ordering [10].
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Definition 15 (Admissible Symbol Weight Assignment). Let Σ be a
signature, X be a set of variables and > be a strict partial ordering on Σ. We
say then that the symbol weight assignment Ω : Σ ∪ X → O is admissible for
the ordering > if and only if the following two conditions are satisfied:

(i) ∃Ω0 ∈ N>0 such that ∀x ∈ X : Ω(x) = Ω0 and ∀ c/0 ∈ Σ : Ω(c) ≥ Ω0

(ii) If there is f/1 ∈ Σ such that Ω(f) = 0, then we must have: ∀ g ∈ Σ : f ≥ g

The next definition introduces the coefficient of a position in a term by
considering the tree representation of terms, i. e., the coefficient of a position in
the tree representing a term is the product of all the coefficients of the different
symbols on the path from the root symbol to the tree node denoted by the initial
term position.

Definition 16 (Coefficient of a Position). Let X be a set of variables and
Σ be a signature. Furthermore, let Ψ : Σ → O \ {0} be a subterm coefficient
function, t ∈ TΣ(X) be a term and p ∈ pos(t) be a position in t. We inductively
define the coefficient C(p, t) = CΨ (p, t) of p in t as follows:

– C(ε, t) = 1
– If t = f(t1, . . . , tn) for n ∈ N>0, terms t1, . . . , tn ∈ TΣ(X) and a position

p = ip′ such that 1 ≤ i ≤ n and p′ ∈ pos(ti), then

C(p, t) = C
(

ip′, f(t1, . . . , tn)
)

= Ψ(f) � C(p′, ti)

We can now define the transfinite Knuth-Bendix ordering (TBKO). Com-
pared with the definition of the regular Knuth-Bendix ordering (KBO) (Def. 2)
the variable occurrence condition is replaced by two separate conditions on term
variables and coefficient sums. It is then possible for a smaller term (with respect
to the TKBO) to contain a specific variable more often than the corresponding
larger term, which allows to order non-linear term definitions. Note that we ob-
tain the usual variable condition as a special case if we set Ψ(f) = 1 for every
symbol f .

Definition 17 (Transfinite Knuth-Bendix Ordering). Let Σ be a signa-
ture and X be a set of variables. Additionally, let > be a strict ordering on
Σ, Ω : Σ ∪ X → O be an ordinal symbol weight assignment that is admissible
for > and let Ψ : Σ → O \ {0} be a subterm coefficient function. Finally, let
W = W(Ω, Ψ) : TΣ(X) → O be the ordinal term weight function induced by Ω
and Ψ .

We define the transfinite Knuth-Bendix ordering (TKBO) �T ⊆ TΣ(X) ×
TΣ(X) induced by (>, Ω, Ψ) on terms s, t ∈ TΣ(X) in the following way:

s �T t if and only if

(TKBO1) Var(t) ⊆ Var(s), W(s) > W(t) and

∀x ∈ Var(t) :
⊕

p∈P(x, t)

C(p, t) ≤
⊕

p∈P(x, s)

C(p, s)
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or
(TKBO2) Var(t) ⊆ Var(s), W(s) = W(t),

∀x ∈ Var(t) :
⊕

p∈P(x, t)

C(p, t) ≤
⊕

p∈P(x, s)

C(p, s)

and one of the following cases occurs:
(TKBO2a) ∃ f/1 ∈ Σ, ∃x ∈ X , ∃n ∈ N>0 such that s = fn(x) and t = x
(TKBO2b) ∃ f/m, g/n ∈ Σ (m, n ∈ N), ∃ s1, . . . , sm, t1, . . . , tn ∈ TΣ(X)

such that s = f(s1, . . . , sm), t = g(t1, . . . , tn) with f > g
(TKBO2c) ∃ f/m ∈ Σ (m ∈ N>0), ∃ s1, . . . , sm, t1, . . . , tm ∈ TΣ(X), ∃ i ∈

N, 1 ≤ i ≤ m such that s = f(s1, . . . , sm), t = f(t1, . . . , tm) with s1 =
t1, . . . , si−1 = ti−1, si �T ti

The following two theorems are proved analogously to the corresponding
theorems for KBO:

Theorem 18. The transfinite Knuth-Bendix ordering �T is a simplification

ordering.

Theorem 19. If the precedence > is a total ordering, then the transfinite

Knuth-Bendix ordering �T is total on ground terms.

For terms built from symbols with subterm coefficient 1 and natural numbers
as weights, the transfinite Knuth-Bendix ordering �T agrees with �KBO:

Theorem 20. Let Σ0 be a subsignature of Σ such that Ψ(f) = 1 and Ω(f) ∈ N

for all f ∈ Σ0. Let �KBO be the regular Knuth-Bendix ordering on TΣ0
(X) with

λ(f) = Ω(f) for f ∈ Σ0. Then, for all terms s, t ∈ TΣ0
(X), s �T t if and only if

s �KBO t.

4 Ordering Definition Equations

The TKBO is able to orient every set of non-recursive, but possibly non-linear
definition equations from left to right, i. e. in an intuitive way. Moreover, if the
set of definition equations is finite and given a priori, this is possible even with
natural numbers as weights and subterm coefficients:

Suppose that we have a sequence of signatures Σi (0 ≤ i ≤ n) where
Σi = {fi} ∪ Σi−1 for i ≥ 1, and that we have a set of non-recursive def-
inition equations of the form fi(s1, . . . , sk) ≈ t, with t, sj ∈ TΣi−1

(X) and
Var(t) ⊆ Var(fi(s1, . . . , sk)) (where the sj are not necessarily variables). We
start with arbitrary natural numbers as weights and subterm coefficients for the
symbols in Σ0. Then, for i = 1, . . . , n, we recursively choose Ω(fi) and Ψ(fi) in
such a way that Ω(fi) > W(t) and Ψ(fi) ≥ maxx∈Var(t)

(
∑

p∈P(x,t) C(p, t)
)

for

every definition equation fi(s1, . . . , sk) ≈ t for fi. It is clear that this construc-
tion implies fi(s1, . . . , sk) �T t by condition (TKBO1).

If we want to have the property that then every term t with a top symbol fi is
larger than every term in TΣi−1

(Var(t)), this is still possible with the transfinite
Knuth-Bendix ordering, but now we have to use ordinal numbers beyond ω:
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Theorem 21. Let Σ0 be a subsignature of Σ and let i ∈ N such that Ψ(f) < ωωi

and Ω(f) < ωωi

for all f ∈ Σ0 and Ψ(f) ≥ ωωi

and Ω(f) ≥ ωωi

for all f ∈ Σ\Σ0.

Let s be a term with top symbol in Σ \ Σ0, let t ∈ TΣ0
(Var(s)) be a term over

Σ0 and the variables of s. Then s �T t holds.

Corollary 22. If we have a a sequence of signatures Σi, i = 0, . . . , n, where

Σi = {fi} ∪ Σi−1 for i ≥ 1, and an arbitrary KBO �KBO on TΣ0
(X) with

weights in N, then defining Ψ(fi) = Ω(fi) = ωωi

yields a transfinite KBO that

agrees with �KBO on TΣ0
(X) and in which moreover every term s with top

symbol fi is larger than every term in TΣi−1
(Var(s)).

It is clear that the transfinite Knuth-Bendix ordering is computable: Ordinals
from O can easily be encoded as nested list structures, on which the Hessen-
berg operations can be performed. Neither addition nor multiplication can be
performed in constant time, though. Consequently, the efficiency advantage of
the KBO over the LPO is essentially lost, and Cor. 22 is mostly a theoretical
result. On the other hand, both the criteria from Thm. 20 and from Thm. 21
can be efficiently checked, and together, they are often sufficient in practice.
Cor. 22 then ensures that completeness proofs, etc., which require the existence
of a reduction ordering total on ground terms still hold.

5 Hierarchic KBO

5.1 Simple Simplification Orderings

As mentioned earlier, for refutational completeness a hierarchic proof calculus
that operates on a base signature Σ0 and an extension Σ ⊇ Σ0 of Σ0 needs
an reduction ordering � that is total on ground terms and has the property
that every ground term in TΣ0

(∅) is strictly smaller than every ground term
in TΣ(∅) \ TΣ0

(∅). It is easy to see that the transfinite Knuth-Bendix ordering
satisfies this property, for instance, if the weight symbol assignment Ω maps
every symbol in Σ0 to a natural number and every symbol in Σ \ Σ0 to an
ordinal number ω · m + n with m > 0, and if Ψ(f) ∈ N for all f ∈ Σ. Note
that ordinals of the form ω · m + n with m ≥ 0, n ≥ 0, can be written as
tuples (m, n); the Hessenberg addition then corresponds to the componentwise
addition of tuples, the Hessenberg multiplication with positive integers to scalar
multiplication, and the ordering on ordinals is equivalent to the lexicographic
ordering over N × N.5

Moreover, a small refinement of the transfinite Knuth-Bendix ordering for
the hierarchic case is possible: In hierarchic superposition calculi there may be
variables for which we only have to consider instantiations with terms from
TΣ0

(X) and other variables for which we only have to consider instantiations
with terms from TΣ(X) \TΣ0

(X). This motivates a relaxation of the definitions
of reduction and simplification orderings.

5 A very restricted case of such a behaviour can also be found in the DomPred mech-
anism implemented in Vampire [12] and SPASS [13].
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Definition 23 (Simple Substitution). Let Σ0, Σ be two signatures such that
Σ0 ⊆ Σ and let Xl, Xs, Xu be disjoint sets of variables with X = Xl∪Xs∪Xu. We
say that a substitution σ : X → TΣ(X) is a simple substitution for (Xl, Xs, Xu)
and Σ0 ⊆ Σ if σ(x) ∈ TΣ0

(Xs) for all x ∈ Xs and σ(x) ∈ TΣ(X) \TΣ0
(Xs ∪Xu)

for all x ∈ Xl.

In other words, variables in Xs (“small variables”) may only be mapped
to terms over base symbols and small variables (“small terms”); variables in
Xl (“large variables”) may only be mapped to terms containing at least one
proper extension symbol or large variable (“large terms”); for variables in Xu

(“unspecified variables”) there is no restriction.
The next definition is analogous to Def. 1 and introduces the concept of

simple simplification orderings.

Definition 24 (Simple Simplification Ordering). Let Σ0, Σ be two sig-
natures such that Σ0 ⊆ Σ and let Xl, Xs, Xu be disjoint sets of variables with
X = Xl ∪ Xs ∪ Xu. Furthermore, let �⊆ TΣ(X) × TΣ(X) be a binary relation
on terms. Then we say that

– � is stable under simple substitutions if for all terms s, s′ ∈ TΣ(X) and for
all simple substitutions σ ∈ SubstX,Σ for (Xl, Xs, Xu) and Σ0 ⊆ Σ it holds
that s � s′ =⇒ sσ � s′σ,

– � is a simple rewrite relation if � is compatible with Σ-operations and stable
under simple substitutions,

– � is a simple rewrite ordering if � is a strict partial ordering and a simple
rewrite relation,

– � is a simple simplification ordering if � is a simple rewrite ordering and
has the subterm property.

Note that if Xs = Xl = ∅, the notion of simple simplification ordering coin-
cides with the notion of (regular) simplification ordering.

5.2 Constructing the Ordering

In order to turn the transfinite Knuth-Bendix ordering into a simple simplifica-
tion ordering, we use ordinals of the form ω ·m+n with m ≥ 0, n ≥ 0 as weights
and positive integers as subterm coefficients.

Definition 25 (Admissible Hierarchic Symbol Weight Assignment).
Let Σ0, Σ be signatures such that Σ0 ⊆ Σ and let Xl, Xs, Xu be pairwise
disjoint sets of variables with X = Xl ∪ Xs ∪ Xu. Additionally, let > be a strict
partial ordering on Σ and let Ω : Σ ∪ X → O be a symbol weight assignment.
We say that Ω is admissible for > and Σ0 if and only if the following conditions
are satisfied:

(i) ∃Ω0 ∈ N>0 such that ∀x ∈ Xs ∪ Xu : Ω(x) = Ω0 and such that ∀ c/0 ∈
Σ : Ω(c) ≥ Ω0;

(ii) ∀ f ∈ Σ0: Ω(f) ∈ N

12



(iii) ∃Ω1 = ω · m + n with m ∈ N>0, n ∈ N, such that ∀x ∈ Xl : Ω(x) = Ω1

and such that ∀ f ∈ Σ \ Σ0 : Ω(f) = ω · m′ + n′ ≥ Ω1;
(iv) If there is a symbol f/1 ∈ Σ such that Ω(f) = 0, then f ≥ g for all g ∈ Σ.

The extension from symbol weights to term weights is defined as before. We
can now introduce the hierarchic Knuth-Bendix ordering (HKBO). Compared
with the transfinite Knuth-Bendix ordering (Def. 17) there are two major dif-
ferences: the new case (HKBO1′) implies that small variables can essentially be
ignored if the weight difference of the two terms is large enough, and a change in
the definition of admissible symbol weight assignments enforces large variables
to get assigned a weight which is greater than the weight of every symbol from
Σ0.

Definition 26 (Hierarchic Knuth-Bendix Ordering). Let Σ0, Σ be signa-
tures such that Σ0 ⊆ Σ, let Xl, Xs, Xu be pairwise disjoint sets of variables with
X = Xl∪Xs∪Xu. In addition, let > be a strict partial ordering, the precedence,
on Σ, let Ω : Σ ∪ X → {ω · m + n | m, n ∈ N } be a hierarchic symbol weight
assignment that is admissible for > and Σ0, and let Ψ : Σ → N>0 be a subterm
coefficient function. Finally, let W = W(Ω, Ψ) : TΣ(X) → O be the ordinal term
weight function induced by Ω and Ψ .

We define the hierarchic Knuth-Bendix ordering (HKBO) �H ⊆ TΣ(X) ×
TΣ(X) induced by (>, Ω) on terms s, t ∈ TΣ(X) in the following way:

s �H t if and only if

(HKBO1) Var(t) ⊆ Var(s), W(s) > W(t) and

∀x ∈ Var(t) :
⊕

p∈P(x, t)

C(p, t) ≤
⊕

p∈P(x, s)

C(p, s)

or
(HKBO1′) Var(t)∩ (Xl ∪Xu) ⊆ Var(s), W(s) = ω ·m + n, W(t) = ω ·m′ + n′,

m > m′ and

∀x ∈ Var(t) ∩ (Xl ∪ Xu) :
⊕

p∈P(x, t)

C(p, t) ≤
⊕

p∈P(x, s)

C(p, s)

or
(HKBO2) Var(t) ⊆ Var(s), W(s) = W(t),

∀x ∈ Var(t) :
⊕

p∈P(x, t)

C(p, t) ≤
⊕

p∈P(x, s)

C(p, s)

and one of the following cases occurs:
(HKBO2a) ∃ f/1 ∈ Σ, ∃x ∈ X , ∃n ∈ N>0 such that s = fn(x) and t = x
(HKBO2b) ∃ f/m, g/n ∈ Σ (m, n ∈ N), ∃ s1, . . . , sm, t1, . . . , tn ∈ TΣ(X)

such that s = f(s1, . . . , sm), t = g(t1, . . . , tn) with f > g
(HKBO2c) ∃ f/m ∈ Σ (m ∈ N>0), ∃ s1, . . . , sm, t1, . . . , tm ∈ TΣ(X), ∃ i ∈

N, 1 ≤ i ≤ m such that s = f(s1, . . . , sm), t = f(t1, . . . , tm) with s1 =
t1, . . . , si−1 = ti−1, si �T ti

13



It is easy to show that terms built over Σ0 and “small” variables are smaller
w. r. t. the HKBO than terms which contain at least one large variable or one
symbol from Σ \ Σ0, as required for hierarchic superposition:

Lemma 27. For every term s ∈ TΣ(X) \ TΣ0
(Xs ∪ Xu) and for every term

t ∈ TΣ0
(Xs) we have s �H t.

Proof. By the properties of the weight assignment, we have W(s) ≥ ω > W(t)
and thus s �H t by (HKBO1′).

The following theorems are proved analogously to the corresponding propo-
sitions for the TKBO:

Theorem 28. The hierarchic Knuth-Bendix ordering �H is a simple simplifi-

cation ordering.

Theorem 29. If the precedence > is a total ordering, then the hierarchic Knuth-

Bendix ordering �H is total on ground terms.

Furthermore, if we restrict to subterm coefficient functions that map every
symbol to 1, then Löchner’s proof [8] that KBO can be computed in linear time
can easily be extended to HKBO:

Theorem 30. If Ψ(f) = 1 for all f ∈ Σ, then there exists an algorithm with

worst-case time complexity O(|s|+ |t|) that tests for two terms s and t whether

s = t, s �H t, t �H s, or s and t are incomparable.

6 Conclusions

We have described a generalisation of the Knuth-Bendix ordering that possesses
certain properties that are typical for LPO, such as the usability for hierarchic
theorem proving or the ability to handle non-linear definition equations ade-
quately.

As long as we restrict ourselves to subterm coefficient functions that map
every signature symbol to 1, the transfinite and the hierarchic KBO not only
inherit the general computation scheme of KBO but also its runtime behaviour,
which in particular turns the HKBO into a useful tool for actual implementations
of hierarchic theorem proving. In SPASS+T [11], we have implemented a three-
level version of the HKBO, with numeric constants on the lowest level, numeric
operators and predicates on the middle level, and other operators and predicates
on the top level. This ordering ensures that (a) terms and literals are primarily
compared using their non-numeric parts; (b) terms that differ only by their
numeric constants are essentially compared by the sum of the absolute values
of these constants, e. g., g(20, 4) � g(5, 5) and g(4, 20) � g(5, 5); (c) complex
numeric expressions are always larger than the numbers to which they evaluate,
e. g., 4 · 5 � 20.

On the other hand, choosing subterm coefficients that are larger than 1 is
clearly detrimental to the runtime behaviour of the TKBO. This holds already

14



when positive integers greater than 1 are used as subterm coefficients (in this
case one needs arbitrary precision integer arithmetic), and even more so when
one uses ordinal numbers beyond ω as subterm coefficients. In its full generality,
the transfinite KBO is mostly a theoretical device which ensures that using
the regular KBO on “small terms” and applying definition equation on “large
terms” are both compatible with a single reduction ordering over the whole
signature that is total on ground terms and whose existence may be required
for refutational completeness of a calculus. Actual computation of the TKBO is
possible, but it is essentially a last resort.

Acknowledgements: We are grateful to Andrei Voronkov for providing useful
comments on a previous version of this paper.
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