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Prologue

As a scientist, I am used to being treated badly by academic publishers. I am used to
publishers who ask me to submit LaTeX code for my accepted paper, but who send me
the galley proofs in pdf format, rather than as LaTeX code, and who ask me to check
them within 48 hours. (Even though there are tools like diffpdf that do a decent job
to compare the manuscript pdf and the proof pdf file, a textual diff of the manuscript
LaTeX file and the proof LaTeX file would be much more informative.) I am used to
the fact that the galley proofs are decorated with watermarks and use fonts that are
different from the manuscript, making a mechanical comparison even more difficult. I
am used to copy editors who insert or delete spaces randomly, who turn aligned lines into
non-aligned lines, and who turn balanced vertical space into non-balanced vertical space.
I am used to copy editors who turn roman subscripts in formulas into italic subscripts,
replace long arrow by short arrows (or vice versa), or replace correctly spelled names in
the bibliography by incorrectly spelled names. I have even seen copy editors who turn
two non-related tables into a single table. (Sample images can be found in the appendix.)
But things can always get worse ...

Proof #1 “Hanlon’s Razor”

The Journal of Automated Reasoning (JAR) published by Springer-Verlag is one of the
leading journals in my reseach area. In May 2021, my colleagues and me submitted a
paper [4] to a special issue of the JAR. The paper was accepted, and in March 2022,
we sent the camera-ready manuscript to the publisher. Six weeks later, we received the
publisher’s proof, with best regards from the Springer Nature Correction Team, Chennai,
India. “Please submit your corrections within 2 working days,” as usual.
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I consider myself a typography nerd, and one of my coauthors likes to read English
style guides as a pastime. You may assume that the manuscript that we submitted did
not require any orthographical, typographical, or stylistic corrections. That didn’t stop
Springer’s “Correction Team” from editing it nevertheless—with the expected results.

The JAR asked its authors to format manuscripts using the LaTeX style svjour3.cls.
The final version, however, was produced using a substantially different style. And it was
not only the fonts that were different (which would be understandable since the printed
version may use non-free fonts), but also headline styles and spacing. For instance,
LaTeX \paragraph headlines, which were clearly discernible in our manuscript, had
become almost invisible (Fig. 1).

There were more problems. Readers familiar with typographic rules will know that
there are two different conventions for typesetting dashes in the middle of an English
sentence: either using a closed-up em dash (“as—even moderately gifted—copy editors
should know”) or using a spaced en (or rarely em) dash (“as — even moderately gifted —
copy editors should know” ). The first style is preferred in the US, the second one in the
UK. In our manuscript, we had consistently used the first one. It turned out that the
“Correction Team” had inserted spaces at random spots, in particular after (but not
before!) 12 out of 33 dashes in the paper. (Fig. 1). They had also indented some lines
randomly and turned some math symbols that should have remained upright into italics.
Furthermore, for unknown reasons, some references (2-6, 17-19, 36-37) were no longer
alphabetically sorted (Fig. 2).

These errors are, unfortunately, rather common. I have seen them in other proofs in
the previous years. Some of them are probably systematic, caused by bugs in the con-
verter that the publisher uses to process LaTeX files, and the others can be explained
by negligence or incompetence, so Hanlon’s Razor applies: “Never attribute to malice
that which is adequately explained by stupidity.” The next problem was different, how-
ever: One of the reviewers had asked us to provide an index of concepts, and we had
formatted the index entries in the usual way: concept, comma, space, page number. In
the publisher’s proof, however, the space following the comma had been deleted—mnot
once, not everywhere, but randomly in 51 out of 113 index entries (Fig. 3). Frankly, I
have no idea how such a change could be explained by stupidity, and I wonder whether
the people who did it were perhaps paid by the number of edits they made, rather than
by the number of useful edits.

At this point, we stopped reading the proof and wrote an angry letter to the “Correc-
tion Team”, asking them to start from scratch.



For some of the notions in Sections 2.1 and 2.2 one can find alternative definitions in the
literature.

Redundancy Criteria As in Bachmair and Ganzinger’s chapter [6, Section 4.1], we have
specified in condition (R1) of redundancy criteria that the deletion of redundant formulas
must preserve inconsistency. Alternatively, one can require that redundant formulas must be
entailed by the nonredundant ones—i.e., N\ Redr(N) = Redr (N )—leading to some obvious
changes in Lemmas 10 and 37.

Bachmair and Ganzinger’s definition of a redundancy criterion differs from ours in that
they require only conditions (R1)—(R3). They call a redundancy criterion effective if an infer-
ence ¢ € Inf is in Red1(N) whenever concl(t) € NURedg(N). As demonstrated by Lemma 1,
that condition is equivalent to our condition (R4).

Inferences from Redundant Premises Inferences from redundant premises are sometimes
excluded in the definitions of saturation, fairness, and refutational completeness [6], and
sometimes not [5, 10, 30, 44].1 Similarly, redundancy of inferences is sometimes defined
in such a way that inferences from redundant premises are necessarily redundant them-

27 For some of the notions in Sects. 2.1 and 2.2 one can find alternative,definitions in the
283 literature.

280 Redundancy Criteria As in Bachmair and Ganzinger’s chapter [5;Sect. 4.1], we have specified
290 incondition (R1) of redundancy criteria that the deletion of redundantfermulas must preserve
201 inconsistency. Alternatively, one can require that redundant formulas must be entailed by the
202 nonredundant ones—i.e., N \ Redr(N) = Redr(N)—1€ading to some obvious changes in
203 Lemmas 10 and 37.

294 Bachmair and Ganzinger’s definition of a redundancy ‘eriterion differs from ours in that
25 they require only conditions (R1)-(R3). They call a redundancy criterion effective if an
296 inference ¢ € Inf is in Red(N) whenever concl(t) € N U Redp(N). As demonstrated by
27 Lemma 1, that condition is equivalent to our condition'(R4).

28 Inferences from Redundant Premises Inferences from redundant premises are sometimes
299 excluded in the definitions of saturation, fairness, and refutational completeness [5], and
50 sometimes not [4, 10, 30, 44].! Similarly, redundancy of inferences is sometimes defined in
301 such a way that inferences from redundant premises are necessarily redundant themselves [4,

Figure 1: Top: authors’ manuscript; bottom: proof #1. The paragraph headlines “Re-
dundancy Criteria” and “Inferences from Redundant Premises” are barely rec-
ognizable as headlines. Spurious spaces have been inserted after the dashes and

before “[5]”.
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Figure 2: Top: authors’ manuscript; bottom: proof #1. Reference 6 should be placed
before reference 2.
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Figure 3: Left: authors’ manuscript; right: proof #1. Spaces after commas have been
deleted randomly.



Proof #2 “A New Hope”

The second proof arrived. The “Correction Team” had fixed some of the bugs we had
complained about (missing spaces in the index, superfluous spaces after dashes, unrec-
ognizable headlines), but it was obvious that they had not started from scratch. The
bibliography was still incorrectly sorted (Fig. 4), there were still italic letters in math-
ematical formulas that should have been upright (Fig. 5), and the misaligned lines that
we had mentioned earlier were still misaligned (Fig. 6). Furthermore one paragraph had
been split into four single-sentence paragraphs, probably in order to simplify pagebreak-

ing (Fig.

7). We wrote one more letter to the “Correction Team” and asked them to fix

the remaining bugs.
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Figure 4: Publisher’s proof #2. Reference 6 should be placed before reference 2.

Lemma 66 Every —>gc-derivation is a >y, g, -derivation.

Proof We need to show that every labeled formula that is deleted in a =g¢-step is
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Figure 5:

Top: authors’ manuscript; bottom: proof #2. The subscript GC should always
be in an upright sans-serif font (as in line 1027), even if the surrounding text
is italic.



Given two sets of formulas F and G, an F-inference system FInf, a G-inference system GlInf,
and a redundancy criterion Red for GInf, let G be a function that maps every formula in F
to a subset of G and every F-inference in FInf to undef or to a subset of GInf. The function
G is called a grounding function if

(G1) forevery LeF ,0#G(L)CGy;
(G2) foreveryC€eF,if Le G(C)and LG thenCEF;
(G3) forevery ¢ € FInf, if G(1) # undef, then G () C Redi(G(concl(v))).

The function G is extended to sets N C F by defining G(N) := Ucey G(C) for all N.
Analogously, for a set I C FInf, G(I) := Uer, g (;)2under G(0)-

Remark 27 Conditions (G1) and (G2) express that false formulas may only be mapped to
sets of false formulas, and that only false formulas may be mapped to sets of false formulas.
For most applications, it would be possible to replace condition (G3) by

(G3") for every ¢ € Finf, if G(t) # undef, then concl(G(t)) C G(concl(t)),

which implies (G3) by property (R4). There are some calculi, however, for which (G3') is
too strong. Typical examples are calculi where the F-inferences include some normalization

539 |Given two sets of formulas F and G, an F-inference system Flnf, a G-inference system GInf,
s |and a redundancy criterion Red for GInf, let G be a function that maps every formula in F to
sa1 |a subset of G and every F-inference in Finf toundef or to a subset of GInf. The function G
sz is called a grounding function if

sa3 (G1) forevery L e F 1,0 # G(L) € Gy;
544 (G2) forevery C € F,if | € G(C) anddie G| then C € F;
sas (G3) forevery: € FInf, if G(1) # undef,then G(t) C Redi(G(concl(r))).

s«6 | The function G is extended to sets N &.F by defining G(N) := Uy G(C) for all N.
s |Analogously, for a set I C Finf, G(I) i= \Jjer’ 6(0)£undef G-

sss  |Remark 27 Conditions (G1) and (G2).express that false formulas may only be mapped to
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sso [For most applications, it would be possible to replace condition (G3) by

551 (G3') for every 1 € FInf, if G@)#mndef, then concl(G(t)) € G(concl(r)),

sz |which implies (G3) by property(R4). There are some calculi, however, for which (G3') is too
553 Istrong. Typical examples are calculijwhere the F-inferences include some normalization or

Figure 6: Top: authors’ manuscript; bottom: proof #2. The lines starting with (G1),
(G2), (G3), and (G3') should have been aligned.



Example 46 For resolution or superposition in standard first-order logic, we can define
the instantiation quasi-ordering > on clauses by C > C' if and only if C = C’o for some
substitution o. In particular, if C and C' are a-renamings of each other, then C > C' and
C < (C'. The instantiation ordering > := >\ < is well founded. By choosing 1 := », we
obtain a criterion Red9*~ that includes standard redundancy (Example 3) and also supports
subsumption deletion. (It is customary to define subsumption so that C is subsumed by C’
if C = C'o v D for some substitution o and some possibly empty clause D, but since the
case where D is nonempty is already supported by the standard redundancy criterion, the
instantiation ordering » is sufficient.)

Similarly, for proof calculi modulo commutativity (C) or associativity and commutativ-
ity (AC), we can let C > C' be true if there exists a substitution o~ such that C equals C'o- up
to the equational theory (C or AC). The relation > = > \ < is then again well founded.

70 Example 46 For resolution or superposition in standard first-order logic, we can define the
o instantiation quasi-ordering > on clausesby C > C’ if and only if C = C’c for some
71 substitution o,

74 In particular, if C and C’ are a-renamings of each other, then C > C’ and C < C’.

743 The instantiation ordering = A= » \ < is well founded. By choosing 1 := =, we
744 obtain a criterion Red9 3 that includes standard redundancy (Example 3) and also supports
75 subsumption deletion.

746 (It is customary to define subsumption so that C is subsumed by C’ if C = C'oc v D
77 for some substitution o and’some possibly empty clause D, but since the case where D
78 1s nonempty is already supported by the standard redundancy criterion, the instantiation
s ordering = is sufficient.)

750 Similarly, for preof calculi modulo commutativity (C) or associativity and commutativity
1 (AC), we can let € > C' be trueif there exists a substitution o such that C equals C’o up to
752 the equational theoty,(C or AC). The relation > = > \ < is then again well founded.

Figure 7: Top: authors’ manuscript; bottom: proof #2. Splitting this paragraph into four
paragraphs does not make sense.



Proof #3 “Groundhog Day”

The third proof arrived, the bibliography was still incorrectly sorted, and the subscripts
that should have been upright were still italic. In one formula, a spurious comma had
been inserted (Fig. 8). The misaligned lines that we had complained about in the second
letter were finally aligned, but the prime mark in “(G3’)” had been turned into a closing
quote: “(G3’)” (Fig. 9).

We wrote a third letter to the “Correction Team” and asked them to fix the remaining
bugs.

Proof #4 “Close, But No Cigar”

The fourth proof arrived. The bibliography entries were finally sorted alphabetically,
and the subscripts that should have upright were finally upright. The spurious comma
had been eliminated, but instead, one additional space had been inserted (Fig. 10). Even
more surprising, the double arrow that formerly had an italic subscript had been turned
into a single arrow (Fig. 11).

We wrote the fourth letter to the “Correction Team” and asked them to fix the re-
maining bugs.

Proof #5 “Rejoice!”

The fifth proof arrived. After just five iterations, the “Springer Nature Correction Team”
had finally managed to correct all the errors they had previously made. And even better,
they had not introduced any new ones. We could still have complained about some
details, such as insufficient horizontal space between letters and superscripts, but we
felt that it might be a bad idea to push our luck. After all, five iterations to reach a
publishable version are not that bad—I've been told that colleagues of mine recently
needed more than ten iterations.

Proof To show that (iii) implies (i), assume that (Inf,Red’) is statically refutationally com-
plete. That is, the property

N = {L} for some L € F implies L' € N for some L' € F| (*)

s Proof To show that (iii) implies.(i), assume that/(Inf, Red’) is statically refutationally com-
7 plete. That is, the property

N = {1} forsome, | € F | fimplies 1/ € N forsome 1' ¢ F (%)

Wl
660
oo

Figure 8: Top: authors’ manuscript; bottom: proof #3. The inserted comma makes no
sense here.
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sa1 |a subset of G and every F-inference in Finf toundef or to a subset of GInf. The function G
sz |is called a grounding function if
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sso [For most applications, it would be possible to replace condition (G3) by
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sz \which implies (G3) by property(R4). There are some calculi, however, for which (G3') is too
553 Istrong. Typical examples are calculi where the F-inferences include some normalization or
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st (G3”) forevery : € Finf, if G({)'s=undef , then concl(G(1)) S G(concl(r)),

ss2  which implies (G3) by property(R4). There are some calculi, however, for which (G3') is too
ss3  strong. Typical examples are calculijwhere the F-inferences include some normalization or

Figure 9: Top: proof #2; bottom: proof #3. The lines starting with (G1), (G2), (G3),
and (G3') are finally aligned, but the symbol following “(G3” should be a prime
mark (as in line 552), not a closing quote.



Proof To show that (iii) implies (i), assume that (Inf,Red') is statically refutationally com-
plete. That is, the property

N = {1} for some L € F, implies L’ € N for some L' € F | (*)
p

s Proof To show that (iii) implies.(i), assume that/(Inf, Red’) is statically refutationally com-
37 plete. That is, the property

N = {1} forsome, | € F fimplies 1/ € N forsome 1’ ¢ F| (*)

186 Proof To show that (iii) implies.(i), assume that/(Inf, Red’) is statically refutationally com-
7 plete. That is, the property

Y N = {1} forsome L € F, jimplies I’ € N forsome L' cF, (%)

Figure 10: Top: authors’ manuscript; middle: proof #3; bottom: proof #4. The comma
has been eliminated, but the space after “for some” is now too large.

Lemma 66 Every —>gc-derivation is a >y, ;ng, o -derivation.

Proof We need to show that every labeled formula that is deleted in a =g¢-step is
Red"9-7 -redundant w.r.t. the remaining labeled formulas. For PROCESS, this is trivial. For

w5 Lemma66 Every =—>gc-derivation is a > g, n¢.. 1 -derivation.

w2 Proof We need to show that every labeled formula that is deleted in a == g¢-step is Red "t =-
w27 redundant w.r.t. the remaining‘labeled formulas. For PROCESS, this is trivial. For INFER, the

w05 Lemma66 Every — gc-derivation is a > g, 0. 3-derivation.

w26 Proof Weneed to show that every labeled formula thatis deleted in a =>¢c-stepis Red" 9>~
w27 redundant w.r.t. the remaining.labeled formulas. For PROCESS, this is trivial. For INFER, the

Figure 11: Top: authors’ manuscript; middle: proof #3; bottom: proof #4. The single
arrow should have been a double arrow as in line 1026.
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Epilogue

What we experienced with this submission to the Journal of Automated Reasoning was
special in that some of the changes made by the typesetters could not, by the best of
intentions, be explained by accidents or stupidity. On the other hand, from an author’s
point of view, errors introduced by utter incompetence and gross negligence are just as
annoying as errors introduced by intentional sabotage. This problem is not restricted
to this particular paper, not restricted to the Journal of Automated Reasoning, and
not restricted to Springer Nature. (Examples can be found in the appendix.) In fact,
Elsevier also has a reputation for mistreating properly formatted manuscripts—I just
did not have any publications at Elsevier journals in the last years, so all my examples
are from Springer Nature.

I have seen enough badly formatted manuscripts to know that some authors are com-
pletely clueless when it comes to typesetting rules and that they would profit significantly
from the help of competent professional copy editors. The key words are “competent”
and “professional”, though. If copy editors do not recognize when something needs to be
repaired in a manuscript and when it doesn’t, they are not competent. If copy editors
do not know what is good typesetting practice and what’s not or if they are not familiar
with the tools they are using, they are not competent. If copy editors deliberately screw
up authors’ manuscripts, they behave thoroughly unprofessionally. If copy editors lack
competence or professional ethics, then their involvement in the production of a publi-
cation is not only pointless but damaging. And if publishers do not manage to organize
their business processes so that their employees (or their subcontractors’ employees) do
not cause damage, there is no place for them.

Addendum, February 20, 2024

I tried to contact Springer Nature in this matter. Unfortunately, Springer Nature makes
every effort to shield its management from authors’ complaints, therefore I was unable
to figure out who is in charge of this. The only thing I found was the contact form of the
compliance department. So I used that one. I got a reply from a manager of the com-
pliance department, who told me that my enquiry was not within the Governance, Risk
and Compliance team’s remit, but that she had passed it on to the correct department
internally on September 20, 2023, and that she had asked them to follow up with me
directly. That was five months ago. Since then, nothing happened.
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Appendix

Bad copy editing is not restricted to academic journals. This appendix shows a collection
of bloopers from publisher’s proofs of recent conference proceeding volumes.

Vertical Spacing

Irregular vertical spacing is one of the most common problems introduced by publishers’
copy editors. Fig. 12 shows an example where the vertical space above a displayed formula
has been doubled, whereas the vertical space below the same formula has been kept
constant.

Example 1. Applied variables give rise to subtle situations with no counterparts
in first-order logic. Consider the clauses

famc h(yb)(ya)#h(g(fb)) (gc)

where fa > c. It is easy to see that the clause set is unsatisfiable, by grounding the
second clause with 6 = {y — (Az. g (f z))}. However, to mimic the superposition
inference that can be performed at the ground level, it is necessary to superpose at

Example 1. Applied variables give rise to subtle situations with no counter-
parts in first-order logic. Consider the clauses

farc h(yb)(ya)#h(g(fb))(gc)

where f a > c. It is easy to see that the clause set is unsatisfiable, by grounding
the second clause with 6 = {y — (A\z. g (f z))}. However, to mimic the super-
position inference that can be performed at the ground level, it is necessary to

Figure 12: Top: authors’ manuscript; bottom: proof #1. The vertical space above and
below the formula should be the same. [2]

Fig. 13 shows a similar problem. Again the vertical space above the formula has
been roughly doubled. In addition the closing parenthesis has been moved left so that
it overlaps the preceding symbol. In the second proof, the overlap has been removed,
but the vertical space above and below the formula is still not equal. Furthermore, in
the preceding paragraph (and some others) the interword space has almost disappeared
completely (note in particular the fourth line) and the final linebreak before “F” is
hideous.
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Intersections of Liftings. The above results can be extended in a straight-
forward way to intersections of lifted redundancy criteria. As before, let F and G
be two sets of formulas, and let FInf be an F-inference system. In addition, let
Q be a set. For every g € Q, let =7 be a consequence relation over G, let GInf?
be a G-inference system, let Red? be a redundancy criterion for =2 and GInf?,
and let G7 be a grounding function from F and FInf to G and GInf?. Let O be
a well-founded strict partial ordering on F.

For each ¢ € @, we know by Theorem 6 that the (G?,0)-lifting Red?9"? =
(Red?%", Red%9"%) and the (G7, 7)-lifting Red®9"> = (Red?%", Red%9"7) of
Red? are redundancy criteria for =%, and FInf. Consequently, the intersections

Red™ = (Red(9 Red® ):=(M,cqRed?®", N,eo Red¥?"?) and
Red"®? = (Red{9?, Red?7) := (N,eq Red?", Nyeq Red%"?)

are redundancy criteria for |:S =yeo &, and FInf.

Intersections of Liftings. The above results can be extended in a straight-
forward way to intersections of lifted redundancy criteria. As before, let F and G
be two sets of formulas, and let FInf be an F-inference system. In addition, let
Q be a set. For every g € @, let =7 be a consequence relation over G, let GInf?
be a G-inference system, let Red? be a redundancy criterion for |=? and GInf?,
and let G? be a grounding function from F and FInf to G and GInf?. Let 1 be
a well-founded strict partial ordering on F.

For each ¢ € @, we know by Theorem 6 that the (G4, 0)-lifting Red®9" 9 =
(Red?%", Red%9"%) and the (G9, J)-lifting Red®9"> = (Red?%", Red%9":7) of
Red? are redundancy criteria, for |:ng and FInf. Consequently, the intersections

Red"97 .= (Red?g’j,Redgg’j) = (ﬂ o Red‘l”gq7 m . Red%’gq’9 and
q q
ng,J._ ng,3 NG,y ._ 9,9° 9,G,3
Red"9™ = (Red;*~, Redp®) = () _, Red]™", () _, Redi"7)

are redundancy criteria for |:S = Nyeq F&s and FInf.

Intersections of Liftings. The above results can be extended in a straightforward
way tointersectionsoflifted redundancy criteria. Asbefore, let F and G be twosets of
formulas, and let FInf be an F-inference system. In addition, let () be aset. For every
g € Q,let|=?beaconsequencerelationover G, let GInf? be a G-inferencesystem, let
Red?bearedundancy criterion for =7 and GInf?, and let G? be a grounding function
from F and FInf to G and GInf?. Let 3 be a well-founded strict partial ordering on
F.

For each ¢ € @Q, we know by Theorem 6 that the (G9,0)-lifting Red?9"? =
(Red?%", Red%9" %) and the (G7, J)-lifting Red?9"~ = (Red?9", Red%9"7) of
Red? are redundancy criteria for =%, and FInf. Consequently, the intersections

q q
Red" = (Red(?® =, Redy® ) := () _ Red}®", (1 _, Red""") and

ng,J._ ng,3 NG,y ._ 7,67 9,67,
Red := (Red;”"~, Redp”"~) == (mq Red?®", quQ Red%”"7)

are redundancy criteria for FS = Nyeq Féq and Finf.

Figure 13: Top: authors’ manuscript; middle: proof #1; bottom: proof #2. The verti-
cal space above and below the formula should be the same, and the closing
parenthesis should not overlap the preceding formula. Furthermore, in proof
#2, the interword spacing is just weird (in particular in lines 2 and 4) and
the final linebreak before “F” is hideous. [3]
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Missing and Spurious Spaces and Symbols

Spaces and symbols are often inserted or deleted randomly. Fig. 14, 16, and 15 show
some examples.

Standard Lifting. Given two sets of formulas F and G, an F-inference system
FInf, a G-inference system GInf, and a redundancy criterion Red for GInf, let G
be a function that maps every formula in F to a subset of G and every F-inference

Standard Lifting. Given two sets of formulas F and G, an F-inference system
FInf, a G-inference system GInf, and a redundancy criterion Red for GInf,let G
be a function that maps every formula in F to a subset of G and every F-inference

Figure 14: Top: authors’ manuscript; bottom: proof #1. The space between “GlInf,” and
“let” has been deleted. [3]

Although unfailing completion predates the introduction of Bachmair—Ganz-
inger-style redundancy, it can be incorporated into that framework by defining
that formulas (i.e., rewrite rules and equations) and inferences (i.e., orientation
and critical pair computation) are redundant if for every rewrite proof using that
rewrite rule, equation, or critical peak, there exists a smaller rewrite proof. The
requirement that the redundancy criterion must be obtained by lifting (which
is necessary to introduce the labeling) can then be trivially fulfilled by “self-
lifting”—i.e., by defining G := F and + := () and by taking G as the function
that maps every formula or inference to the set of its a-renamings.

Although unfailing completion predates the introduction of Bachmair—
Ganzinger-style redundancy, it can be incorporated into that framework by
defining that formulas (i.e., rewrite rules and equations) and inferences (i.e., ori-
entation and critical pair computation are redundant if for every rewrite proof
using that rewrite rule, equation, or critical peak, there exists a smaller rewrite
proof. The requirement that the redundancy criterion must be obtained by lift-
ing (which is necessary to introduce the labeling) can then be trivially fulfilled
by “self-lifting”— i.e., by defining G := F and + := @) and by taking G as the
function that maps every formula or inference to the set of its a-renamings.

Figure 15: Top: authors’ manuscript; bottom: proof #1. The closing parenthesis after
“computation” has been deleted and a space has been inserted after the
dash. [3]
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x [25]. It replaces fluid terms ¢ by fresh variables z; and maps type arguments to
term arguments; thus, [Az:¢. Ay:e.z] = lame(lame(dbye)) and [f(¢)(ya)] = fezya.

bound variables x [25]. It replaces fluid terms ¢ by fresh variables z; and maps
type arguments to term arguments; thus, [Az:¢. Ays:t.z] = lam¢ (lam ¢ (dby ¢))
and [f(¢)(ya)] = frz,,. We then define the metaorder >meta induced by >pase in

Figure 16: Top: authors’ manuscript; bottom: proof #1. The variable “y” has been re-
placed by “ys”. [2]

Misspelled Proper Names

Publishers love to replace bibliographic references in the manuscript by bibliographic
references from their own database. Which would be fine if the entries in their own
database were spelled correctly. In Fig. 17, they are not. (Note that this is an article in
a Springer conference volume referencing an article in a Springer conference volume.)

[43] Kohlhase, M.: Higher-order tableaux. In: Baumgartner, P., Hihnle, R., Posegga, J.
(eds.) TABLEAUX ’95. LNCS, vol. 918, pp. 294-309. Springer (1995)

43. Kohlhase, M.: Higher-order tableaux. In: Baumgartner, P., Hihnle, R.., Possega, J.
(eds.) TABLEAUX 1995. LNCS, vol. 918, pp. 294-309. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-59338-1 43

Figure 17: Top: authors’ manuscript; bottom: proof #1. The editor’s name is Posegga,
not Possega. [2]

Merged Tables

Fig. 18 shows a particularly weird edit. The manuscript contained two related tables,
whose columns are not related, though. The copy editor decided to turn them into a single
table. (Note that the caption talks about “The first table” and “The second table”.)
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Category ARI DAT GEG HWV MSC NUM PUZ SEV SWV SWW SYN SYO
Total 539 103 5 88 2 43 1 6 2 177 1 3
Solved 531 98 5 0 2 41 1 2 2 97 0 2

Rating >00 >01 >02 >03 >04 >05 >06 =07 208 >09 1.0

Total 972 853 771 527 391 343 253 180 129 97 97
Solved 781 666 584 340 210 162 85 29 12 2 2

Table 1: Beagle performance on the TPTP “theorem” or “unsatisfiable” problems. The
first table breaks down the number of solved problems by category. The second table
filters by problem rating. The column > 0.6, for instance, means “all problems with a
rating 0.6 or higher.”

Table 1. Beagle performance on the TPTP “theorem” or “unsatisfiable” problems.
The first table breaks down the number of solved problems by category. The second
table filters by problem rating. The column > 0.6, for instance, means “all problems
with a rating 0.6 or higher”.

Category | ARI | DAT | GEG |HWV | MSC | NUM | PUZ |SEV |SWV |SWW | SYN [ SYO
Total 539 103 5 88 2 43 1 6 2 177 1 3
Solved 531 98 5 0 2 41 1 2 2 97 0 2
Rating >00|>01{>02|>03|>04|>05|>06|>0.7>08>09 [1.0
Total 972 853 771 527 391 343 2563 180 129 97 97
Solved 781 666 584 340 210 162 85 29 12 2 2

Figure 18: Top: authors’ manuscript; bottom: proof #1. The two independent tables
have been turned into a single one. Note that the columns of the two tables
are not related. [1]
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