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The COMFORT Project:
A Comfortable Way to Better Performance

Gerhard Weikum, Christof Hasse, Axel Moenkeberg, Peter Zabback

Information Systems - Databases
Computer Science Department
ETH Zurich
CH-8092 Zurich, Switzerland

Abstract

This paper is an initial outline of the COMFORT project. The overall objective of COM-
FORT Is to automate tuning decisions for transaction processing in database systems.
The basic idea is to determine most tuning parameters and run-time strategies on the
basis of a compile-time analysis of the transaction programs and statistical information
about the data and the workload. The issues that are particularly addressed within this
framework are: 1) workload-customized concurrency control and recovery protocols that
exploit semantics yet do not incur much overhead, 2) exploiting Intra-transaction parallel-
ism in nested transactions, 3) intelligent data allocation and migration to optimize data
access In a storage hierarchy consisting of large memory, disk-arrays, and optical disks,
and 4) intelligent resource management to coordinate the policies for load contral, CPU
scheduling, and memory allocation with the transaction manager.

LY

1. Scope and Objectives

COMFORT stands for Compile-time Performance Tuning. The overall objective of COM-
FORT is to automate tuning decisions for transaction processing in database systems.
Our basic approach towards this objective is to determine most tuning parameters and
run-time strategies on the basis of a compile-time analysis of the transaction programs
and statistical information about the data and the workload. Compared to currently avail-
able database systems, COMFORT Is supposed to

® extend the range of tuning opportunities, e.g., by Introducing transaction-type-spe-
cific system parameters,

@ eliminate, to a large extent, the need for a human tuning expert like a DBA,

provide guidelines for building a database system that adapts itself to the workload
without incurring much overhead, and,

e ultimately, remove (the need for) manual tuning tricks from (source-level) transac-
tion programs and make application development easier.

Database system tuning is usually considered hard. Typically, systems provide the DBA
with a number of tuning knobs, and that is about it. The default parameters do often not
bear any relationship with any reasonable application, and there is no methodology for



finding the right settings other than experience. Compared to other areas such as logical
database design, performance tuning is even more based on guesswork or the intuition of
a database guru. Unfortunately, even if intuition were considered to be a viable solution,
there would be far less gurus than performance-critical DBMS installations in the world.
Therefare, the main goal of COMFORT is to develop heuristic guidelines and rules of
thumb for "intelligent” tuning decisions, and to automate the application of such rules in a
system environment,

Related Work

Previous work that is related to COMFORT can be found in both the database system
(DBMS) and the operating system (OS) fiterature. In DBMSs, the idea of using "perform-
ance hints" for prefetching, buffer management, scheduling, or concurrency control has
been around for quite some time. However, while extensible database systems such as
Exodus and even relational database systems have introduced such hints, the actual
directives must be provided by the database administrator, system programmers, or even
application programmers. For example, DB2's "cursor stability” option allows program-
mers 1o relax strict two-phase locking [DB2], Ingres supports explicit preclaiming [RTla],
Exodus [Ca86a) and Bubba [Bo90, CFW30] provide hooks for overriding the LRU buffer
replacement policy, and DASDBS offers various degrees of set-oriented disk /O
[Wei89a]. Other performance-enhancing heuristics such as intelligent prefetching and
allocation strategies are typically hard-wired in the system code, and hardly adaptable to
an application’s special needs. Unlike these approaches, COMFORT is supposed to gen-
grate performance hints automatically at compile-time. Previous work on automatic
DBMS tuning is scarce and has mostly concentrated on single issues such as prefetching
[WZ86), adaptive clustering, or scheduling [HK88, HK89]. The research on query optimi-
zation, on the other hand, does usually not consider such low-level issues, despite their
significant performance impact. COMFORT pursues an integrated approach to improve
the overall system performance.

Unlike the DBMS area, there is ample work on adaptive and " self-optimizing” algorithms
in the OS and distributed-systems literature (e.g., [BR76, BR89, De76, De80, RP81,
ELZ86, Wo86]). However, it seems fair to say that none of the investigated approaches
can be considered as a breakthrough in automating the tuning of a full-fledged system. In
our opinion, the reason for the lack of system-wide solutions is the inherent unpredictabil-
ity ot OS workloads. Thus, there is usually no compile-time information available to the
adaptive OS algorithms. In contrast, the main load of a DBMS often consists of predefined
(sometimes called "canned") transaction programs, so that lots of compile-time hints
can be passed to the DBMS run-time system. This in turn reduces the overhead of an
adaptive system substantially. We believe that even though dynamically defined (some-
times misleadingly called "ad-hoc") decision-support transactions will play a bigger role,
the relative predictability of a DBMS workload is an important asset in the COMFORT
project. At least, DBMSs can understand the task they are optimizing, whereas OSs can
at best analyze load statistics (e.g., {DI89])



Outline of the Paper

The rest of the paper is organized as follows. In Section 2, we discuss basic assumptions
on our target environment. In Section 3, we elaborate on the COMFORT architecture.
Then, Section 4, which is the main part of the paper, presents various individual research
directions that are being pursued in the COMFORT framework, namely inter— and intra-
transaction parallelism, intelligent data allocation and migration, and intelligent resource
management in DBMSs. For each direction, we present a top-down view of the problem
area, and discuss several concrete tuning problems in more detail, namely using latcHes
in "compiled concurrency control protocols”, parallel execution strategies for multi-key
queries, incremental data-placement optimization, and conflict-driven load control. The
paper is concluded with an outiook on our long-range goals.

2. Baslc Assumptions

In this section, we discuss several assumptions on the software and hardware compo-
nents of our target environment. These assumptions are based on our view of future
trends in DBMS-centered computing systems. The purpose of this section is to make
these assumptions explicit, in order to explain why we believe that COMFORT is a rele-
vant and promising project.

2.1 Application and System Software

Based on the opinions of several senior researchers [Li85, Reu88, Sp87, Sv84], we ex-
pect the transaction concept to play an overriding role in the architecture of future appli-
cation and system software. Transactions have proven to be a convenient means for
coping with concurrency and various sorts of failures in a modular way that is transparent
to the application programmer.

In traditional DBMS applications, the complexity of transaction programs varies fram sim-
ple TP1 (l.e., debit/credit transactions) to interactive decision-support transactions that
access lots of data. In either case, we expect that all transactions execute compiled
code; thatis, decision-support transaction programs are written as "stored procedures”
in a 4GL., as opposed to "ad-hoc queries” on a pure SQL interface. This assumption is
crucial in that it allows us to pass all performance-relevant transaction programs through
an analysis step that extracts global tuning information. Thus, even though future DBMS
applications will probably comprise an increasing variety of transaction types, it seems
that the overall workload can still be characterized sufficiently concise to make COM-
FORT a viable approach.

For non-traditional DBMS applications such as office automation or CIM, there is a fairly
broad consensus that the classical transaction concept is not adequate. Such evolving
applications pose higher demands on the transaction management in that they deal with
long-lived activities that require more flexible notions of isofation and atomicity. We be-
lieve that open nested transactions [Gr81, Tr83, BSW88] can serve as a well-founded
basis for extended transaction facilities, since they incorporate semantic concurrency
control as well as (sub-)transaction compensation rather than merely relying on vanilla



2PL and state-based undo. Qur implementation experience with multi-level transactions,
which are a special case of the open nested transaction paradigm, has further confirmed
the viability of such a transaction model [Wei87a, Sch90a, Weid0].

The open nested transaction mode! seems to fit well with application systems that consist
of a variety of cooperating tools. We assume that such tools cooperate with the DBMS by
means of a well-defined collection of {open nested) transactions. For COMFORT, this
means that while we cannot predict the behavior of end-users like engineers, there is stil
a good chance to analyze and exploit the characteristic properties of the workioad that is
generated by the involved tools. Note that it is not our goal to provide tuning for the
application tools; rather we aim at making the DBMS more cooperative by tuning it to the
workload characteristics of the application.

COMFORT is supposed to cover both traditional and non-traditional applications. While
tuning is hard for conventional transaction-processing workloads such as reservation
systems, it is even harder for advanced applications such as office automation or CIM.,
Such evolving applications pose higher demands on the tuning of the underlying database
system, since it is even more crucial to exploit the application semantics in order to
achieve the required performance. We plan to evaluate the results of the COMFORT
project against performance-critical transactions in the area of banking and electronic
stock~trading applications [PRS88] as well as call (or mail) routing and directory services
in ISDN communication networks [PLZ89], on the one hand, and in an "active” office
automation environment as well as for an MRP subsystem in the CIM area, on the other
hand.

2.2 Hardware Technology

While COMFORT is supposed to provide automatic DBMS tuning capabilities on state-of-
the-art commodity hardware, an important additional goal is to utilize recent and ex-
pected near-future technological advances. We believe that the following technologies
will have a major impact on the architecture and performance of next-generation data-
base systems (see also [Lag]):

® the availability of commercially viable shared-memory systems with several dozens
of processors (e.g., [Seq)), '

® fast progress in optical interconnect technology (e.g., FDDI [Th89]) as a communi-
cation basis for large-scale distributed systems,

® a trend towards disk-arrays [Kim86, PGK88, RB89}, providing high bandwidth and
improved seek times due to a high number of disk arms,

safe RAM [Co89] and non-volatile disk caches [Sm85, Gro85],

the advent of optical and magneto-optical disks as a mass storage device [Fu84],
and

® increasing memory sizes with only minor improvements in memory latency [CKB89,
GLV84, DeWsd].



It seems that a number of file systems are already capabie to benefit at least partially from
such enhanced hardware (e.g., [DS89, Ga88, Kag9, Rug9]. However, database systems
are typically not in a position to utilize novel hardware that rapidly. Note that "mature”
relational systems such as Oracle, Ingres, and Sybase started taking some advantage of
multi-processor systems only recently. The reason for the relatively slow progress of
database systems is that their architecture is more complex than a file system and they
provide more powerful and semantically richer functions. So the challenge obviously Is to
take into account both advanced technologies and (the semantics of) advanced applica-
tions. However, since OSs offer services to a much broader class of clients than just
DBMS applications, it is likely that OSs can get faster returns from utilizing novel hard-
ware. Therefore, one may argue that DBMSs will always lag behind OSs in taking advan-
tage of hardware enhancements. Ultimately, this demonstrates the necessity for a better
cooperation between the OS and the DBMS [Lag].

2.3 Integration with other Projects

Since we want to explore the tuning of traditional as well as non-traditional applications,
we use the DASDBS prototype as the underlying database management system In the
COMFORT project. DASDBS supports complex objects (i.e., nested relations and refer-
ences) as well as complex transactions (i.e., multi-level transactions) [Sch90a]. More-
over, It already provides a variety of performance tuning hooks and can be extended
relatively easily so as to fit with COMFORT. Using DASDBS as our run-time engine
should, however, not rule out that the results of COMFORT can be transfered to other
advanced DBMSs.

While COMFORT can be viewed as a fairly ambitious project by itself, it is also an essen-
tial part of the COSMOS project at ETH [Sch90b]. COSMOS, which stands for Coopera-
tive System for the Management of Objects, can be viewed as the successor of DASDBS.
it aims at a novel DBMS architecture that facilitates a better cooperation between the
DBMS and its environment, including both the people that interact with the DBMS (i.e., the
DBA, the application developer, and the end-user) and the tools and various subsystems
that, together with the DBMS, constitute an application system. The issues that are ad-
dressed include: 1) coupling a complex-object-oriented DBMS with a variety of program-
ming languages. 2) "objectifying” data for function shipping and data streaming in a
heterogeneous DBMS environment, and 3) taking more advantage of OS and network-
management facilities rather than reimplementing most functions in the DBMS. We expect
COMFORT to make a contribution to the COSMOS project especially in the third area,
i.e.. improve the cooperation of DBMSs and OSs.

COMFORT has some ties also to the COCOON project* at ETH [SS89], which Is the
object-model & object-management part of COSMOS. Since COCOON is being implem-
ented on top of DASDBS, it is obviously another candidate for verifying (and hopefully
demonstrating) the automatic tuning capabilities of COMFORT.

* COCOON stands for COCOON ... Complex-Qbject-Qrientation based on Nested Relations. The
project is based on recursively nested refations.

.



3. COMFORT Architecture

3.1 The Big Picture

COMFORT can be viewed in different ways: as an expert system for database system
performance tuning [Ab89], as some kind of automatic DBA, as a database system
generator [Ca86b], or as a "context-sensitive” transaction program compiler. We think
that the automatic DBA and the transaction program compiter views are the most appro-
priate ones, for we want to stress the fact that most tuning decisions should be made
automaticallly at compile-time in the envisaged COMFORT environment,

The overall architecture of COMFORT is shown in Figure 1. COMFORT consists of two
major components:

@ the Adaptive Data Manager: a flexible run-time system that accepts all sorts of tun-
ing parameters and hints, and

@ the Transaction Compiler: a compile-time analyzer that makes intelligent tuning deci-
sions.

The compile-time decisions are based on information about the database schema and
other semantic invariants (including behavioral aspects), the access characteristics of
the transaction programs, statistics about the data and the workload, and the underlying
DBMS/OS and hardware architecture. This information is managed In a special area
called the Tuning Information Pool (TIP), which may be viewed as an extension of the
data dictionary. The Transaction Compiler extracts tuning tips from these metadata.

At run-time, tuning parameters may be re-adjusted based on more precise or more
recent information. Ultimately, we envisage our run-time platform to provide a collection
of self-optimzing algorithms that are guided by the hints of the Transaction Compiler. We
plan to approach such a run-time architecture by enhancing DASDBS with adaptive strat-
egies for its various modules.

The tuning decisions that are made by the Transaction Compiler affect the dynamic work-
load and, possibly, even the access characteristics of the compiled transactions. These
dynamic modifications of the system behavior should in turn be reflected in the Tuning
Information Pool, which is the main input for the compile-time decisions. Thus, COMFORT
is actually a feedback loop, in which the stability of decisions is a critical issue that must
be addrgssed in the project.

Changes of the workload such as adding a new transaction program to the application
can raise the need for recompilation, for correctness or performance reasons. In this
case, the challenge is to avoid recompiling all programs, that is, to make COMFORT work
incrementally.

3.2 Module Cooperation

Even though COMFORT strives for automatic performance tuning at a global, i.e., sys-
tem-wide level, we strongly believe in a modular DBMS architecture, an extensible tool-



Transaction Transaction
Program 1 Program n

Transaction Access
gharacteristﬁ:s

Transaction Workload Characteristics
Compiler

ransaction

o @
Adaptive Performancd Workload Statistics
Data Monitor —
Manager Access Characteristics
Resource Utilization

un-time Parameters

DB @ Schema TP
- — Tuning
Integrity Constraints Information
Pool

Data Statistics

Figure 1: COMFORT Architecture

box architecture being the ideal [Bat88, Ca86b, Ha90, Sch90a]. Therefore, it is one of our
goals to identify "tuning dependencies” between modules and organize our Adaptive
Data Manager in such a way as to avoid unnecessary interaction between modules. Our
initial approach to this architectural problem is illustrated in Figure 2.

For each main module, Figure 2 shows (a non-exhaustive list of) the most important
tuning parameters (marked with a bullet), load data that characterize the workload inde-
pendent of the tuning decisions or target system (marked with a downward arrow), the
resulting (I.e., observed or estimated) performance data (marked with an upward arrow),
and "tuning dependencies” from other modules. The performance data shown in Figure
2 are classified according to whether they can be obtained (or estimated) at compile-
time (C) or run-time (R), and whether they are exact (E), statistical (S), or heuristic (H),
i.e., "guesstimated” values. The load data that are annotated with a C are supposed to
be determined by the Transaction Compiler or pravided explicitly in an external " workload
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specification”. While Figure 2 is obviously rather sketchy, it clearly demonstrates that
modularizing performance tuning is a non-trivial problem.

Ideally, a "dependency” would be a function from a collection of performance data to the
range of possible values of a particular tuning parameter. However, since there is no
performance model that is able to predict the behavior of a complex DBMS, we plan to
approximate the "dependency functions” coarsely.

4. Research Directions

COMFORT Is supposed to address all performance-relevant issues of advanced data-
base systems. Particular focus, however, will be on issues that are expected to become
performance-fimiting factors with a wider use of advanced technologies. Currently, we
concentrate on the following issues:

® low-conflict low-overhead parallelism to utilize multi-processors effectively,

® intelligent data allocation and migration to optimize data access in a stdrage hlerar-
chy consisting of main memory, disk-arrays, and optical disks, and

® intelligent resource management to coordinate the policies for load control, CPU
scheduling, and memory allocation with the transaction manager.

We discuss our approaches to each of these issues in the following three subsections. In
each subsection, we first present a general outline of the problem area, I.e., sketch a
top-down view, and then illustrate our approach by discussing a concrete example prab-
lem in more detail, i.e., show a particular bottom-up view.

4.1 Parallelism

Parallelism in database systems aims at both increasing transaction throughput (inter-
transaction parallelism) and decreasing transaction response time (infra—transaction
parallelism). In addition, intra-transaction parallelism may also improve throughput, for
locks are held for a shorter duration. Both directions are investigated in two complementa-
ry subprojects, described in the following.

4.1.1 Inter-Transaction Parallelism

Database systems can benefit from a parallel system only to the extent that data conten-
tion is not the performance-limiting factor. Therefore, we believe that concurrency control
as a means for avoiding and controlling data contention will play a crucial role in systems
with many processors. While data contention can also be reduced by carefully designing
applications [St86, In88, RTlb, RTIc], we believe that eliminating concurrency—control hot
spots should not be the responsibility of application developers. Similarly, the strict sepa-
ration of online transactions and batch processing that is often dictated by data contention
problems adds to the complexity of application design [Gr85]. To alleviate this sort of
problems, semantic concurrency control techniques [Gar83. VV88] such as exploiting
state-dependent commutativity [O’N86, We88] may prove useful and practically impor-
tant in a wide area of applications. =



Moving concurrency control to a higher level of abstraction, however, means that "short
locks” or "latches" on pages are necessary in addition, in order to serialize high-level
actions on the same low-level objects. Moreover, the locking information itself must be
kept consistent in the face of parallel lock requests. Thus, we have to deal with at least the
following three sources of data contention:

° high—lvevel locks that are held for the duration of a transaction,
@ low-level locks that are held (at most) for the duration of a (subtrans-)action, and

® control semaphores that are held for the duration of accessing DBMS-internal control
information.

The third sort of data contention may in turn cause memory and bus contention and
reduce cache effectivity in a shared-memory multi-processor architecture, unless the
DBMS-internal structures and low-level algorithms are designed carefully [GT89].

Muiti-level transactions [BBG89, BSW88, MGGB86, Wei87a, Wei87b, Wei90], as a spe-
cial case of open nested transactions, are a framework for designing and implementing
low-conflict concurrency control methods which exploit the semantics of multiple levels of
abstraction and can thus deal uniformly with the first two sources of data contention. In the
OPERA project*, the concept of open nested transactions and the implementation tech-
niques that we have developed so far are being extended towards workload-customized
low-overhead "compiled concurrency control protocols”, distributed systems, and
"cooperative” transaction models [Jo88].

Example Problem: Compiled Concurrency Control Protocols

Even though there is largely consensus that multi-level transactions are a good concep-
tual basis for high-performance transaction processing, a major criticism has been the
overhead of managing explicit "heavy-weight” subtransactions. As a response 1o this
criticism, one goal of COMFORT is to avoid the overhead by distinguishing, at compile-
time, cases which require full-fledged subtransactions from cases in which subtransac-
tions can-be implemented in a cheaper way, for example, by latching, i.e., short-term
locking that does not check for deadlocks nor guarantees fairness.

Short Locks vs. Latches

As a performance enhancement for conventional record locking, it is suggested in
[Mo89] that “latches” be used instead of "short locks" while a record operation ac-
cesses pages. The main differences are that latches are directly addressable, e.g., as an
additional entry in the page header, rather than being stored in a hash table with dynami-
cally allocated entries, and that latching does not check for deadlocks and disregards the
(unlikely) possibility of starvation.

Foliowing the direction of "light-weight" subtransactions, we can easily adopt the idea of
storing lock control blocks in page headers (see also LC89]. However, turning off dead-
lock detection for subtransactions can not be so easily generalized to an advanced data-

* OPERA stands for Extending Qpen Nested Transactions.
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base system. Unlike conventional record operations that usually access one data page
and a number of index pages in a well-defined order, complex operations on complex
objects may access many pages, in a less predictable order. Hence, the subtransactions
are susceptible to page-level deadlocks, so that simple latching is not feasible. While it is
possible to carefully design deadlock-free latching protocols for certain types of sub-
transactions, e.g., for B*-tree operations [ML89], such a manual approach seems to be
too cumbersome for complex access patterns. Therefore, we plan to investigate condi-
tions for-partially compiling a multi-level locking protocol to a latch-based protocol.

Locking Levels, Granularities, and Protocols

The idea of compile-time optimization can be pushed even further by analyzing the ac-
cess characteristics of transaction programs and determining the optimal granularity and
abstraction level of concurrency control. This means that COMFORT would automatically
pick the best method from alternatives such as 1) relation locking vs. tuple locking vs.
field locking, and 2) page locking vs. tuple & index-entry locking vs. predicate locking. In
both of these design dimensions, potential parallelism can be traded for reduced over-
head [Wei87a, He89]. At run-time, compile-time decisions in favor of fine granularities or
a high level of abstraction can be adjusted by setting appropriate lock escalation thresh-
olds {DB2]. These thresholds should again be chosen automatically in the COMFORT
architecture.

As a next step, the applicability of non-strict 2PL and non-2PL protocols {e.g., [Mo85,
Bay86, SGA87] and the question of whether certain locks have to be set at all may be
analyzed at compile-time. Transaction preanalysis for concurrency-control purposes
was applied already in the SDD-1 system in the seventies [BSR80]. While it seems that
this approach has almost been forgotten since then (with the exception of a few, mostly
theoretical papers [LSW86, EW88]), we believe that its leverage increases with the level
of abstraction on which locking is employed. This means that, for example, predicate
locking could benefit more from a compile-time conflict analysis than page locking, e.g.,
by compiling predicate conflicts into scheduling directives. Our ultimate goal is to auto-
matically generate "compiled concurrency control protocols” that combine the ease of
system-provided transaction management with the efficiency of hand-coded critical sec-
tions.

4.1.2 Intra-Transaction Parallelism in Nested Transactions

Multi-level transactions as a special case of nested transactions have been intensively
studied for high-performance Inter-transaction parallelism. In the PLENTY subproject*®,
we investigate how this approach can be extended so as to handle also intra-transaction
parallelism, L.e., parallel execution of multiple DBMS operations within the same transac-
tion program and/or employing parallel algorithms for single DBMS operations. Such in-
tra-transaction parallelism can be based on data partitioning as well as operation decom-
position and pipelining [Bo90, Bue89a, Bue89b, DeW86, DGS88, Lo89, Reus6, Wig9].

* PLENTY stands for Paralic] Exccution of Nested Transactions on Plenty of Processors.
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The main goal of PLENTY is to explore under which conditions the increased parallelism
is worth the additional overhead [Bo88). In particular, we want to gain a better under-
standing of how parallelism affects data contention in the three categories introduced in
Section 4.1.1. On the one hand. parallelism may reduce data contention, because high~
level locks are held for a shorter duration if the transaction response time can be effec-
tively decreased. On the other hand, parallelism may increase data contention on short-
term locks and control semaphores, simply because the load is potentially higher in a
multi-processor system. Thus, itis an open question at what point parallelism reaches its
limits.

Our approach to trading off parallelism vs. run-time overhead is based on two steps. in
the first step, a transaction is analyzed and decomposed into subtransactions according
to the partitioning of data, the algorithmic precedences of the transaction program, and
the knowledge of the DBMS-internal implementation of the invoked operations. This anal-
ysis step yields a nested transaclion structure that reflects as much potential parailelism
as possible. In the second step, the degree of parallelism in a nested transaction Is re-
duced so as to take into account the run-time overhead, and an actual run-time execu-
tion structure is synthesized. This is done by combining subtransactions (e.g., siblings)
for which a parallel execution would probably not improve the transaction’s response time
nor the overall transaction throughput.

Note that the sketched two-step procedure is supposed to be applied at the compile-time
of a transaction program, in accordance with the overall approach of COMFORT.
PLENTY strives for the automatic generation of an "optimal” set of subtransactions for
transactions with data-intensive operations such as multi-key queries that evaluate multi-
ple indexes, computing transitive closures, relational joins (with low-selectivity filters), or
maintaining derived data on updates. The crucial point here is to come up with a (heuris-
tic) cost model for the "reduction” of a nested transaction.

Further issues that must be addressed are 1) examining what applications and kinds of
operations justity the effort of intra-transaction parallelism, 2) studying and developing
algorithms for DBMS operations that can be effectively parallelized (e.g., for joins [SD89,
MR89] or operations on complex objects [Du83, HHM86, HSS89, Ze89], aiming at both
/0 and CPU parallelism, 3) the load balancing in assigning subtransactions to processors
and distributing the 1/0 load across multiple disks, and 4) the effective utilization of and the
requirements for OS support such as synchronization primitives, scheduling directives, or
even transaction management facilities.

The PLENTY subproject is based on a Sequent Symmetry shared-memory multi-proces-
sor; however, we also want to investigate how our approach can be generalized to a
distributed(-memory) system. As the DBMS platform, the DASDBS prototype is consid-
ered to be appropriate for the following reasons. DASDBS provides storage structures for
nested relations that can be extended so as to take advantage of I/O parallelism. Both
horizontal and vertical partitioning of (sets of) objects are possible, and even system-
controlled redundancy can be incorporated. Moreover, DASDBS already supports multi-
level transactions in a way that aliows also parallel subtransactions within the same appli-



cation transaction. Thus, we can explore various forms of intra-transaction parallelism
without having to reconsider synchronization issues. To achieve effective improvements
with respect to response time, parallel subtransactions are executed as separate (light-
weight) processes on a multi-processor.

Example Problem: Parallel Execution Strategles for Multi-Key Queries

We believe that multi-key queries like “Select * From R Where A; = Valuey And ... And A,
=Value,," are gaining practical importance for decision-support transactions. In state-of-
the-art DBMSs, the only way of accelerating such queries Is through B*-tree-like indexes
for (a subset of) the attributes A, ..., A, [Schn83] (or, similarly, stored bitmaps for attrib-
ute values that occur frequently [O'N87]). We are investigating how multi-key queries
can be accelerated on a shared-memory multi-processor system, making the following
assumptions on the underlying storage model and transaction management:

® The relation R is declustered, I.e., spread across multiple disks, based on a partition-
ing of its primary-key range.

@ Bt*-tree indexes are defined for the attributes Ay, ..., A (k < n); all of them are
non-unique indexes. For the sake of simplicity, we assume that the order Ay, ..., A¢
reflects the order of index selectivities. That is, the index for A_1 is the most selective

one, where selectivity Is defined as mber_of different Ai values in R
number_of tuples_in_R

® For transactions that invoke multi-key queries, the "repeatable-read” property is
guaranteed, i.e., phantoms are prevented, by predicate locks or index-key locks.
These "long focks” are held untit EOT. While accessing an index, "short locks™ are
acquired in order to serialize concurrent operations on the same B*-tree. Such ¢
multi-level concurrency control requires either 2PL. on B*~tree pages for the duratiol
of the index access, or a customized tree locking protocol which may be implem-
ented with latches [ML89].

Sequential Strategies

In sequential systems, common strategies for processing a multi-key query are the fol-
lowing:

(A) Use only the most selective index, i.e., the index for A, and filter the qualifying tuples
for the "remainder predicate” A, = Value, And ... And A, = Value,,.

(B) Use the j most selective indexes (j < k) such that the estimated combined selectiv-
ity, computed as the product of the seleclivities of Ay, ..., A, is so low that accessing
the qualitying tuples is cheaper, l.e., probably requires less page accesses than
using an additional index. Then, compute the intersection of the pointer lists obtained
from these j index searches, and finally filter the qualifying tuples for the ” remainder
predicate” A,y = Valuey,y And ... And A, = Value,.

(C) Proceed as in strategy (B); however, compute the intersection of pointer lists after
each index search and terminate the index phase as soon as the effective combined
selectivity, i.e., number of tuples or different pages in the pointer-list intersection
does not justify further index searches.




Note that the inflexible strategy (A) may be advantageous only in DBMSs that bundle
together the use of an index and locking the accessed index key. Thus, using multiple
indexes could result in excessive index locking. This is because all keys will be locked,
even though, in principle, locking only one key would be sufficient as a superpredicate of
the conjunctive predicate, and the key to be locked could even be chosen arbitrarily out
of the accessed index keys.

Strategy (B) makes the implicit assumptions that the distribution of attribute values is
uniform for each attribute and the distributions of different attributes are independent of
each other. Thus, even though strategy (B) Is still correct if distributions are skewed or
attributes are correlated, its effectivity crucially depends on the data characteristics. In
contrast, strategy (C) adapts itself to the effective selectivities but may require (slightly)
more run-time overhead than (B).

Parallelization of Strategies

As for the parallel processing of a multi-key query, it seems that only strategy (B) can be
directly decomposed into parallel execution steps. Obviously, this strategy allows ac-
cessing the j used indexes in parallel, and it bears potential parallelism in the computation
of the pointer-list intersection.

While strategy (C) cannot be parallelized directly, it can be combined with strategy (B) so
as to take into account the potential discrepancy of estimated and effective combined
selectivities. The resulting hybrid strategy is illustrated in Figure 3, which shows the prece-
dence graph of the necessary execution steps for a multi-key query. The main feature is
that the parallel index phase of strategy (B) is repeated until the effective combined selec-
tivity becomes sufficiently low; then the final filter phase is entered. In the it index phase,
v indexes are selected out of those indexes that have not been used in the previous i-1
index phases. These v, indexes can be accessed in parallel, and the retrieved pointer-
lists are intersected with the result of the i-1%t index phase. Furthermore, if response time
is very critical, e.g., in a real-time system, prefetching the result pages of the it index
phase while proceeding with the i+1%! index phase may be worth the addtional IO costs
and buffer consumption [KWZ89].

Tuning Problems

At a first glance, it may seem that incorporating such a parallel execution strategy in a
DBMS is more or less straightforward and does not impose any significant tuning prob-
lems. At a closer look, however, it becomes obvious that the selection of indexes in each
of the index phases is a fairly challenging problem for a parallel query optimizer. The
quality of the index-selection decision for the i" index phase depends on at least the
following factors:

® the estimated selectivity of an index,

@ the elffective combined selectivity of the intermediate conjunctive predicate before
and after the i" index phase, which in turn depends on the attribute-value distribu-
tions and the correlation of multiple attributes,
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Figure 3: Parallel Execution Strategy for Multi-Key Queries

@ the number of I/Os for the index access, which in turn depends on the height of the
B*-tree and the index-specific buffer miss rate, i.e., ultimately, on the size and the
access frequency of the index,

® the potential for parallel /O among the selected indexes, which in turn depends on
the disk placement of the indexes and the heat, i.e., overall O frequency of the
various disks, and

@ the contention for "short locks™” on index pages, which in turn depends on the update
frequencies of attributes.

Note, in particular, that it may sometimes be better not to use an index contrary to selec-
tivity arguments, it one of the following conditions holds: 1) the buffer miss rate of the
index is high and the disk(s) on which the index Is located is heavily accessed, whereas
the disk load for the R tuples is low and well balanced across multiple disk, or 2) the index
Is a concurrency-control hot spot, i.e., updated very frequently, whereas contention for
(short) locks on data pages is evened out across many pages. We are currently buiiding
a testbed for quantifying these performance issues and exploring tuning rules for parallel
multi-key queries. We further plan to extend our scope to multi-key queries using text
indexes [DPS83] or customized multi-key access paths such as signatures [CS89].

4.2 Data Allocation and Migration

In currently available database systems, data allocation primarily aims at clustering data
that is frequently accessed together in physical proximity on disk. Clustering is usually
schema-driven [SPS87]; clustering on a per object basis can be achieved only through
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clever use of the bulk loader. For the purpose of /O load balancing, some DBMSs further
support "striping” [SG86] or "declustering” [LKBB7, Co88], i.e., spreading data collec-
tions across multiple disks, usually based on horizontal partitioning. Beyond these tuning
opportunities, data placement is fairly straightforward today. Memory Is usually too scarce
to make entire data collections resident; so all data typically lives on disk, and simple
"on-demand” fetching and LRU-like strategies are mostly employed for data migration
between disk and memory and vice versa [TG84].

in future systems, larger memories will allow making very frequently used data memory-
resident, and very infrequently used data will reside on optical disks rather than being
off-line. Data migration within the storage hierarchy is likely to become a crucial issue
then. For example, migration between fast-access disks and archival store such as opti-
cal disks should be fully automatic, driven by application-specific probabilities of when
certain data will be reaccessed. Similarly, conventional buffer management should be
enhanced to take into account the effects of hardware disk caches on the one hand, and
to exploit the semantics of advanced applications on the other hand [CK89]. Novel evolv-
ing applications will shed a different light also on the clustering vs. declustering tradeoff,
which is not really well understood even for classical applications. Finally, another trade-
off that needs thorough investigation is optimizing read /Os vs. optimizing write I/Os, e.g.,
whether one should employ an extent-based or a log-based allocation strategy [OD89].
In any case, automatic online reorganization that operates in the background is highly
desirable for maintaining the required performance level.

Example Problem: Incremental Optimization of Data Placement

An Adaptive Storage System

In the FIVE subproject*, we have implemented a low-level file system that provides flex-
ible data—placement options, i.e.. capabilities for both clustering and declustering. Files
are simply (arbitrarily long) bytestrings, stored in a collection of blocks, as In Unix. Unlike
Unix, files can be spread across multiple volumes, l.e., {logical) disk drives. Similar to
[St88]. space for a fite is allocated in two-dimensional regions, where

® the "width" w of a region is the slriping or declustering factor, lL.e., the number of
disks across which the region is spread, and

@ the "height” h of a region is the clustering factor, i.e., the number of contiguous
blocks (referred to as an extent) that are allocated on each of the w disks.

Figure 4 shows the space allocation for a file consisting of two 2x3 regions on three disks.
The block numbers that are shown are the logical block numbers that are visible to the
clients of FIVE.

When space is allocated, i.e., when a file is created or its physical space needs to be
extended, FIVE accepts the following types of tuning hints:

* FIVE stands for File Systcm with Adaptiye Enhancements. As one might guess, FIVE is based on
five concepts: volumes, blocks, files, extents, and regions. Also, if you've gotten a headache of a file-
system problem, just take FIVE.



Region 1

Figure 4: Space Allocation based on Two-dimensional Regions

@ hints on the size and dimensions of regions,
affinity hints, i.e., tentative block numbers near which space should be allocated, and

@ anti-affinity hints, i.e., block numbers that identify disk drives that should not be used
for the allocation.

Such hints can be either advisory tips or obligatory directives. For a particular allocation,
FIVE can exploit both clustering and declustering through set-oriented /O [Wei89a] for
(nearly-)sequential disk accesses and parallel multi-disk /O, respectively.

Tuning Problems

Initially, we restrict our scope to requests that access either logically contiguous portions
of a file or an entire file, the latter being the dominant part of the workload. Hence, our
oplimization criterion for the placement of files is to minimize the average access time for
reading an entire file under the constraint that the overall disk load should be roughly
balanced, i.e., the utilization of the hottest disk should not exceed a certain threshold.

Obviously, this optimization problem is related to the data placement problem that has
been addressed in the Bubba project for I/0 load balancing [Co88). There, the problem
was to decluster a given set of files and place the resulting file fragments on a given
number of disks such that the "accumulated heat” is approximately the same for each
disk, where "accumulated heat” means the sum of the access frequencies of the frag-
ments that are stored on a disk. The algorithm developed for Bubba assumes that the
access frequencies and the optimum declustering factor of each file are given or have
been determined by an analytic performance model, respectively. In contrast to this sce-
nario, our problem is considerably harder in the following respects:
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@ File access frequencies are not known in advance. We may expect some client-pro-
vided hints at the creation-time of a file, or rely on statistical values, e.g., the average
heat of all existing files of a particular type, or estimates derived from transaction
arrival rates and an analysis of transaction programs. In addition, we can collect
access-frequency information on a per file basis while transactions are being pro-
cessed. and use this information for occasionally re-optimizing the space allocation
of a file.

@ As liles are created and extended dynamically, we have to optimize data placement
incrementally, Thus, "sub-optimal” allocations must be acceptable, too, e.g., be-
cause of disk fragmentation.

@ From the above two points it follows that reorganization, i.e., reallocation of file re-
gions, is a must. In accordance with the COMFORT philosophy, such reorganizations
should
@ be initiated automatically (see [Sa89] for an approach to automatic reorganization

in the Unix system),

@ be able to process files incrementally, l.e., reorganize individual files or divide
bigger reorganizations into multiple steps, each of which can be executed as a
separate transaction, and

@ operate online in background mode, i.e., run concurrently with foreground trans-
actions, but probably at a lower priority [Wei89b].

Such automatic reorganizations involve continuous self-monitoring (l.e., collecting

information about file access frequencies, co-access frequencies for multiple files,

co-access frequencies for multiple blocks of the same file, etc.), and carefully trad-
ing off the expected benefits of a reorganization vs. the costs of the reorganization
itself [TFB2].

To improve our understanding of the problems and tradeoffs in this incremental data-
placement optimization, we are about to start a series of performance experiments with
the tuning parameters of FIVE, using workload characteristics of an office document filing
system [ZPDS0].

4.3 Resource Management

The fact that future transaction-processing systems will be provided with much more
MIPS and memory than what is typically available today does not mean that resource
management will be any simpler. Rather we are convinced that, even with increasing
resources per workload unit, resource management will become more sophisticated for
lwo main reasons. First, the resource appetite of complex applications is likely to increase
quite significantly. Secondly, more available resources may open up benefits of smarter
algorithms for CPU load control and memory management, whereas vanilla algorithms
like FCFS scheduling and LRU buffer replacement can hardly be outperformed in a situa-
tion with very limited resources. In addition, the data availability itself has to be considered
as another valuable resource in a highly parallel environment. On the other hand, the
large amount of resources that need to be managed may justify more overhead for the
resource management itself, e.g., dedicating a processor to scheduling decisions.
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In the RAPIDS subproject”, we want to develop an approach toward * intelligent” resource
management, which coordinates the policies for managing different types of resources so
as to maximize transaction throughput. For example, an intelligent scheduler should dis-
patch a complex transaction with particular memory requirements only if the chances are
good that a certain amount of memory is indeed available [CD85, CJL89]. As another
example, consider a long-running, batch-like transaction that has low priority, but holds a
large number of locks or a lot of memory. It may be a wise scheduling decision to give this
transaction a very high priority or vary its priority dynamically, in order to complete the
transaction and release its locks as soon as possible [DeiB9]. A heuristic rule for choos-
ing the priority could be based on the probability that other transactions are blocked.,

Example Problem: Conflict-driven Load Control for the Avoldance of Data-
Contention Thrashing

Load Control in DBMSs is necessary for dealing with overload situations, that is, prevent-
ing the system from thrashing. Without load control, load peaks can lead to a disastrous
deterioration of both transaction throughput and response time. Such thrashing situations
or "black hole phenomena” (as response time approaches Infinity) occur because of
resource contention, especially with regard to memory, or data contention. In the follow-
ing, we consider only data-contention thrashing (DC thrashing), that is, performance
deterioration caused by excessive lock conflicts [BHG87, TGSSS, ACL87].

The Need for Conflict-Driven Load Control

in both the literature and currently available DBMSs, the only mechanism for the avoid-
ance of DC thrashing is to limit the degree of multiprogramming (DMP), that is, the
maximum number of transactions that are concurrently active in the DBMS. The DMP is
set by the database administrator as a system startup parameter, and usually remains
constant until the system is shut down. Unfortunately, this vanilla approach to DBMS load
control has several severe shortcomings:

~ There are applications for which the DMP is an extremely sensitive parameter. That
Is, the band of reasonable settings of the DMP is sometimes very narrow [JTK89]. If
the DMP is set too low, then the available hardware resources are underutilized and
the transaction load is not processed fast enough. If the DMP is set too high, then the
system Is susceptible to DC thrashing.

- The optimum DMP is highly dependent on the types of transactions in the workload.
Obviously, the number of concurrent transactions that a DMBS can accept without
suffering DG thrashing is higher for short read-only transactions than for long update
transactions. Since real-life applications often consist of a fairly broad mix of transac-
tions, globally limiting the DMP regardless of the transaction type seems to be a
sledgehammer solution.

- High-performance DBMS applications such as reservation systems typically circum-
vent the problem of dealing with a variety of transaction types. In such systems, it is

* RAPIDS stands for "Resource and Processor Management based on [ntelligent DBMS Scheduling”.
Note that, for the experienced river runncr, rapids are an opportunity for rapid progress; for the unex-
perienced, they bear the risk of capsizing.
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common practice to allow only "designed transactions” to access "hot” data, i.e.,
frequently used data [In88). For example, a rule of thumb in online transaction pro-
cessing is that queries should not access more than ten records {In88]. In practice,
this implies that only such queries are allowed that can use a unique index or a
non-unique Index with very high selectivity. A related rute of thumb is to split long
transactions into multiple short ones [In88]. sometimes even at the expense of con-
sistency [GS84, RTIc, Ora]. The "nice” property of such constraints and "transac-
tion design rules” is that they produce a more or less homogeneous workload of
"rifle-shot” transactions. The flip side of the coin is that this convenlent workload
characteristic is achieved through a shotgun marriage of DBMS performance tuning
and database application design. Such an approach is clearly incompatible with the
paradigm of data independence, i.e., separation of functionality and performance.

Our conclusion from these points of critique is that DBMS load control should not be
based on simply setting the global DMP. We rather argue that automatic load control for
DC thrashing avoidance can be better accomplished if one uses some notion of conflict
rate as the control variable.The DMP is a control variable also for resource contention;
however, the conlflict rate directly measures data contention. So, to avoid DC thrashing,
one should actually pay direct attention to the conflict rate. In particular, there is evidence
that limiting the conflict rate rather than the DMP yilelds satisfactory performance regard-
less of the transaction types in the workload.

A conflict-driven approach to load control could have the following advantages:

+ Itis a step towards automating the following tuning decisions: What is the “right”
number of transactions to be admitted to the system, and what is the "right” mix of
transactions to be admitted to the system?

+ It could, to some extent, replace guesswork and intuition in DBMS tuning. Thus, it
would help all those unlucky DBMS installations that do not benefit from the experi-
ence and wisdom of one of the few DBMS performance gurus in the world.

+ Finally, it could shed new light also on the undesirable union of system tuning and
application design.

Our Approach

In the RAPIDS project, we pursue such a conflict-driven approach to DBMS load control,
which consists of the following steps:

(1) Since there are various definitions of conflict rate, we investigate which definition
works best as a load control variable. Possible definitions are, for example,

#Lock_Waits . s #Locks_Held
————=——"— |n a particular time interval, =
#Lock_Requests particular time interval, or #Locks_Held_by Nonblocked_TAs

#Lock_Wauits
#Lock_Requests
a particular point of time. Our expectation is that there exits at least one defintion of
conflict rate such that its value reflects the current (DC) load level regardless of the
number and types of aclive transactions.

at a par-

ticular point of time, or for those transactions that are in the system at
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(2) We investigate beyond which value of the conflict rate DC thrashing occurs. Our
expectation is that there exists a "natural constant” like a critical conflict rate, which
can be experimentally determined. This expectation is supported by the analytic re-
sults of Tay [TGS85].

(3) We are implementing an initial DBMS scheduling algorithm that admits new arriving
transactions only if the current conflict rate Is uncritical.

(4) We are developing various extensions to the initial scheduling algorithm. For example,
it may be wise to admit new transactions in non-FCFS order based on the transaction

types or further compile-time knowledge about the transactions’ access characteris-
tics.

(5) Along the same lines, transaction priorities could be incorporated {AG89, Bug9] and
dynamically adjusted according to the current confiict rate and the "lock consump-
tion” of active transactions, i.e., the number and duration of locks held. For example,
it seems to be advantageous to give the highest priority to the transaction that holds
the highest number of locks [Ham90].

(6) We plan to extend the scope of our approach by considering also resource-conten-
tion thrashing, especially the problem of overloading memory resulting in excessive
butfer replacements [CD85, CJLBI].

(7) Ultimately, we want to take advantage of compile-time knowledge about the access
characteristics of transactions. Such transaction profiles could be used for making
run-time scheduling decisions both less expensive in terms of overhead and more
effective in terms of the quality of the decisions. For example, compile-time predic-
tions of a transaction’s lock requests and its hot sets with respect to page references
can serve as an estimate of the relative increase of the overall conflict rate and buffer
steal rate if the transaction were admitted to the system.

5. Outlook

COMFORT is an approach towards automating the performance tuning of advanced
DBMSs. The approach is based on two main components:

@ the Transaction Compiler, which is supposed to analyze transaction programs so that
many tuning parameters can be determined at compile-time, and

® the Adaptive Data Manager, which provides the necessary flexible run-time engine
for dynamic fine-tuning and overwriting of inappropriate compile-time decisions.

While this paper has mostly presented half-baked ideas rather than proven results, its
main contribution is that it sets up a framework for automatic DBMS tuning. Moreover, we
have discussed initial approaches to several performance problems in various directions
of DBMS research.

The ideal solution to COMFORT would be a self-optimizing and self-adapting system that
does not need any performance-tuning input other than the information gathered from the
compilation and execution of the transactions. Such a solution would, of course, affect
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the overall architecture of the underlying data management system quite drastically. Giv-
en our experience with the development of DASDBS, it is therefore intriguing to view a
novel next-generation database system as the ultimate long-range goal of the project.
We believe that understanding performance tradeoffs and system tuning is an ideal train-
ing area for building such a system. So, while we are going to use DASDBS as our initial
system platform, we may eventually find ourselves shooting for a complete next-genera-
tion system in the long run. In fact, the COSMOS project in which COMFORT is embedded
is an approach towards such a novel cooperative DBMS architecture.
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