
Chapter 3 - Solutions to Exercises

Exercise 3.1 :

Consider the following histories:

s = r1(x)r2(y)w1(y)r3(z)w3(z)r2(x)w2(z)w1(x)c1c2c3

s′ = r3(z)w3(z)r2(y)r2(x)w2(z)r1(x)w1(y)w1(x)c3c2c1

Compute H[s] and H[s′] as well as the respective RF and LRF relations. Show the
step graph of these histories.

a) Let us consider s first:
H[s](x) = Hs(w1(x)) = f1x(Hs(r1(x))) = f1x(Hs(w0(x))) = f1x(f0x())
H[s](y) = Hs(w1(y)) = f1y(Hs(r1(x))) = f1y(Hs(w0(x))) = f1y(f0x())
H[s](z) = Hs(w2(z)) = f2z(Hs(r2(x)),Hs(r2(y))) = f2z(Hs(w0(x)),Hs(w0(y))) =
f2z(f0x(), f0y())
RF (s) = {(t0, x, t1), (t0, y, t2), (t0, z, t3), (t0, x, t2), (t1, x, t∞), (t1, y, t∞), (t2, z, t∞)}
LRF (s) = {(t0, x, t1), (t0, y, t2), (t0, x, t2), (t1, x, t∞), (t1, y, t∞), (t2, z, t∞)}

w0(x)

w0(y)

w0(z)

r1(x)

r2(x)

r2(y)

r3(z)

w1(x)

w1(y)

w2(z)

w3(z)

r∝(x)

r∝(y)

r∝(z)

Figure 1: Step graph for schedule s.

The circled part in Figure 1 represents dead steps which are removed in the
reduced step graph.

b) The solution for s′ is analogous:
H[s′](x) = Hs′(w1(x)) = f1x(Hs′(r1(x))) = f1x(Hs′(w0(x))) = f1x(f0x())
H[s′](y) = Hs′(w1(y)) = f1y(Hs′(r1(x))) = f1y(Hs′(w0(x))) = f1y(f0x())
H[s′](z) = Hs′(w2(z)) = f2z(Hs′(r2(x)),Hs′(r2(y))) = f2z(Hs′(w0(x)),Hs′(w0(y))) =
f2z(f0x(), f0y())
RF (s′) = {(t0, z, t3), (t0, y, t2), (t0, x, t2), (t0, x, t1), (t1, x, t∞), (t1, y, t∞), (t2, z, t∞)}
We observe:
H[s′] = H[s], which means s ≈f s′ according to Definition 3.6, which in
turn implies LRF (s) = LRF (s′) according to Theorem 3.1. We also observe
RF (s′) = RF (s) implying s ≈v s′. As a consequence we obtain for the step
graphs: D(s) = D(s′)

Exercise 3.3 :

Suppose that in a given schedule the functions corresponding to the write steps
represent increments of a counter, i.e., f(x) = x + 1. Compute the (Herbrand)
semantics of the following schedules using this semantic information:

s = r3(z)r1(y)w3(z)w1(y)r1(x)r2(y)w2(y)w1(x)r2(x)w2(x)c1c2c3

s′ = r3(z)w3(z)r2(y)w2(y)r1(y)w1(y)r2(x)w2(x)r1(x)w1(x)c3c2c1

1

a) Consider s:
H[s](x) = Hs(w2(x)) = f2x(Hs(r2(x))) = f2x(Hs(w1(x))) = 1+f1x(Hs(r1(x))) =
1 + f1x(Hs(w0(x))) = 2 + f0x()
H[s](y) = Hs(w2(y)) = f2y(Hs(r2(y))) = f2y(Hs(w1(y))) = 1+f1y(Hs(r1(y))) =
1 + f1y(Hs(w0(y))) = 2 + f0y()
H[s](z) = Hs(w3(z)) = f3z(Hs(r3(z))) = f3z(Hs(w0(z))) = 1 + f0z()

b) Consider s’:
H[s′](x) = Hs′(w1(x)) = f1x(Hs′(r1(x))) = f1x(Hs′(w2(x))) = 1+f2x(Hs′(r2(x))) =
1 + f2x(Hs′(w0(x))) = 2 + f0x()
H[s′](y) = Hs′(w1(y)) = f1y(Hs′(r1(y))) = f1y(Hs′(w2(y))) = 1+f2y(Hs′(r2(y))) =
1 + f22y(Hs′(w0(y))) = 2 + f0y()
H[s′](z) = Hs′(w3(z)) = f3z(Hs′(r3(z))) = f3z(Hs′(w0(z))) = 1 + f0z()

So the two schedules s and s′ are final state equivalent under the semantics where
writer are known to be increments, however, they are not final state equivalent
under the general Herbrand semantics.

Exercise 3.4 :

Consider the following history:

s = r1(x)r3(x)w3(y)w2(x)r4(y)c2w4(x)c4r5(x)c3w5(z)c5w1(z)c1

Into which of the classes FSR, VSR, CSR does this schedule fall?

In order to show that s ∈ FSR, it is sufficient to construct a serial schedule s′ with
s′ ≈f s. Consider

s′ = t5t3t1t2t4 = r5(x)w5(z)c5r3(x)w3(y)c3r1(x)w1(z)c1w2(x)c2r4(y)w4(x)c4,

For schedule s we have:

RF (s) = {(t0, x, t1), (t0, x, t3), (t3, y, t4), (t4, x, t5), (t1, z, t∞), (t4, x, t∞), (t3, y, t∞)}
LRF (s) = {(t0, x, t1), (t0, x, t3), (t3, y, t4), (t1, z, t∞), (t4, x, t∞), (t3, y, t∞)} = LRF (s′)
Therefore s ∈ FSR holds.

Assume s ∈ V SR, i.e., there is a serial schedule s1 with s ≈v s1 and thus RF (s) =
RF (s1). Then the following must hold for s1:

• t2 <s1 t4 for (t4, x, t∞) ∈ RF (s) and w2(x) ∈ op(s)

• t4 <s1 t5 for (t4, x, t5) ∈ RF (s)

• t5 <s1 t1 for (t1, z, t∞) ∈ RF (s) and w5(z) ∈ op(s)

Thus, we obtain t2 <s1 t1 which contradicts (t0, x, t1) ∈ RF (s). Therefore s is not
in V SR. Clearly s is also not in CSR since CSR ⊂ V SR according to Theorem
3.8. s 6∈ CSR can also be verified by observing a cycle (t1 → t4 → t5 → t1) in the
conflict graph of s as you can see in Figure 2.

t1

t3

t2

t4

t5

Figure 2: Conflict graph for schedule s.

2

Exercise 3.6 :

Consider s = r1(x)w1(x)r2(x)r2(y)w2(y)c2w1(y)c1.

Show that s ∈ FSR− V SR.

a) We first show, that s ∈ FSR:
RF (s) = {(t0, x, t1), (t1, x, t2), (t0, y, t2), (t1, x, t∞), (t1, y, t∞)}
LRF (s) = {(t0, x, t1), (t1, x, t∞), (t1, y, t∞)}
Now let us consider s′ = t2t1 with:
LRF (s′) = {(t0, x, t1), (t1, x, t∞), (t1, y, t∞)} = LRF (s)
that is, s ≈f s′ and thus s ∈ FSR.

b) Consider all possible serial schedules for t1 and t2 and verify that none of them
is view equivalent to s.
s12 := t1t2: s12 ≈v s is false for (t1, y, t2) ∈ RF (s12) but (t1, y, t2) 6∈ RF (s) .
s21 := t2t1: s21 ≈v s is false for (t0, x, t2) ∈ RF (s21) but (t0, x, t2) 6∈ RF (s).
Therefore s /∈ V SR.

Exercise 3.8 :

Show that V SR = CSR in the absence of blind writes, i.e., if each write step on a
data item x is preceded by a read step on x of the same transaction.

Let s be a schedule without blind writes.

a) We first show s ∈ CSR ⇒ s ∈ V SR. This follows immediately from Theorem
3.8 proven in the book (p. 95).

b) We have to show s ∈ V SR ⇒ s ∈ CSR. Assume that s is in V SR. Thus, there
is a serial schedule s′ for which s ≈v s′ holds. Since s′ is serial, s′ is trivially
conflict serializable as well.

Now, let us assume s would not be conflict serializable.

In such a case there is obviously at least one conflicting pair of steps, for which
the order in s and s′ differ. Otherwise s would result in the same conflict graph
as s′, i.e., s would be conflict serializable. Without loss of generality assume
ti < tj in s′.

s′ = w0(x) . . . ri(x) . . . wi(x) . . . ri+1(x) . . . wi+1(x) . . . rj(x) . . . wj(x) . . . r∞(x)

Case 1: s has a different order of write steps wi(x) and wj(x) (i.e.,
wj(x) <s wi(x)). For every schedule that is view equivalent to s′ (e.g., for s)
must hold: ri+1(x) reads from wi(x). Note that the order of steps is unchange-
able within a transaction. So we have wi(x) <s ri+1 and ri+1 <s wi+1, and
therefore wi(x) <s wi+1(x) for all i. Since <s is a transitive relation we also
conclude wi(x) <s wj(x), which is a contradiction to the assumption above.

Case 2: s has a different order with regard to a read step ri(x) and a write step
wj(x) (i.e., wj(x) <s ri(x)). As for s′ we have:
ri(x) <s′ wi(x) <s′ rj(x) <s′ wj(x), because s′ is a serial schedule. However we
obtain for s: wj(x) <s ri(x) and ri(x) <s wi(x) imply wj(x) <s wi(x), i.e. the
order of the write steps must be different as well. Then we can construct the
same contradiction as in case 1.

Exercise 3.9 :

Let s = r1(z)r3(x)r2(z)w1(z)w1(y)c1w2(y)w2(u)c2w3(y)c3.

Show that s ∈ V SR− CSR.

Consider the conflict graph for s, which obviously has a cycle (t1 → t2 → t1) and
therefore s /∈ CSR:

3

t1

t3

t2

Figure 3: Conflict graph of schedule s

In order to show, that s ∈ V SR we have to provide a serial schedule view equivalent
to s. Consider s′:

s′ = t2t1t3 = r2(z)w2(y)w2(u)c2r1(z)w1(z)w1(y)c1r3(x)w3(y)c3,

s ≈v s′ because:

RF (s) = {(t0, z, t1), (t0, x, t3), (t0, z, t2), (t0, x, t∞), (t3, y, t∞), (t1, z, t∞), (t2, u, t∞)} =
RF (s′)

Exercise 3.10 :

Consider s = r1(x)w)1(z)w2(z)w1(y)c1r3(y)w2(z)c2w3(x)w3(y)c3. Using the con-
flict graph of s as an argument, show that s ∈ CSR. Does s ∈ OCSR also hold?

Since we have got an acyclic conflict graph for s, s ∈ CSR holds.

t1

t3

t2

Figure 4: Conflict graph of schedule s

By topological sorting of the conflict graph we obtain a conflict equivalent serial
schedule s′ = t1t2t3. Only the transactions t1 and t3 are ordered in the original
schedule s; since their order is preserved in s′, we obtain s ∈ OCSR.

Exercise 3.11 :

Show:

a) Membership in class CSR is monotone.

b) s ∈ CSR ⇐⇒ (∀ T ⊆ trans(s)) ΠT (s) ∈ VSR
(i.e., CSR is the largest monotone subset of VSR).

Let s be in CSR and s′ be an arbitrary subschedule of s. s ∈ CSR implies that the
conflict graph G(s) is acyclic (Theorem 3.10).
op(s′) ⊂ op(s) ⇒ conf(s′) ⊆ conf(s). Thus G(s′) is a subgraph of G(s), so it must
be acyclic too, which in turn implies s′ ∈ CSR as well. We showed that a) holds.

b) was shown by Mihalis Yannakakis in Yannakakis, M. (1984): Serializability by
Locking. Journal of the ACM 31, pp. 227-244. See Section 3 on pp.232-233

4

Chapter 4 - Solutions to Exercises

Exercise 4.1 :

For each of the following (input) schedules, show the output produced by 2PL,
S2PL, SS2PL, TO, and SGT:

s1 = w1(x)r2(y)r1(x)c1r2(x)w2(y)c2

s2 = r1(x)r2(x)w3(x)w4(x)w1(x)c1w2(x)c2c3c4

(a) We first consider s1:

• 2PL, S2PL or SS2PL:
Figure 1 shows an example execution, which could be produced by a scheduler
using all of these three variations of two-phase-locking protocol because both
read and write locks are being released immediately before committing the
corresponding transaction. The dashed line represents the time interval during

rl2(y) r2(y) rl2(x) r2(x) wl2(y) w2(y) wu2(y) ru2(x) c2

wl1(x) w1(x) r1(x) wu1(x) c1
t1

t2

Figure 1: 2PL, S2PL or SS2PL output for s1

which the lock request is being blocked. This leads us to the following execution
order for the extended schedule s′1:

s′1 = wl1(x)w1(x)rl2(y)r2(y)r1(x)wu1(x)rl2(x)r2(x)c1wl2(y)w2(y)wu2(y)ru2(x)c2

• TO:
We observe ts(t1) < ts(t2). For the only conflicting pair (w1(x), r2(x)) we have
w1(x) <s1 r2(x), which implies that s1 can be executed as is under the TO
protocol.

• SGT:
Since s1 comprises only one conflicting pair no cycle can arise for any prefix of
s1, i.e., s1 can be executed as is by an SGT scheduler, too.

(b) Now consider s2:

• 2PL, S2PL or SS2PL:
Figure 2 shows a possible execution of s2. When wl2(x) is issued and not
granted because rl1(x) is still being held by t1 , a cycle arises in the waits-for
graph (WFG), because t1 itself is already waiting for t2 to release rl2(x). In
order to resolve this deadlock the scheduler has to abort either t1 or t2. In
our case we assume t1 is aborted. Then the extended output schedule s′2 is as
follows:

s′2 = rl1(1)r1(x)rl2(x)r2(x)a1wl2(x)w2(x)wu2(x)wl3(x)w3(x)c2

wu3(x)wl4(x)w4(x)c3wu4(x)c4

Once again the locks are held until the transactions terminate, so that S2PL
and SS2PL could produce exactly the same output schedule.

1

t1

t4

t2

t3

rl2(x) r2(x) wl2(x) w2(x) wu2(x) c2

rl1(x) r1(x) wl1(x) abort1
t1

t2

t3

wl3(x) w3(x) wu3(x) c3

t4

wl4(x) w4(x) wu4(x) c4

t4

t2

t3

WFG before abort1 WFG after abort1

Figure 2: 2PL, S2PL or SS2PL output for s2

• TO:
The input schedule is executed as is until w1(x) occurs for which we obtain
w4(x) <s2 w1(x) but ts(t4) > ts(t1) as you can observe in Figure 3. Therefore
t1 must be aborted. Analogously, w2(x) also comes too late, so that t2 must
be aborted as well. The output schedule s′2 then is as follows:

s′2 = r1(x)r2(x)w3(x)w4(x)a1a2c3c4

r2(x) w2(x) a2 (max-w-scheduled = ts(t4))

r1(x) w1(x) a1 (max-w-scheduled = ts(t4))
t1

t2

t3

w3(x) c3

t4

w4(x) c4

Figure 3: BTO output for s2

• SGT:
In the case of a SGT scheduler the input schedule s2 is also executed without
any changes until w1(x) occurs, because no cycle arises in the serialization
graph so far. However at the point w1(x) should be passed to the data manager
several cycles come into existence as you can see by analyzing the serialization
graph in Figure 4. So the scheduler rejects w1(x) and aborts t1. With w2(x) a
new edge is added to the serialization graph closing a new cycle t3 → t2 → t3,
and t2 is aborted as well. The resulting output schedules is as follows:

s′2 = r1(x)r2(x)w3(x)w4(x)a1a2c3c4

Exercise 4.2 :

A lock point of a transaction t denotes a point in time at which t has obtained all
locks it needs, but has not yet released any. Show that for each history s produced

2

t1

t4

t2

t3 t4

t2

t3
t4 t3

… w1(x) a1 … … w2(x) a2 …

Figure 4: Serial (conflict) graph of s2

by a 2PL scheduler there exists a conflict equivalent serial history s′ in which all
transactions occur in the same order of lock points as in s.

Let trans(s) = {t1, ..., tn} with the corresponding lock points lp1, ..., lpn. For each
(pi, qj) ∈ conf(s) we observe:

pi <s lpi <s pui <s qlj <s qj <s lpj

Thus, if we simply put the transactions in the same order as the lock points occur
in s, we obtain a serial schedule s′ with conf(s) = conf(s′) , i.e., s′ is conflict
equivalent to s′ .

Exercise 4.3 :

Under the 2PL protocol it is possible for transactions to “starve” in the following
sense: A transaction gets involved in a deadlock, is chosen as the victim and aborted.
After a restart, it again gets involved in a deadlock, is chosen as the victim and
aborted, and so on. Provide a concrete example for such a situation, and describe
how 2PL could be extended in order to avoid starvation of transactions.

Let t1 = r1(x)w1(y), t2 = r2(y)w2(x). Consider following schedule assuming that
the scheduler aborts the youngest transaction whenever a deadlock occurs:

s = [rl1(x)r1(x)rl2(y)r2(y)wl1(y) ... wl2(x) ... a2w1(y)c1]+

The expression in the squared brackets is repeated several times. A scenario, we
observe is the following: imagine you have a typical application which generates
transactions with the same operation pattern, e.g., many instances of t1 . Occa-
sionally another application issues a request resulting in t2 . Convince yourselves
that any interleaving of t1 and t2, which is very likely on a multi-user server, is not
conflict serializable. Thus, t2 gets involved in a deadlock with an instance of t1 over
and over again and is permanently aborted by the scheduler.

In order to prevent the starvation the scheduler should take the number of trans-
action retries into account when choosing a deadlock victim. For example, let pi

be a priority that the scheduler would assign to transaction ti under “normal” cir-
cumstances and ri be the number of its restarts (transactions with lower priority
are chosen as deadlock victims). So let the scheduler work with a weighted priority
pwi = ri · pi . Each time the transaction is involved in a deadlock it automatically
gets a higher priority than usual, so that the likelihood of being aborted once again
decreases with increasing number of restarts. Because of this monotonicity prop-
erty, a transaction that has suffered many aborts, must eventually have the highest
weighted priority among all transactions.

Exercise 4.4 :

Describe the wait-for graphs resulting from the use of 2PL for each of the histories
in Exercise 4.1.

We first consider the WFG for s1. By observing its execution in Figure 1 you can
deduce how the WFG evolves:

3

1. When rl2 is issued the edge t2 → t1 is added to the WFG because rl1(x) is
not released yet.

2. When wu1(x) occurs, rl1(x) can be granted and the edge t2 → t1 is removed
from the WFG.

Now let us turn to s2. As you can see in Figure 2 the WFG of s2 evolves as follows:

1. Upon wl3(x) the edges t3 → t1 and t3 → t1 are added because rl1(x) and
rl2(x) have already been granted at that time.

2. Analogously, the issuing of wl4(x) leads to adding the edges t4 → t1 and
t4 → t1 .

3. When wl1(x) is issued but not granted because of rl2(x) , a new edge t1 → t2
is added to the WFG.

4. With wl2(x) waiting for rl1(x) a cycle t1 → t2 → t1 comes into existence.

5. The scheduler resolves the deadlock by aborting t1 and thus the corresponding
node along with its incoming and outgoing edges is removed from the WFG.

6. Then the scheduler selects wl2(x) to be granted implying that the blocked
requests wl3(x) and wl4(x) are now waiting for wl2(x) . This way t3 → t2 and
t4 → t2 are added to the WFG.

7. After wu2(x) is executed, t3 → t2 and t4 → t2 are removed.

8. wl3(x) is granted, so wl4(x) has to wait and we add t4 → t3 .

9. Finally, after wu3(x) there are no more pending lock requests which could not
be granted and the WFG has no edges at all.

Exercise 4.5 :

Show that the wait-die and the wound-wait approaches to deadlock prevention both
guarantee an acyclic WFG at any point in time.

We first consider the wound-wait approach. We observe that a transaction can be
blocked only by an older transaction, i.e., if ti is blocked by tj (or in other words ti
waits for tj) then ts(tj) < ts(ti) holds. If there were a cycle with a transaction tk
involved in it, we would obtain ts(tk) < ts(tk), which is obviously false.

For the wait-die approach ensuring that a transaction can be blocked only by a
younger transaction, we can reason analogously, so that the same contradiction
ts(tk) < ts(tk) is constructed.

Exercise 4.8 :

Consider the following input schedules to the O2PL protocol (i.e., the ordered shar-
ing generalization of 2PL, based on the lock compatibility table LT8):

a) s1 = w1(x)r2(x)c2r3(y)c3w1(y)c1

b) s2 = w1(x)r2(x)r3(y)c3r2(z)c2w1(y)c1

Which are the corresponding output schedules produced by O2PL? For each of the
two schedules, give the details about when locks are requested, granted, attempted
to be released, and eventually released.

In Figure 5 you can view the details of processing s1 under O2PL. A resulting
schedule s′1 is as follows:

wl1(x)w1(x)rl2(x)r2(x)rl3(y)r3(y)ru3(y)c3

wl1(y)w1(y)wu1(x)ru2(x)c2wu1(y)c1

4

rl2(x) r2(x) ru2(x) c2

wl1(x) w1(x) wl1(y) w1(y) wu1(x) wu1(y) c1
t1

t2

t3

rl3(y) r3(y) ru3(y) c3

Figure 5: O2PL output for s1

rl2(x) r2(x) rl2(z) r2(z) ru2(x) ru2(z) c2

wl1(x) w1(x) wl1(y) w1(y) wu1(x) wu1(y) c1
t1

t2

t3

rl3(y) r3(y) ru3(y) c3

Figure 6: O2PL output for s2

Figure 6 shows corresponding processing of s2. One of the possible resulting sched-
ules is:

wl1(x)w1(x)rl2(x)r2(x)rl3(y)r3(y)ru3(y)c3

rl2(z)r2(z)wl1(y)w1(y)wu1(x)ru2(x)ru2(z)wu1(y)c2c1

Exercise 4.9 :

Show that the O2PL protocol is susceptible to deadlocks (i.e. it is not deadlock-free).

Consider the following schedule:

r1(x) w1(y) ul
r2(y) w2(x) ul

This is a deadlock: both transactions are on hold and wait for the other to start
releasing locks.

Exercise 4.11 :

Investigate the relationship between Gen(BTO) and Gen(2PL). Is one more pow-
erful than the other?

a) We first show that Gen(BTO) 6⊂ Gen(2PL). Consider the following simple
schedule that can be produced by a 2PL scheduler but not by one running
BTO:
r1(z)r2(y)w2(x)c2w1(x)c1

With BTO t1 is aborted when it attempts to write x, because ts(t1) < ts(t2)
and t2 has already written x. However, this schedule can be executed as is under
2PL.

b) Now we show that Gen(2PL) 6⊂ Gen(BTO) also holds. This can be verified by
considering the following schedule:
r1(z)r2(z)w2(x)r3(x)r1(y)w2(y)c1c2c3

This schedule can be produced by a BTO scheduler because the order of con-
flicting steps coincides with the order of the transaction timestamps. However,
the following would have to hold, if this schedule were a 2PL output:

• wl2(x) < w2(x) < wu2(x) < rl3(x) < r3(x), i.e, wu2(x) < r3(x)

5

• rl1(y) < r1(y) < ru1(y) < wl2(y) < w2(y), i.e., r1(y) < wl2(y)

Since we have r3(x) < r1(y), we also obtain wu2(x) < wl2(y), which contradicts
the two-phase property. We deduce, that this schedule cannot be produced by
a 2PL scheduler.

So the two protocols are incomparable with regard to this “power”.

Exercise 4.12 :

Consider the following condition for removing nodes (and edges) from the serial-
ization graph in the SGT protocol: Remove ti when it’s finished and none of the
transactions that were active at the commit or abort time of ti are active anymore.
Show that this condition, albeit seemingly natural, would lead to incorrect behavior
of the SGT protocol.

Consider the following prefix of a schedule: w1(z)r2(x)w1(x)c1r3(y)w2(y)c2 . The
corresponding conflict graph looks as follows:

t1

t3

t2

Since the condition is true for t1, we could already remove t1 at this point. Now
assume the next pending operation in the schedule is r3(z), which would add a
new edge t1 → t3 to the conventional conflict graph so that a cycle arises. In the
modified graph we are no more able to detect this cycle, because t1 has already
been removed. Thus, this condition cannot assure a CSR-safe execution.

Exercise 4.13 :

Prove Theorem 4.18, thereby showing that FOCC is a CSR safe protocol.

Let s be a schedule produced by a FOCC scheduler. Consider two arbitrary transac-
tions ti, tj ∈ trans(s) with val(ti) <s val(tj) . Let us consider all possible conflicts:

• ri(x) <s val(ti) <s val(tj) ⇒ ri(x) <s wj(x), if there is a read-write conflict.

• If there is a write-read conflict val(ti) <s rj(x) must hold, because otherwise
ti could not be validated. Hence wi(x) <s rj(x)

• For a write-write conflict we trivially have wi(x) <s wj(x) which results from
val(ti) <s val(tj)

Summarizing these observations we obtain: if G(s) has an edge (ti, tj) then val(ti) <s

val(tj) holds.

Assume G(s) has a cycle ti1 → ti2 → ... → tin → ti1 . This implies, however,
val(ti1) <s val(ti2) <s ... <s val(tin) <s val(ti1). Since <s is transitive, we obtain
val(ti1) <s val(ti1) which is a contradiction. Thus G(s) must be acyclic.

Exercise 4.14 :

Consider the following alternative variant of a BOCC protocol. Transaction tj is
successfully validated if one of the two following conditions holds for all other trans-
actions ti that are already successfully validated:

(a) ti terminates before tj starts its read phase,

(b) RS(tj) ∩ WS(ti) = ∅ and ti finishes its read phase before tj enters its write
phase (i.e., relaxing the original BOCC condition that ti must finish its write
phase before tj initiates its validation).

6

Construct an example of a non serializable schedule that would be allowed under
this BOCC variant. On the other hand, prove that this variant does guarantee
conflict serializability under the additional constraint that WS(tk) ⊆ RS(tk) holds
for all transactions tk.

As an example consider the following schedule:

ri(z)valiwi(x) wi(y)ci

rj(z)valjwj(x)wi(y)cj

ti can be clearly validated, since there is no other transaction running at that time.
The validation of tj is approved as well, because RS(tj)∩WS(ti) = ∅ holds and ti is
already writing. However, since we now allow the write phase of ti to be interleaved
with the validation of tj , several write-write conflicts can occur which can lead to a
cycle in the conflict graph. In particular, (wi(x), wj(x)) and (wj(y), wi(y)) produce
such a cycle.

But, if we have WS(tk) ⊆ RS(tk) for all k , then we obtain for every validated
transaction tj :

RS(tj) ∩WS(ti) = ∅ =⇒ WS(tj) ∩WS(ti) = ∅
This implies that we can commute (applying rule C3, p. 99) concurrent write steps
such that vali < writesi < valj < writesj holds. Clearly this results in a conflict
equivalent schedule and this is exactly the schedule that would have been produced
under the original BOCC protocol. Thus, we obtain, by applying Theorem 4.17,
that with WS(tk) ⊆ RS(tk) the modified BOCC provides CSR-safe execution.

Exercise 4.15 :

Consider an alternative variant of BOCC where a transaction validates by compar-
ing its write set against the read sets of concurrent, previously validated transac-
tions. Would such a variant work correctly, i.e., ensure that all output schedules are
CSR?

No, such a protocol would not be correct. As an example, we consider the following
execution that could happen under BOCC:

wi(x) wi(y) ci

rj(x) rj(y) cj

When ti is validated, there is no other validated transaction, so the validation
is trivially successful. When tj is validated afterwards, the only concurrent and
already validated transaction is ti, whose read set is empty, so the validation of tj
is successful, too.

However, there is a cycle in the schedule’s conflict graph: there is an edge from tj
to ti, because tj reads x and ti later writes it, and there is an edge from ti to tj ,
because ti writes y and tj later reads it. So this schedule is not in CSR, but can be
generated by this variant of BOCC.

Exercise 4.16 :

Consider the following input schedule of three concurrent transactions:

r1(x)r2(x)r1(y)r3(x)w1(x)w1(y)c1r2(y)r3(z)w3(z)c3r2(z)c2

Which are the resulting output schedules under the BOCC and FOCC protocols?
Remember that write steps are actually performed on private workspaces, the com-
mit requests initiate the validation, and the write steps are performed on the shared
database only after a successful validation.

7

r(x) r(y)

r(x)

r(x)

w(y)w(x)

r(y)

r(z) abort

r(z) abort

t1

t2

t3

Because RS(t3)∩WS(t1)≠∅

Because RS(t2)∩WS(t1)≠∅

Figure 7: Resulting schedule under the BOCC protocol

See Figures 7 and 8 for the output schedules under BOCC and FOCC, respectively.

BOCC → r1(x)r2(x)r1(y)r3(x)w1(x)w1(y)c1r2(y)r3(z)a3r2(z)a2

r(x) r(y)

r(x)

r(x)

r(y)

r(z)

r(z)

abortt1

t2

t3

Because WS(t1)∩RS(t2, t3)≠∅

w(z)

Figure 8: Resulting schedule under the FOCC protocol

FOCC → r1(x)r2(x)r1(y)r3(x)a1r2(y)r3(z)w3(z)c3r2(z)c2

Exercise 4.17 :

Construct an example execution that demonstrates that FOCC may provide non-
serializable schedules if the critical section condition for the val-write phase were
dropped.

r(x) w(x)

r(x)

t1

t2 w(x)

Figure 9: Incorrect FOCC execution without the critical section

See Figure 9 for an example execution where the critical-section condition for the
val-write phase is dropped. We get a cycle in the conflict graph of the schedule, be-
cause r1(x) is executed before w2(x), and r2(x) is executed before w1(x). Therefore,
this execution is not serializable.

The problem is that t2’s read operation takes place after the validation phase of t1,
but before (or during) the write phase and before the commit of t1.

Exercise 4.18 :

Develop variants of the BOCC and FOCC protocols that do no longer need the
critical section for the val-write phases of transactions. Discuss the pros and cons
of such a relaxation, in comparison to locking protocols.

8

a) BOCC uses only weak critical sections: no two transactions are allowed to be
simultaneously in their val-write phases. To further relax this, one can use C2PL
(i.e., 2PL with preclaiming) during the write phase (only exclusive locks on
write sets). This serializes the write phases of those transactions that have a
ww conflict, but allows concurrent execution of the write phases of transactions
without overlapping write sets.

b) FOCC needs a strong critical section: no progress allowed for concurrent trans-
actions during val-write phase, not even reads. To relax this, one can use C2PL
for the write set during the write phase; other transactions need to acquire
read locks for further progress. This introduces a wr-synchronization between
concurrent transactions, additionally to the ww synchronization, but no rw-
synchronization is necessary.
The implementation for such a protocol needs only write locks, readers are
blocked upon the first conflict.

Compared to the original BOCC and FOCC protocols, relaxing the need for critical
sections increases concurrency, but the additional locks during validation and write
phases incur overhead.

As only write locks need to be explicitly held, the overhead is still somewhat lower
than that of pure locking protocols.

9

Chapter 5 - Solutions to Exercises

Exercise 5.1 :

For the following three histories, test whether they are monoversion histories or
members of MVSR or MCSR; in case a schedule is a member of MVSR, additionally
find out for which values of k > 0 the history is in class kVSR:

m1 = w0(x0)w0(y0)w0(z0)c0r3(x0)w3(x3)c3w1(x1)c1r2(x1)w2(y2)w2(z2)c2

m2 = w0(x0)w0(y0)c0w1(x1)c1r3(x1)w3(x3)r2(x1)c3w2(y2)c2

m3 = w0(x0)w0(y0)c0w1(x1)c1r2(x1)w2(y2)c2r3(y0)w3(x3)c3

For schedules in MVSR, also give an appropriate version function for a final trans-
action t∞.

a) m1 is a serial monoversion schedule. Thus, we trivially have m1 ∈ MCSR and
m1 ∈ MVSR. Furthermore m1 ∈ 1VSR implies m1 ∈ kVSR for all k > 0.
t∞ = r∞(x1)r∞(y2)r∞(z2)

b) We can transform the schedule m2 into a schedule m′
2 by commuting non-

conflicting operations of t3 and t2:

m′
2 = w0(x0)w0(y0)c0w1(x1)c1r2(x1)w2(y2)c2r3(x1)w3(x3)c3

m′
2 is obviously a serial monoversion schedule, i.e. m2 is multiversion reducible,

and applying Theorem 5.5 we obtain m2 ∈ MCSR. m2 ∈ MVSR holds as well,
because MVSR is a superset of MCSR.
Now let us determine the smallest k, for which m2 ∈ kVSR holds. We observe
that r2(x1) follows w3(x3), which implies that at least two versions must be
stored at the same time. Thus, for all k ≥ 2 we have m2 ∈ kVSR.
t∞ = r∞(x3)r∞(y2)

c) As for m3 we observe first that there is only one conflict pair in this schedule,
namely, (r2(x1), w3(x3)), i.e., its multiversion conflict graph is acyclic. Therefore
m3 is a member of both MCSR and MVSR. We obtain an equivalent serial
monoversion schedule by commuting t0’s operations to the right, just before t3,
resulting in the schedule t1t2t0t3. While it may appear to be counter-intuitive
putting the initializing transaction into the middle of the schedule, it is allowed,
if the order of conflicting steps remains unaffected.
Finally, by observing r3(y0) in the original schedule m3 we conclude that also
for m3 at least two versions must be stored simultaneously.
t∞ = r∞(x3)r∞(y0)

Exercise 5.2 :

For the multiversion schedule

m = w0(x0)w0(y0)c0r1(x0)w1(x1)r2(x1)w2(y2)w1(y1)w3(x3)

test whether there exists a version order ¿ such that MVSG(m, ¿) is acyclic. If
there is an acyclic graph, find an appropriate version function for a final transaction
t∞ such that the graph remains acyclic.

We choose the version orders x0 ¿ x1 ¿ x3 and y0 ¿ y1 ¿ y2. Now we can start
building up the graph MVSG(m, ¿):

1

• We add the edge t0 → t1 because of r1(x0).

• Then we consider r1(x0) and w3(x3). Since x3 À x0, the edge t1 → t3 is added.

• The edge t1 → t2 is added, because r2(x1) ∈ op(m)

• By considering r2(x1) and w0(x0) we add the edge t0 → t1, since we have
x0 ¿ x1.

• Finally, we consider r2(x1) and w3(x3), and add the edge t2 → t3, because
x3 À x1.

Thus we obtain an acyclic multiversion serialization graph depicted in Figure 1.
The original schedule m then can be extended by r∞(x3) and r∞(y2). The dashed

t0

t1

t∞

t3

t2

Figure 1: MVSG(m, ¿) for Exercise 5.2

arrows represent the new edges in the updated MVSG. As you see the graph is still
acyclic.

Exercise 5.3 :

Prove: In the “no blind writes” model, where each data item written by a transaction
must have been read before in the same transaction, MCSR = MVSR.

Let m be a schedule without “blind writes”:

a) According to Theorem 5.6 stating MCSR ⊂ MVSR we immediately obtain:
m ∈ MCSR =⇒ m ∈ MVSR.

b) Now, assume m ∈MVSR. That is, there is a serial monoversion schedule m′ with
m ≈v m′. Without loss of generality assume m′ is as follows (with 0 < i < j):

w0(x0) . . . ri(xi−1) . . . wi(xi) . . . ri+1(xi) . . . wi+1(xi+1) . . . rj(xj−1) . . . wj(xj) . . .

m′ is trivially conflict serializable. Assume again, m itself is not in MCSR. That
is, there is at least one write-read pair, such that wi(xi) <m′ rj(xj−1), but
rj(xj−1) <m wi(xi), because otherwise they would have identical multiversion
conflict graphs. We observe (tk, x, tk+1) ∈ RF(m′)=RF(m) for i ≤ k < j. Since
a version can be read only after it is created, we derive:

wi(xi) <m ri+1(xi) <m wi+1(xi+1) . . . <m rj(xj−1)

Finally, we obtain by transitivity wi(xi) <m rj(xj−1) which contradicts the
assumption.

Exercise 5.5 :

Consider the following schedule, given in “conventional” form without a specific
version function:

r1(x)r2(x)r3(y)w2(x)w1(y)c1w2(z)w3(z)r3(x)c3r2(y)c2

Show that this schedule is multiversion serializable, i.e., could be allowed by a
multiversion concurrency control. Give a feasible version function, and also a feasible

2

version order. How do the resulting executions (i.e., output schedules) under the
MVTO and the 2V2PL protocols look like?

First note that there are the following conflict pairs in the schedule: (r1(x), w2(x))
and (r3(y), w1(y)). So it is clear that the multiversion conflict graph associated
with this schedule has no cycles, and, thus, the schedule is in MCSR and MVSR.
By considering the two conflict pairs we can deduce the serialization order

t0 < t3 < t1 < t2 < t∞

These considerations lead us to the following mutiversion schedule:

w0(x0)w0(y0)w0(z0)r1(x0)r2(x0)r3(y0)w2(x2)w1(y1)w2(z2)
w3(z3)r3(x0)c3r2(y1)c2r∞(x2)r∞(y1)r∞(z2)

The version order obtained this way is as follows: x0 ¿ x2; y0 ¿ y1; z0 ¿ z3 ¿ z2.
Figure 2 depicts the corresponding MVSG, which is acyclic as expected.

t0

t1

t∞

t3

t2

Figure 2: MVSG (Exercise 5.5)

Figure 3 shows the output schedule under the MVTO protocol. As you can see the
write step w1(y1) comes too late because r3(y0) has already been executed at that
time. Since ts(t0) < ts(t1) < ts(t3), w1(y1) is rejected and t1 must be aborted. The
commit of t3 is delayed until the commit of t2 because of r3(x2).

r1(x0)

r2(x0)

r3(y0)

w2(x2)

abortt1

t2

t3

w3(z3)

c2

w1(y1)

w2(z2)

r3(x2)

r2(y0)

c3

Figure 3: MVTO output (Exercise 5.5)

rl/r1(x0)

rl/r2(x0)

rl/r3(y0)

wl/w2(x2)

t1

t2

t3

wl3(z)

a2

wl/w1(y1)

wl/w2(z2) rl/r2(y)

cl1(y)

cl2(x)

w3(z3) rl/r3(x0) cl3(z) c3

c1

Figure 4: 2V2PL output (Exercise 5.5)

The resulting output under the 2V2PL protocol is shown in Figure 4. The write lock
request wl3(z) could not be granted immediately because t2 still holds wl2(z) and
only one write lock on a data item is allowed at the same time under 2V2PL. Thus,
the edge t3 → t2 is added to the WFG. Then, cl1(y) has to wait for the release of
rl3(y), so that t1 → t3 is added to the WFG. And finally, as t2 tries to acquire cl2(x)
which is delayed because of rl1(x) still being present, the edge t2 → t1 is added to
the WFG closing a cycle. Thus, a deadlock is detected, and the scheduler rejects
cl2(x) and t2 is aborted, so that the execution can eventually come to an end.

3

This exercise gives another example that Gen(MVTO) and Gen(2V2PL) are proper
subsets of MVSR.

Exercise 5.6 :

Consider the input schedule:

w1(x)c1r2(x)r3(x)c2r4(x)w3(x)c4c3

Give the resulting output schedule under the MVTO protocol.

See Figure 5 for the solution.

w1(x1)

r2(x1)

r3(x1)

r4(x1)

abort

t1

t2

t3

w3(x3)

t4

Figure 5: MVTO output (Exercise 5.6)

Exercise 5.7 :

Consider the input schedule of the MV2PL Example 5.9:

s = r1(x)w1(x)r2(x)w2(y)r1(y)w2(x)c2w1(y)c1.

Apply the specialized 2V2PL protocol to this input and give the resulting output.

Figure 6 depicts the output schedule under 2V2PL.

rl/r1(x0) wl/w1(x1) rl/rl1(y0) wl1(y) a1

rl/r2(x0) wl/w2(y2) wl2(x) w2(x2) cl2(y) cl2(x) c2

t1

t2

Figure 6: 2V2PL output (Exercise 5.7)

Exercise 5.9 :

Reconsider the ROMV protocol that has been specifically geared for read-only trans-
actions. What happens if the protocol is relaxed in such a way that update transac-
tions use the timestamp based version selection for their read steps? That is, update
transactions would still use conventional exclusive locks for writes, but would ex-
ploit versioning for reads by selecting the most recent version that was committed
at the time of the update transaction’s begin. Is this protocol still correct in that
it guarantees MVSR schedules?

This protocol is not correct anymore, as it allows the following schedule:

r1(x0)r1(y0) w1(x1)c1

r2(x0)r2(y0) w2(y2)c2

4

Based on the timestamps we should obtain the serialization order t1 < t2. t2, how-
ever, reads x from t0 instead. The other serialization, t2 < t1, is obviously not
possible as well, since t1 reads y from t0. Therefore, this schedule is not in MVSR.

So the relaxed ROMV variant cannot guarantee the consistency of the data. As-
sume, for example, that x and y are two counters (e.g., stock investments) with the
constraint x + y ≤ 100 (e.g., for risk limitation). The initial values are x = 40 and
y = 40. Then, t1 could set x to 60, and t2 could set y to 60, thus arriving in a state
that violates the constraint. The relaxed ROMV variant would erroneously allow
this schedule.

5

Chapter 6 - Solutions to Exercises

Exercise 6.1 :

Consider the two-level schedule shown in Figure 6.12, which consists of two funds
transfer transactions and a balance lookup transaction. Assume that the GetBalance
operations do not commute with Withdraw operations nor with Deposit operations.
Is this schedule tree reducible? If not, how would the schedule have to be changed
(as little as possible) so as to render it tree reducible?

To see if the schedule is tree reducible, we first try to isolate subtrees. We can
isolate the subtree with root Withdraw(a) by commuting its operations r(r) and
r(p) to the right (denoted by the arrows in the following figure). Additionally, we
can commute r(r) in the subtree with root GetBalance(c) to the right, so that the
subtree with root Withdraw(a) is isolated. Analogously, we commute r(r) in the
subtree rooted by t1’s Deposit(c) operation to the right. Figure 1 shows all those
steps:

t1 t2

Withdraw(a) Withdraw(b)

r(r) r(r) w(p)

Deposit(c) Deposit(c)

r(r) r(p)r(r) r(p) w(p) w(p)r(p) w(p)r(p)

t3

GetBalance(a)

r(r) r(p)

GetBalance(c)

r(r) r(p)

Figure 1: Commutations at the page access level

Now all subtrees are isolated, and we can prune them. The result is a one-level
schedule. Using commutativity of the operations on this level, we see that we can
commute them in such a way that all subtrees are isolated. Figure 1 shows the
necessary steps:

t1 t2

Withdraw(b) GetBalance(a) Deposit(c) Deposit(c)

t3

Withdraw(a) GetBalance(c)

Figure 2: Commutation at level L1

Now all subtrees are isolated, we can prune them and get the equivalent schedule
t3t2t1.

1

Exercise 6.2 :

Consider a data server with an SQL-style interface (see Chapter 1) and a database
with a Person table whose rows contain a unique Name attribute and a City at-
tribute. The server executes operations like

• Select * From Person Where City=c, where c is a parameter, for looking
up all persons that live in a given city, and

• Update Person Set City=c Where Name=n, for recording that a given Person
has moved to a new city.

Let us abreviate these two operation types as select(c) and update(n,c), respec-
tively. The server executes these operations by decomposing them into index lookups
(search(key)), record fetches (fetch(rid)), record modifications (modify(rid)), and in-
dex maintenance steps (insert(key,rid) and delete(key,rid)). Assume that B+-tree
index structures exist for each of the two relevant attributes, and that both of these
trees have depth two, i.e., consist of a root node and a leaf level. All of the mentioned
record and index operations are finally transformed into page reads and writes.

Now consider a transaction that finds all persons from two different cities, say Los
Angeles and New York, and a second transaction that records the move of a couple,
say, Jerry and Liz Smith, from Los Angeles to New York. Model the executions
of both transactions as three-level transactions, and discuss possible schedules for
them. Give (non-trivial, e.g., non-serial) examples for three-level schedules that are
a) tree reducible and b) not tree reducible and thus not admissible.

t1 = select(′LA′) select(′NY C ′)
t2 = update(′Jerry Smith′, ′NY C ′) update(′Liz Smith′, ′NY C ′)

Let r denote a root node page and l denote a leaf node page of the B+ tree, p
denote a data page. Now we can start modelling the operations:

• select(c) = search(c) (foreach rid ∈ hits fetch(rid))

• update(c) = search(c) (foreach rid ∈ hitsfetch(rid) modify(rid))

• search(c) = r(r)r(l)

• insert(c, rid) = r(r)r(l)w(l)

• delete(c, rid) = r(r)r(l)w(l)

• fetch(rid) = r(p)

• modify(rid) = r(p)w(p)

For simplicity we assume that the database initially contains no persons with the
residence in New York City and the couple Smith are the only residents of Los
Angeles registered in the databases.

Figure 3 depicts a non-reducible object schedule, where the above operations are
instantiated with data pages p1, p2, and index pages r1, l1 for the City-index as well
as r2, l2 for the Name-index. When we isolate and prune subtrees at the levels L0

and L1, we obtain

select1(′LA′) <L2 update2(′JerrySmith′,′NY C ′) <L2 select1(′NY C ′)

that is, the transaction trees cannot be further isolated, since none of the operations
is commutable. Note that the update operation removes a row from the result set
of the first select, and it adds a new entry to the result set of the second one. This
is a typical example for the so-called phantom problem discussed in Section 8.2.

2

update
(’Jerry Smith’,

’NYC’)

t2

search
(’Jerry Smith’)

r(r2) r(p1)r(l2)

fetch(rid1) modify(rid1) insert(’NYC’, rid1) delete(’LA’,rid1)

w(p1)r(p1) w(l1)r(l1)r(r1) w(l1)r(l1)r(r1)

update
(’Liz Smith’,

’NYC’)

t1

select(’LA’)

search(’LA’)

r(r1) r(p1)
r(l1)

fetch(rid1)

select(’NYC’)

search(’NYC’)

r(r1) r(l1)r(p1)

fetch(rid2)

...

Figure 3: Non-reducible schedule

update
(’Jerry Smith’,

’NYC’)

t2

search
(’Jerry Smith’)

r(r2) r(p1)r(l2)

fetch(rid1) modify(rid1) insert(’NYC’, rid1) delete(’LA’,rid1)

w(p1)r(p1) w(l1)r(l1)r(r1) w(l1)r(l1)r(r1)

update
(’Liz Smith’,

’NYC’)

t1

select(’LA’)

search(’LA’)

r(r1) r(p1)r(l1)

fetch(rid1)

select(’NYC’)

search(’NYC’)

r(r1) r(l1)r(p1)

fetch(rid2)

...

Figure 4: Reducible schedule

The schedule presented in Figure 4 is tree reducible with the serialization t1 <s t2.
First we isolate search1(′NY C ′) by commuting its page level descendants to the
left such that the corresponding subtree appears entirely between fetch2(rid1) and
modify2(rid1) rooted by update2(′JerrySmith′, ′NY C ′). Thereafter all L1 oper-
ations are isolated, so that we are able to prune the L0 operations. Then we com-
mute fetch1(rid2) belonging to select1(′LA′) as well as search1(′NY C ′) attached
to select1(′NY C ′) to the left because there is no conflict on that way, which results
in the transaction nodes t1 and t2 being isolated.

Exercise 6.3 :

Consider the two non-layered schedules of Figure 6.2. Are these tree reducible?

a) We first consider the schedule depicted in Figure 5. At the level L0 we can isolate
Withdraw2(b) by pushing r2(q) to the right behind w1(t). All L1 operations
are isolated and we can prune the operations at the level L0. Then we put
Deposit1(c) between Withdraw1(a) and Withdraw2(b). Thus we obtain the
serializaion t1 <s t2.

b) The schedule depicted in Figure 6 is also tree reducible, which can be verified
by observing that we can, analogously to the previous schedule, isolate both
withdrawals, but we don’t prune the corresponding subtrees so far. Then, we
push Withdraw1(a) such that its subtree is entirely placed between w2(r) and

3

t1

Withdraw(a)

r(p)

t2

Withdraw(b)

r(q)

Deposit(c)

r(r) w(r)w(q) w(t)

Deposit(c)

r(r) w(r)w(p)w(t)

Figure 5: Transformation of 1st schedule in Figure 6.2

r1(r), which is allowed because no page level conflicts occur on this way. This
way we isolate t1 and t2 with the serialization order t2 <s t1.

t1

Withdraw(a)

r(p) w(p) w(t)

t2

Withdraw(b)

r(q) w(q) w(t) r(r) w(r) r(r) w(r)

t1

Withdraw(a)

r(p) w(p) w(t)

t2

Withdraw(b)

r(q) w(q) w(t) r(r)w(r) r(r) w(r)

Figure 6: Transformation of the 2nd schedule in Figure 6.2

Note that in the first example both orderings of t1 and t2 are acceptable, whereas
only the one discussed in b) is legal for the second schedule; this happens due to
the fact that we don’t know the “L1” nature (semantics) of reads and writes that
directly originate from the transaction nodes.

t2

CheckItem

r(p) w(p)

Append

r(q) w(q)

Append

r(q)

t1

CheckItem

r(p) w(p)

Shipment

r(r) w(r)

Payment

CheckCard

r(s) w(s) w(s)

Payment

CheckCash

r(s) r(t) w(t) r(t) w(t)

Figure 7: Schedule for Exercise 6.4

Exercise 6.4 :

Consider again the example of Figure 6.6. Give the necessary transformation steps,
using the commutativity and the tree pruning rules, for proving that the schedule
is tree reducible.

4

The solution to this exercise is shown in Figure 7. First we can isolate CheckItem
operations by moving r2(p)w2(p) to the right such that they immediately follow
the w1(q) operation that belongs to Append1. The Payment operations can be
isolated by exchanging the order of r2(t)w2(t) and r1(s). All L2 operations are
already isolated at that time, so we can prune the corresponding subtrees. In order
to isolate the transaction nodes, we have to commute CheckItem2 and Payment2
to the left thus obtaining the serialization t2 <s t1.

Exercise 6.6 :

Consider a counter object with operations with lower and upper bounds as con-
straints. The counter interface supports three operations: Increment adds a specified
value ∆ to the counter and returns “OK” if the upper bound is not exceeded; oth-
erwise it returns “No” and leaves the counter unchanged. Analogously, decrement
subtracts a given value from the counter or returns “No” if the lower bound was vio-
lated. Finally, getvalue returns the counter value. Give a return value commutativity
table for these three operations. Discuss possible improvements of concurrency by
taking into account explicit constraints among operation parameters.

For convenience let us abbreviate increment, decrement and getvalue as inc, dec and
gv respectively. The return value commutativity is given in the following table.

inc ↑ ok inc ↑ no dec ↑ ok dec ↑ no gv ↑ res
inc ↑ ok + − − + −
inc ↑ no + + − + +
dec ↑ ok − + + − −
dec ↑ no − + + + +
gv ↑ res − + − + +

To address the second issue of this exercise, let us investigate the nature of conflicts
between decrements and increments. Many additional operation pairs would be
commutable (i.e., not in conflict), if we knew the counter’s initial value x0:

• if x0 + ∆2 ≤ upper bound, then dec1(x, ∆1) ↑ ok inc2(x, ∆2) ↑ ok are com-
mutable.

• if x0 + ∆2 − ∆1 ≤ lower bound, then dec1(x, ∆1) ↑ no inc2(x, ∆2) ↑ ok are
commutable.

• if x0 + ∆2 ≥ upper bound, then inc1(x, ∆1) ↑ ok inc2(x, ∆2) ↑ no are com-
mutable.

• if x0 − ∆2 ≥ lower bound, then inc1(x, ∆1) ↑ ok dec2(x,∆2) ↑ ok are com-
mutable.

• if x0 − ∆2 + ∆1 ≥ upper bound, then inc1(x, ∆1) ↑ no dec2(x,∆2) ↑ ok are
commutable.

• if x0 − ∆2 ≤ lower bound, then dec1(x, ∆1) ↑ ok dec2(x,∆2) ↑ no are com-
mutable.

These considerations influenced the escrow locking method, which is studied in
Section 7.6 of the book.

5

Exercise 6.7 :

Construct a sample schedule with operations on FIFO queues that demonstrate
the higher concurrency that return-value commutativity can achieve over general
commutativity.

The following schedule

enq1(q, x) ↑ one enq1(q, y) ↑ ok deq2(q) ↑ ok enq1(q, z) ↑ ok deq2(q) ↑ ok
deq2(q) ↑ ok

can be transformed into the equivalent serial schedule t1t2 using return-value com-
mutativity and may therefore be allowed by a scheduler, while it is not serializable
using general commutativity.

Exercise 6.8 :

Construct the return value commutativity table for a semi-queue. Show, by means
of sample schedules, that semi-queues allow higher concurrency than FIFO queues.

The key difference between regular queues and semi-queues is that order of enqueue
and dequeue operations doesn’t matter, unless the queue becomes empty. Therefore,
enqueues and dequeues can always be executed without conflict if the queue is not
empty, so semi-queues allow a much higher concurrency. The following return-value
commutativity table for semi-queues reflects this (combinations that cannot occur
are marked as imp, i.e. impossible):

enq ↑ ok enq ↑ one deq ↑ ok deq ↑ empty
enq ↑ ok + imp + imp

enq ↑ one − imp − imp
deq ↑ ok + − + −

deq ↑ empty imp − imp +

The schedule given in the next exercise shows the impact of the semi-queue seman-
tics on concurrency.

Exercise 6.9 :

Consider the following execution of operations on an initially empty queue q where
a, b, and c are entries added to the queue:

enq1(q, a)enq2(q, b)deq3(q)enq1(q, c)deq3(q)

Discuss whether this schedule is serializable assuming (a) general commutativity,
(b) return-value commutativity, and (c) return value commutativity for semi-queues
with nondeterministic selection of entries by Dequeue operations. In the last setting,
which entries should be selected by the two dequeue operations of t3 to produce an
intuitively correct execution?

First, we add return values to the schedule, so that we can use return-value com-
mutativity:

enq1(q, a) ↑ one enq2(q, b) ↑ ok deq3(q) ↑ ok enq1(q, c) ↑ ok deq3(q) ↑ ok

Obviously, this schedule is not serializable if we assume general commutativity. For
example, it is not possible to commute t1’s last enqueue operation outside of t3’s
operations.

The schedule isn’t return-value serializable, either: While it is possible to isolate t3’s
operations at the end of the schedule, we have t2’s enqueue operation in between
t1’s enqueue operations and can’t commute it outside.

However, assuming semi-queue semantics, all operations are commutative with each
other except the first enqueue, so we get the following equivalent serial schedule:

6

enq1(q, a) ↑ one enq1(q, c) ↑ ok enq2(q, b) ↑ ok deq3(q) ↑ ok deq3(q) ↑ ok

(Note that the schedule t1t3t2 is not equivalent, because t2’s enqueue would return
one and not ok as it should.)

Exercise 6.10 :

Design an abstract data type “mailbox” with operations like Send (i.e., add a
message to the mailbox), Receive (i.e., extract a message from the mailbox), and
so on. Discuss the operations’ commutativity relation, for (a) general (i.e., state
independent) commutativity and (b) return value commutativity. Devise an imple-
mentation of mailbox objects in terms of queues, records, and ultimately pages.
Sketch the resulting transaction trees. Give an example of a concurrent execution,
with as much concurrency as possible, for two transactions where one sends two
messages to two different mailboxes and the other receives all messages from one of
the two mailboxes.

In the scenario considered in this exercise we assume that all messages stored in a
mailbox get a unique identifier msgid based on a timestamp of the message arrival.

Two Send operations do not commute because the order in that the messages arrive
might be relevant. For example, when several persons apply for a job, and two or
more of them have identical qualification, then the order in which applications have
been submitted will be one of the possible decision criteria. The Send and Receive
are clearly not exchangeable, if the mailbox is empty prior to Send or if it is full
before Receive. Two Receive operations are not commutable as well, because this
is exactly a situation in which the order determines, whether we may see junk mails
or not as explained in the following.

At first sight you might be surprised why may we need concurrent Recieve opera-
tions on the same mailbox at all. Imagine that you have a conventional interactive
mail client and also an automatic program periodically scheduled on the mail server.
The task of the latter is to remove junk messages from all mailboxes.

a) These considerations lead us to the following state independent commutativity
table.

Send Rec
Send − −
Rec − −

b) A possible state dependent commutativity table follows. Note that Receive
(abbreviated as Rec) can either return ok or it returns one signalling that this
was the only message in the mailbox. This is relevant only for the scheduler for
testing commutativity; at the application layer one is perceived just as normal
ok. If the mailbox is empty, Receive returns no. If the mailbox is full, then no
other message can be appended to it. In such a situation Send returns no.

Send ↑ ok Send ↑ no Rec ↑ ok Rec ↑ one Rec ↑ no
Send ↑ ok − − + − imp
Send ↑ no + + − − +
Rec ↑ ok + + − − −

Rec ↑ one + + imp imp −
Rec ↑ no − + imp imp +

Now we are ready to model the operations, mapping mailbox operations onto queues
and queue operations onto SQL.

• Send(mb,message) = enq(mbq, message)

• Receive(mb) = deq(mbq)

• enq(mbq,message) = ins(relation, next id,message)

7

• deq(mbq) = del(relation, lowest id)

• ins(relation, next id, message) = r(p)w(p)

• del(relation, lowestid) = r(p)w(p)

Figure 8 shows a sample schedule on a mail server. This schedule is tree reducible if
the state dependent commutativity defined above is used. First we can isolate ins2

and del1 by commuting r1(p) and w2(p′), so that we are able to subsequently prune
the L2 operations. Then we commute the first Rec1 to the right and obtain this
way the serialization t2 <s t1

t1

Rec(mb2)↑one Rec(mb2)↑one Rec(mb2)↑no

t2

Send(mb1, m)↑ok Send(mb2, m)↑ok

r(p) w(p)

deq(mbq2)

del(qr, mbq2,
lowest_id)

deq(mbq2)

r(p) w(p)

del(qr, mbq2,
lowest_id)

r(p) w(p)

deq(mbq1)

del(qr, mbq2,
lowest_id)

r(p) w(p)

enq(mbq1, m)

ins(qr, mbq1,
next_id, m)

enq(mbq2, m)

r(p) w(p’)

ins(qr, mbq2,
next_id, m)

L0

L1

L2

L3

L4

Figure 8: Sample tree reducible schedule

Exercise 6.11 :

Even if two operations do not commute in the strict sense, the different effects
that result from the two possible orderings may be considered as “effectively equal”
from an application viewpoint. We could then simply declare the two operations
as compatible and treat them as if they were commutative. An example would be
a Deposit operation together with a new style of Withdraw operation that allows
overdrafting but claims a penalty of, say, $10 each time the account balance is below
the specified threshold and money is withdrawn. So the code for this relaxed variant
of withdraw would be

relaxed withdraw (x, ∆):
x.balance := x.balance - ∆;
if x.balance < 0 then
x.balance := x.balance - 10 fi;

Give a sample schedule with these operations that is conflict serializable relative
to the compatibility of the operations, but is not conflict serializable under a strict
interpretation of commutativity. Discuss the acceptability of the resulting (worst-
case) situations from an application viewpoint, of both the bank and the customer.

Assume we have two accounts a and b, and two transactions t1 and t2. Initial balance
of a is $ 1000, and that of b is $ 0. Transaction t1 moves $ 1000 from a to b, and
transaction t2 moves $ 1000 from b to a, so that executing t1 first and then t2 results
in a do-nothing operation. The following schedule is valid using compatibility (and
is not allowed using commutativity):

Withdraw1(a, 1000)Withdraw2(b, 1000)Deposit1(b, 1000)Deposit2(a, 1000)

8

The effect of this schedule is no longer a do-nothing operation, but account b ends
up with a balance of $-10. While the bank would easily accept such an anomaly, a
customer may not at all be happy with this. (Note that if the system used commu-
tativity, t2 would be blocked until the commit of t1, and a real do-nothing operation
would be the effect.)

9

Chapter 7 - Solutions to Exercises

Exercise 7.1 :

Investigate what kind of deadlocks can arise in a layered system with layered 2PL,
and how they can be detected and eliminated. Under what conditions is it sufficient
that each layer tests only for “local” deadlocks caused by lock waits of one layer
only? Under what conditions is it necessary to consider lock waits of all layers
“globally” to detect all deadlocks?

First consider layered schedules. When a transaction starts executing an operation
at level Li, it first acquires a corresponding lock at this level. At that time the
transaction does not hold any locks at lower levels. Then the Li operation issues
requests at level Li−1 (i.e., it starts a subtransaction). Upon completion of the
subtransaction all locks at level Li−1 are freed, while the lock at level Li is still held
until the operation at the level above is finished. Based on this observation and
using an induction argument we can conclude that when a transaction is blocked
at level Li, it doesn’t hold any locks at lower levels, so it cannot block any other
transaction beneath Li.

Now assume that we have a “global” deadlock, such that t1 waits for t2 at Li1 ,
t2 waits for t3 at Li2 and so on, and finally tn waits for t1 at Lin , with n ≥ 2.
Thus, t2 holds a lock at Li1 and requests a lock at Li2 . That is, we have i1 ≥ i2.
By induction, we get i1 ≥ i2 · · · ≥ in ≥ i1. This implies that all locks involved in
that deadlock appear at the same level. So we showed that no cross-level deadlock
testing is necessary.

t1

r(p)

t2

modify(x)

r(p)

modify(x)

w(p)

Figure 1: “Global” deadlock in a non-layered schedule

If we allowed non-layered schedules, we would however have to consider “global”
deadlocks. Consider a two-level architecture with a record and a page level. The
schedule given in Figure 1 shows an example schedule, in which a cross-level dead-
lock occurs. Transaction t1 first reads a page p (after the corresponding read lock
has been granted). Then t2 executes a record-level operation modify(x) operation
that in turn reads and tries to write the page p. The write operation w(p) is blocked
when requesting a write lock for p. After that, t1 tries to execute modify(x), which
is in conflict with t2’s modify operation. Hence, t1 is blocked by t2 at the record
level, while it still holds its lock at the page level which prevents t2 from making
any progress.

Exercise 7.2 :

Discuss the pros and cons of the selective layered 2PL. As an example, consider
query-, record-, and page-level operations along the lines of Figure 7.4. Does having
all three levels involved in locking rather than only two result in performance advan-
tages? If locking should be limited to two levels, are there arguments for choosing
certain levels over others?

1

It is clear that transactions hold locks shorter (at a particular level) if there are
locks at another level above it. Locks can be released after the parent operation is
finished, and they need not be held until the end of the transaction. Obviously, this
is a useful property, so it is better to have multiple levels.

However, from a practical point of view, each level requires its own lock manage-
ment, which adds overhead to the overall system.

In the example, we have the choice between query-level locks and record-level locks
(page level locks are always required). If we choose to acquire record-level locks,
these locks must be held until the end of the transaction, while page-level locks
can be released as soon as a record-level operation is finished. Other transactions
accessing objects that reside on these pages, but are not in conflict with those
accessed by the first transaction, can therefore resume their work quickly. When
we use query-level locks, page-level locks are held much longer (especially for long
queries like table scans), so concurrent transactions may be blocked longer.

So the above consideration suggests that it is more beneficial to use locks at the
record level rather than at the query level.

However, there are also scenarios where the opposite is true, namely, when decision-
support queries include complex search predicates. In such cases locking at the
record level, which includes locks on individual index keys (see Chapter 9), may end
up being unnecessarily restrictive and thus hampering concurrency. As an example
consider a query of the form:

select name from persons
where city=’Seatle’ and age=29

With locking at the query level (see Chapter 8, predicate locking) this query would
not conflict with statements like:

insert into persons(name, city, age)
values(’Jennifer’, ’Seattle’, 22)

or

insert into persons(name, city, age)
values(’Janis’, ’Austin’, 29)

With locking at the record level, however, the first insert statement would exhibit
conflict a lock conflict on the index key ’Seattle’ of the city index, and the second
query would exhibit a lock conflict on the index key 29 of the age index.

So in this case, where the second predicate of the query is a conjunction of two
conditions, record level locking has the negative effect of effectively locking the dis-
junction of the two conditions, simply by locking the index keys for both conditions.
Higher-level predicate locking would thus gain concurrency in such scenarios.

Exercise 7.3 :

Trace the lock requests, conflict tests, lock acquisitions, and lock releases for the
execution of the schedule in Figure 7.7 under the general object model 2PL with an
SS2PL variant. How would the sample execution change if the Append operations
were dropped and t2’s decrement operation were replaced by an incr(a) operation
that commutes with other increments? How would the execution change if t2 started
first and t1 was spawned after all of t2’s operations but before the commit of t2?

Figure 2 shows a sample execution of the schedule under the general object model
2PL. First the schedule is executed as is until t2 tries to acquire a Decr lock on
object a. This lock, however, is not granted, for t1 still holds the retained Incr lock
on a and the ancestors of Decr2(a) and Incr1(a) either have not terminated or do

2

Append(l)

Deposit(x)

Incr(a)

r(p)w(p)

Append(l)

r(p) w(p) r(q) w(q) r(p) w(p) r(q)w(q)

t1

r(q)w(q)

t2

Deposit(y)

Incr(b) Append(l)

r(p)w(p) r(q)w(q)

Decr(a)

L0

L1

L2

Figure 2: Sample execution of the original schedule

r(p) w(p)r(p)r(p) w(p)

Deposit(x)

Incr(a)

r(p)w(p)

r(p) w(p) r(q)w(q)

t1 t2

Deposit(y)

Incr(b)

r(p)w(p)

Incr(a)

L0

L1

L2

Figure 3: Sample execution with the first modification

not commute. This implies that the scheduler can resume the execution of t2 only
after t1 is finished, which results in a serial schedule s with t1 <s t2.

Figure 3 shows a sample execution with the first modification of the schedule (drop-
ping the Append operation and and replacing Decr2(a) by Incr2(a)) . When t2
starts, it first tries to obtain an Incr lock on a. This lock is granted because now
there is no conflict between the two increment operations. Then t2’s Incr success-
fully obtains read and write locks on p, since only t1’s increment holds conflicting
lock on p, they are in retained mode, and the increments themselves are commutable
by definition. After t2 completes the execution of Incr(a) it tries to acquire a read
lock on p for the direct access. This lock is not granted because t1 is still running.
From now on t2 has to wait for the end of t1. So the scheduler resumes the execution
of t1, which now successfully acquires an Incr lock on b. Incr1(b) in turn obtains all
required page level locks, because the corresponding conflicting locks are in retained
mode and they are held by Incr2(a), which clearly commutes with Incr2(b). After

3

Append(l)

r(p) w(p) r(q) w(q) r(p) w(p) r(q)w(q)

t2

Deposit(x)

t1

Deposit(y)Deposit(x)

t1

Deposit(y)

Append(l)Incr(a) Incr(b) Append(l)

r(p)w(p) r(q)w(q) r(p)w(p) r(q)w(q)

Decr(a)

L0

L1

L2

Figure 4: Sample execution with the second modification

t1 is finished and t2 can resume execution.

Finally Figure 4) shows the schedule with the second modification (with t2 started
first). When the scheduler starts the execution of t1, t2 has not yet released any locks.
Thus, whereas t1 successfully obtains a Deposit lock, the corresponding Deposit
operation of t1 cannot acquire an Incr lock on a, because the conflicting Decr held
by t2 lock is still active due to the SS2PL protocol. Therefore t1 has to wait for the
commit of t2, upon which all its locks are released.

Exercise 7.4 :

Develop pseudocode for a restricted version of the object model 2PL, where a gen-
eralized form of two-level schedules is considered, with some transactions bypassing
the object level L1 and invoking L0 operations directly. This setting is, for example,
of interest in the context of federated information systems, where global transac-
tions access a variety of databases through a federation layer, using commutativity
based 2PL for high-level operations exported by the underlying databases, but local
transactions are still allowed to access a database directly. Such an architecture is
sometimes called a federation of “autonomous” databases.

Transactional federations are treated in detail in Chapter 18.

The following discussion is based on:

A. Deacon, H.-J. Schek, G. Weikum:
Semantics-based Multilevel Transaction Management in Federated Sys-
tems, International Conference on Data Engineering, Houston, TX, USA,
1994.

When an object-level operation of a global transaction (a global subtransaction) is
finished, its page-level locks are not released, but converted into “retained” mode.
Retained locks are compatible with locks of other global transactions (so they don’t
block them), but local transactions must respect them. Upon the commit (or roll-
back) of the global transaction, all its retained page-level locks (and its object-level
locks) are released.

In order to implement this approach in a system, we have to distinguish between
local and global subtransactions, and we must know about the commit (or abort) of

4

a global transaction. We introduce two new lock modes retained read and retained
write.

We use the following lock-compatibility matrix (’gr’ means read lock request by
global transaction, ’lw’ means write lock request by local transaction, and so on):

gr gw lr lw
read + − + −
write − − − −

retained read + + + −
retained write + + − −

In addition, global transactions acquire high-level locks at the “semantic” object
level.

The following pseudocode shows the necessary steps.

BeginGlobalTransaction(GlobalTransID) { add global transaction to
list of global transactions; }

BeginGlobalSubtransaction(GlobalTransactionID, SubtransactionID)
{ add subtransaction to global transaction

in list of global transactions;
acquire object-level lock;

}

AcquireGlobalLock(GlobalTransID,SubtransactionID,page,mode)
{ check if mode is compatible with currently held locks

for this page;
if so, grant the lock (and add it to the necessary lists);
if not, update the waits-for graph and wait;

}

EndGlobalSubtransaction(GlobalTransactionID, SubtransactionID)
{ convert all locks of this subtransactions into retained locks;

delete it from the necessary lists;
}

EndGlobalTransaction(GlobalTransactionID)
{ release all locks of this transaction;

delete it from the list of global transactions;
}

BeginLocalTransaction(LocalTransID)
{ add local transaction to list of local transactions; }

AcquireLocalLock(LocalTransID,page,mode)
{ check if mode is compatible with currently held locks

for this page;
if so, grant the lock (and add it to the necessary lists);
if not, update the waits-for graph and wait;

}

EndLocalTransaction(LocalTransactionID)
{ release all locks of this transaction;

delete it from the list of local transactions;
}

5

Exercise 7.5 :

Apply the following hybrid protocols to the schedule of Figure 7.3 in a selective way
so that only two levels are involved in concurrency control:

a) the forward-oriented optimistic concurrency control (FOCC, see Chapter 4) at
the page level, and strong 2PL at the record level,

b) the forward-oriented optimistic concurrency control at the page level, and strong
2PL at the query level,

c) the hybrid multiversion protocol ROMV (see Chapter 5) at the page level, and
strong 2PL at the record level,

d) the hybrid multiversion protocol ROMV at the page level and strong 2PL at
the query level.

Sketch the resulting executions.

t1 t2

Insert Into Persons
Values (Name=...,
City="Austin",
Age=29, ...)

Select Name
From Persons
Where City="Seattle"
And Age=29

Select Name
From Persons
Where Age=30

Store(x) Insert
(CityIndex,
"Austin",
@x)

Search
(CityIndex,
"Seattle")

Insert
(AgeIndex,
29, @x)

Search
(AgeIndex,
29)

Search
(AgeIndex,
30)

Fetch(z)

r(p) w(p) r(r) r(n) r(r) r(l) r(n) w(l) r(l) r(r’) r(n’) w(l’)r(l’) r(r’)r(n’)r(l’) r(r’)r(n’)r(l’) r(p)

Fetch(y)

r(p)

Figure 5: Corrected schedule from Figure 7.3

The original schedule (Figure 7.3 in the book) is shown in Figure 5.

Store(x)

Insert
(CityIndex,
"Austin", @x)

Insert
(AgeIndex,
29, @x)

Search
(AgeIndex, 30) Fetch(z)

search
(CityIndex,
"Seattle") Fetch(y)

r(p) w(p) r(r) r(n)

r(r)

r(l)

r(n)

val w(l)

r(l)

search
(AgeIndex, 29)t2

t1

t11 t12

t13 t14 t15

t21 t22 t23

Figure 6: FOCC at the page level and SS2PL at the record level

Figure 6 shows the execution for case (a). With this setting given in (a) the sched-
ule is executed as is until t2 tries to execute Search(AgeIndex, 29), the lock for
which cannot be granted immediately, since t1 still holds the conflicting lock for
Insert(AgeIndex, 29, @x). That is, t2 may be resumed only after the end of t1.

Figure 7 depicts an output schedule under conditions given in (b). The schedule
is executed without any delays until t1’s first subtransaction enters the validation
phase, in which it has to be aborted because l is in both WS(t11) and RS(t21).
After t2 is finished, t11 is restarted and t1 finally comes to an end.

6

Insert Into Persons
Values (Name=..., City="Austin", Age=29, ...)

Select Name From Persons
Where Age=30

Select Name From Persons
Where City="Seattle" And Age=29

t2

t1

r(p) r(r) r(n) r(l) r(r’) r(n’)r(l’)

r(r) r(n) r(l) r(r’) r(n’) r(l’) r(p)

abort restart
val.

t11

t21

t11
t12

Figure 7: FOCC at the page level and SS2PL at the query level

Store(x)

Insert
(CityIndex,
"Austin", @x)

Insert
(AgeIndex,
29, @x)

Search
(AgeIndex, 30) Fetch(z)

Search
(CityIndex,
"Seattle") Fetch(y)

r(p00)w(p11) r(r00) r(n00)

r(r00)

r(l00)

r(n00)

w(l12)

r(l00)

search
(AgeIndex, 29)t2

t1

t11 t12

t13 t14 t15

t21 t22 t23

Figure 8: ROMV at the page level and SS2PL at the record level

Figure 8 shows the situation given in (c), which is very similar to (a) because of the
dominating influence of SS2PL at the record level.

Insert Into Persons
Values (Name=..., City="Austin", Age=29, ...)

Select Name From Persons
Where Age=30

Select Name From Persons
Where City="Seattle" And Age=29

t2

t1

r(p00) r(r00)r(n00)r(l00) r(r’ 00) r(n’ 00) r(l’ 00)

r(r00) r(n00) r(l00) r(r’ 00) r(n’ 00)r(l’ 00) r(p00)

t11

t21

t12

w(p11) w(l11) w(l’ 11)

Figure 9: ROMV at the page level and SS2PL at the query level

In contrast to the situation in (b) the schedule with the setting given in (d) can be
executed without any subtransaction aborts as shown in Figure 9. As you see the
read-only transaction t21 largely benefits by using ROMV at the page level because
it simply reads last committed page versions without having to acquire read locks.

Exercise 7.6 :

Prove the correctness of the 2PL protocol for two-level schedules with deferred lock
conflict testing based on return value commutativity sketched in Section 7.6.

Consider an arbitrary two-level schedule s which has been produced by an appropri-
ate scheduler. Since all subtransactions, i.e., L1 operations, acquire page level write

7

and read locks according to the 2PL protocol, we know that L1-to-L0 schedule is in
OCSR (Theorem 4.2). So regardless of whether some L1 operations had to be rolled
back or not, the output schedule looks as if all transactions were able to obtain
their L1 locks according to the 2PL prior to the execution of the L1 operations.
This implies that the L2-to-L1 schedule is in OCSR as well. Thus, by Theorem 6.2
the schedule s is tree reducible.

Exercise 7.7 :

Trace the intermediate states of the escrow data structure (i.e., the infimum and
supremum values) for the counter object x in the example execution of Figure 7.9.

x.inf x.sup status
100 100

decr1(x, 75) 25 100
decr2(x, 10) 15 100
incr3(x, 50) 15 150

c1 15 75
decr4(x, 20) waits!

a2 25 75
decr4(x, 20) 5 75

c3 55 75
c4 55 55

Exercise 7.8 :

Consider two counter objects x and y, with initial values x = 100 and y = 50.
Both counters have zero as a lower bound and no upper bound. Apply the escrow
locking method to the following schedule of three transactions one of which aborts:
decr1(x, 60)incr2(x, 20)incr1(x, 10)decr3(x, 50)decr2(y, 60)
incr2(x, 20)a2decr1(y, 10)c1c3.

x.inf x.sup y.inf y.sup status
100 100 50 50

decr1(x, 60) 40 100 50 50
incr2(x, 20) 40 120 50 50
incr1(x, 10) 40 130 50 50
decr3(x, 50) waits!
decr2(y, 60) forced to abort!
a2 40 110 50 50
decr1(y, 10) 40 110 40 50
c1 50 50 40 40
decr3(x, 50) 0 50 40 40
c3 0 0 40 40

Exercise 7.9 :

Escrow operations can be further generalized into conditional increment and decre-
ment operations, where the conditions may be stronger than the actual resource
quantity needed, taking the form:

conditional decr (x, ε, ∆):
if x ≥ ε then x := x - ∆ fi;

and an analogous Conditional Incr operation. For the Conditional Decr, the value
of the ε parameter would be larger than or equal to the operation’s ∆ value, and
the situation would be the other way around for the Conditional Incr operation.

8

In addition to such operation-specific conditions, the global invariants for x.low and
x.high must be satisfied at all times. Discuss the notions of general and return value
commutativity for these generalized escrow operations.

The intuition behind the conditional operations is to introduce ’private’ bounds for
each operation. If we set ε := x.low + ∆ in a Conditional Decr operation, we get
exactly the same semantics as for the operations without the extra condition.

Let’s consider Conditional Decr with arbitrary value of ε (Conditional Incr is
analogous). We can generalize the escrow locking method as follows. In the escrow
test, we have to compare the current infimum x.inf of the counter with ε. If x.inf ≥
ε, we can execute the decrement and update x.inf and x. If x.inf < ε, but x.sup ≥ ε,
we have a chance that the value of the counter increases after some transactions
commit or abort, so we wait. Otherwise, the transaction is aborted.

Obviously, conditional operations are not generally commutative, but we can apply
the escrow techniques. If ε > x.low + ∆, we impose stricter conditions on the
counter’s value, so we allow a lower degree of concurrency compared to the setting
ε := x.low + ∆ (i.e., the original unconditional decrement). However, there are
applications, which require this stricter semantics, for example, in sophisticated
warehouse administration.

9

Chapter 8 - Solutions to Exercises

Exercise 8.1 :

Discuss how predicate locking can be extended to disjunctive conditions such as
queries of the form

SELECT Name FROM Emp
WHERE Position=’Manager’ OR Department=’Research’.

Also discuss how join queries such as

SELECT Emp.Name, Emp.Department FROM Emp, Dept
WHERE Emp.Position=’Manager’ AND Dept.City=’Toronto’
AND Emp.Department=Dept.Department

could be (conservatively) handled by predicate locking.

A general way to extend predicate locking to arbitrary Boolean expressions (and
thereby including disjunctions as a special case) is the following: each Boolean ex-
pression is converted to its equivalent disjunctive normal form (DNF). For each of
the monoms in this DNF, a predicate lock is acquired. Each tuple that satisfies the
original expression satisfies at least one of these monoms, so locking the monoms is
sufficient to lock all relevant tuples. However, as we split the process of acquiring
one “complex” lock into acquiring several “simpler” locks, we increase the likeli-
hood of deadlocks. For example, imagine that two concurrent transactions try to
lock overlapping complex predicates. Both transactions may be able to lock some
monoms, but each may become blocked by the other transaction before it can ac-
quire locks for all monoms. If they acquired only a single complex lock, only one
would be blocked.

A join query is difficult to handle because its query predicate contains logic condi-
tions on attributes of multiple tables. Because we acquire locks for one table at a
time only, we have to build a conservative approximation about which tuples of each
table could be hit by a join. For each table, we lock that part of the predicate that
concerns attributes of this table (like Emp.Position=’Manager’ in the example),
and disregard the join condition, because we have no knowledge about join partners
in advance. Thus, we probably lock more records than really needed, but all of the
relevant records are definitely locked. If a join query contains only join conditions
and no other filter conditions, we have to lock the entire tables (but such queries
are infrequent in online transaction systems).

Exercise 8.2 :

The sample histories we studied for IDM transactions in this chapter mostly re-
ferred to a database with one relation and one attribute. Show the following: If the
database has more than one relation, the serializability of each projection of a given
history onto an individual relation does not imply serializability of that history in
general. Use the following scenario as a counterexample: Let database schema D
contain relation schemata R and S, where R has attributes A and B, and where S
has attributes B and C, and consider the following transactions and history:

t1 = mR(A = 1; A = 2)mS(C = 5; C = 6)
t2 = mR(A = 2; A = 3)mS(C = 4; C = 5)
s = mR

1 (A = 1; A = 2)mR
2 (A = 2;A = 3)mS

2 (C = 4; C = 5)mS
1 (C = 5; C = 6)

1

Assume that the initial attribute values are A = 1, B = 0, C = 4. Then we obtain
eff(t1; t2) = {A = 3, B = 0, C = 5}, and eff(t2; t1) = {A = 2, B = 0, C = 6}.
However eff(s) = {A = 3, B = 0, C = 6}, which does not match any of the
two possible serialization effects. The projections onto the individual relations are
trivially serial but they correspond to different serialization orders.

Exercise 8.7 :

Consider the transactions from Example 8.13 again. Determine whether decompos-
ing t11 any further still results in a correct chopping.

If we decompose t11 into t111 = r111(x) and t112 = w112(x), then we will immediately
obtain an sc cycle, because both of these two resulting transactions contain an
operation in conflict with t2’s w2(x), i.e., they are both connected by a c edge to t2.
And they are also connected by an s edge with each other. Thus, further chopping
of t11 does not make sense.

Exercise 8.8 :

Consider the following transactions:

t1 = r1(x)w1(x)r1(y)w1(y)

t2 = r2(x)

t3 = r3(y)w3(y)

Try to decompose t1 into three pieces s.t. the result is a correct chopping.

It is quite natural to chop t1 into two pieces, one piece for the operations on each
of the data objects x and y. To get three pieces, we have to decompose one of these
parts into two new parts consisting of only one operation. The best candidate is
obviously the part dealing with x, because the other transactions only read x.

t11

t12t13 t2t3

s s

cc
s

Figure 1: Chopping graph

Hence, consider the chopping of t1 into t11 = r1(x), t12 = w1(x), and
t13 = r1(y)w1(y). This is indeed a correct chopping, because its chopping graph,
which is depicted in Figure 1, contains no sc cycles.

Exercise 8.9 :

Prove Theorem 8.5.

What we need to show is: if the chopping graph is acyclic then any possible inter-
leaving within the given set of chopped transactions results in an acyclic conflict
graph having the original transactions as nodes. Remember, we have assumed that
the proper ordering of transaction pieces (i.e., s siblings) is self-guaranteed.

Consider a set of chopped transactions T = {t11, . . . , t1k1 , . . . , tn1, . . . , tnkn} for
which we know its chopping graph is acyclic. Assume that there is a schedule s
that is not in CSR with regard to the complete transactions, but s is in CSR and
thus, without loss of generality, serial with regard to the chopped transactions. So

2

there are m transactions involved in a cycle (say ti → . . . → tm → ti). We know,
however, that only conflict serializable schedules are generated with regard to the
transaction pieces. This implies that at least for one transaction two transaction
pieces are touched (without loss of generality tik and til) by the cycle. That is,
on the one hand we have an s edge between tik and til. On the other hand each
directed edge corresponds to a c edge between transaction pieces containing conflict
operations: tik −c . . .−c tmj −c til. Thus, the chopping graph contains an sc cycle.
This is a contradiction!

Exercise 8.10 :

Show that if a set of chopped transactions contains an sc cycle, any further chopping
of any of the transactions will not render the graph acyclic.

An sc cycle contains at least one c edge and one s edge. Any two nodes in a chopping
graph can be connected either by an s edge or by a c edge but not by both at the
same time. This implies there are at least three nodes involved in the cycle: say t1,
t2 and t3. Without loss of generality the cycle looks as follows:

t1 −c t2 −[s|c] . . .−[s|c] t3 −s t1

The following cases may occur by further transaction chopping:

(a) A transaction tj involved in the cycle by two or more s and only s edges is
chopped into tj1 , . . . , tjn . So this situation looks as follows: ti−s tj −s tk. Then
we obtain a path ti −s tj1 −s tk which still connects ti and tk. Thus, this does
not break the cycle.

(b) A transaction tj involved in the cycle by two or more c and only c edges
is chopped into tj1 , . . . , tjn . So this situation looks as follows: ti −c tj −c tk.
Thus, there are pj1 , pj2 ∈ op(tj) and qi ∈ op(ti), qk ∈ op(tk), such that pj1

is in conflict with qi, and pj2 is in conflict with qk. Without loss of generality
assume pj1 ∈ tj1 and pj2 ∈ tj2 . Then we obtain a path ti −c tj1 −s tj2 −c tk
which still connects ti and tk. Thus, this does not break the cycle either. Note
that tj1 and tj2 may be one and the same transaction.

(c) A transaction tj involved in the cycle by exactly one c edge and exactly one s
edge is chopped into tj1 , . . . , tjn . So this situation looks as follows: ti −c tj −s

tk. Some qi ∈ op(ti) and some pj1 ∈ op(tj) are in conflict. Without loss of
generality assume pj1 ∈ tj1 . Then we obtain a path ti −c tj1 −s tk which still
connects ti and tk. Thus, this does not break the cycle either.

(d) A transaction tj connected to the cycle by more than one s or c edges is
chopped. In this situation we can immediately apply the argumentation as in
cases (a) or (b).

Thus, we showed that in any case which might occur in the process of chopping, an
sc cycle cannot be broken once it is there.

Exercise 8.11 :

Suppose that a purchase program processes the purchases made by a company by
adding the value of an item purchased to the inventory and by subtracting the
money paid for it from cash. The application specification requires that the value of
cash never becomes negative, so that a transaction recording a purchase has to abort
if subtracting the money from cash would make that value negative. The structure
of such a program is given by a parameterized procedure purchase(i, p) recording
the purchase of item i for price p, whose body can be written as follows:

3

if (p > cash) then rollback
else inventory[i] := inventory[i] + p;

cash := cash – p;

Discuss under which conditions and to what extent chopping can be applied to this
scenario.

First we need some kind of semantic analysis of the operations in this scenario.
Note that two increments on an inventory object are commutable. This holds also
for two decrements on a cash object. But a read operation on a cash object like in
the test p > cash does not commute with a decrement on the same object.

It is intuitively clear that checking feasibility of a cash update and the cash update
itself have to be executed atomically, so that no chopping is possible, when these
two operations are the fist and the last step of a transaction. But we can show this
result even formally. Any non-trivial chopping of the purchase procedure into two
pieces implies that the first piece includes the read operation on cash, and the last
one contains the cash update. Now consider the chopping graph for two instances,
t1 and t2, of the chopped purchase procedure depicted in Figure 2. We observe an
sc cycle t11 −s t12 −c t21 −s t22 −c t11, and as we have already shown in Exercise
8.10, there is no further chopping which leads to an acyclic chopping graph.

t11 t12
s

t21 t22s

c c

Figure 2: Chopping graph for the purchase scenario

But we can do better, if we slightly rewrite the procedure without changing its
overall semantics as you can see below.

if (p > cash) then rollback
else cash := cash – p;

inventory[i] := inventory[i] + p;

So we obtain the only possible and non-trivial correct chopping, i.e., where the
inventory update is detached into a separate transaction. The acyclic chopping
graph from Figure 3 illustrates the correctness of such a chopping. Note that the
requirement for a program-initiated transaction abort being part of first transaction
piece is also satisfied here.

t11 t12
s

t21 t22s

c

Figure 3: Chopping graph for the modified purchase procedure

4

Chapter 9 - Solutions to Exercises

Exercise 9.1 :

Discuss how the incremental key-range locking protocol on index keys has to be
changed for a unique index. Discuss also how unique and non-unique indexes may
be treated differently by the various optimizations sketched in Section 9.5.

When we consider unique indices, key-range locking has to be changed in the fol-
lowing way:

• No combination of insert and delete operations is commutative. For example,
if transaction t1 inserts a new key into the index, a subsequent insert of the
same key will fail due to the uniqueness property of the index; if the two inserts
were commuted, the latter would be successful, while the other would fail. If we
considered return values, we could allow commuting two failed inserts, allowing
a higher degree of concurrency.

• A successful delete operation always removes the key from the index, because
there is only one associated tuple for this key. It is therefore necessary to lock
the previous key, which could be omitted with a non-unique index. However,
when the delete operation were implemented using the “deferred” delete tech-
nique, such that it removes only the rowid leaving the key in the index, no
changes would be required.

• The optimization from Section 9.5.2 concerning a special insert lock mode is not
applicable anymore, because two insert operations are no longer commutative
as we already mentioned above.

• The optimization from Section 9.5.3 that suggests locking pairs of a key and a
rowid (instead of locking only the key) does not allow any additional concur-
rency anymore, because there is at most one rowid for each key in the index.

Exercise 9.2 :

Discuss which lock(s) need to be acquired by an unsuccessful exact match query for
a key that is smaller than the smallest key that exists in the index. How can you
ensure that a subsequent insertion of this particular key “steps” on a lock conflict?

In order to properly handle such a situation we need to introduce a special virtual
(“dummy”) key representing −∞ which is considered to be smaller than any phys-
ically existing key. Thus, an unsuccessful search for a key k that is smaller than
the smallest key kmin results in locking the key −∞, which in turn represents the
interval [−∞, kmin). When another transaction tries to execute insert(k), it will
have to acquire locks on k itself and on −∞ according to the incremental key range
locking rules, so that this type of conflicts is correctly detected as well.

The locking rules require no further changes.

Exercise 9.3 :

Incremental key-range locking based on read and write locks on index keys, as ex-
plained in Section 9.3, does not allow two insert operations in the same, previously
unoccupied key interval to proceed concurrently. For example, in the index of Fig-
ure 9.5, an insert(27) would block a later insert(28) operation, although none of
these keys are initially present and the two operations should be considered as com-
mutative. Discuss whether the resulting blocking of one of the two operations can

1

be safely avoided, and how this could be accomplished. Also discuss the analogous
situation for delete operations, and the combination of insert and delete operations.

Section 9.5.2 of the book explicitly addresses these issues. We intuitively consider
two inserts to be commutative operations, which leads us to the special insert lock
mode. Thus, by locking the same previous key, 25 in this concrete example, the two
transactions do not block each other. A lock in insert mode, however, commutes
neither with read nor with write key locks. As we already mentioned in this chapter,
insert and delete operations do not commute in general. But two deletes can be
considered to be commutable. Thus, we can analogously introduce an additional
self-compatible delete lock mode.

Exercise 9.4 :

Discuss the locking requirements for an unsuccessful insert operation on a unique
index, i.e., when the key to be inserted already exists in the index.

As we already showed in Exercise 9.1 two unsuccessful inserts perfectly commute.
This would be a motivation to use return value commutativity. We also notice that
an unsuccessful insert commutes with all operations other than deletion of the same
key.

Exercise 9.6 :

Consider the following B+-tree index on the attribute AccountNumber of an Ac-
counts table. Assume that all tree nodes have a space capacity to hold up to four
entries. Which locks need to be requested for the execution of the following transac-
tion, assuming the incremental key-range locking at the access layer, lock coupling
at the page layer?

5 9

13

r

p1

1 3

7 8 9

12 13

q3

5

q1

q2

20 24

p2

22 24

28 30

q6
q4

q5

15 16 17 20

begin of transaction;
select count(*) from Accounts where AccountNumber

between 11 and 25;
insert into Accounts (AccountNumber, ...) values (27, ...);

commit transaction;

search(11):
read lock r
read lock p1

unlock r
read lock q3

read lock q2 // determine previous key
key-range lock 9 // previous key
unlock p1

unlock q3

2

unlock q2

return 12, q3

next(12, q3, 25):
read lock q3

key range lock 12
unlock q3

return 13, q3

next(13, q3, 25):
read lock q3

key range lock 13
read lock q4

unlock q3

unlock q4

return 15, q4

next(15, q4, 25):
read lock q4

key range lock 15
unlock q4

return 16, q4

next(16, q4, 25):
read lock q4

key range lock 16
unlock q4

return 17, q4

next(17, q4, 25):
read lock q4

key range lock 17
unlock q4

return 20, q4

next(20, q4, 25):
read lock q4

key range lock 20
read lock q5

unlock q4

unlock q5

return 22, q5

next(22, q5, 25):
read lock q5

key range lock 22
unlock q5

return 24, q4

next(24, q5, 25):
read lock q5

key range lock 24
read lock q6

unlock q5

unlock q6

return no more keys, nil

insert(27):
write lock r
write lock p2

unlock r

3

write lock q6

read lock q5 // get previous key
key range lock 24
key range lock 27
unlock q5

unlock q6

unlock p2

commit:
unlock all key range locks

Exercise 9.7 :

Consider a situation where a node p in a B+-tree is not split safe, but has a split
safe descendant q, with both p and q on the traversal path of an insert operation.
Discuss how the lock coupling technique should handle this situation to minimize
lock contention.

Since the node q is split safe, this insert operation is not going to split node q.
Therefore, we can safely release the locks on all of its predecessors.

Exercise 9.8 :

State explicit rules for lock requests and lock releases for the link technique (in a
form similar to our presentation of locking rules for the lock coupling technique).

We assume that Delete is implemented similarly to Search, i.e., when the key is
not found in a node where it is supposed to be, Delete follows the link to the sibling
node until it finds the key or detects another key larger than that it searches for.

Link technique locking rules:

1. Search operations need to request a read lock on a node before the node can
be accessed; Insert operations need to request a write lock. Delete operations
need to acquire a write lock for a leaf node only, otherwise a read lock has to
be acquired.

2. For Insert operations a lock on a node can be granted only if no conflicting
lock is currently held and the requesting operation holds a lock on the node’s
parent. For Delete and Search operations the latter condition is dropped.

3. Search and Delete operations can release the lock on a node once it is pro-
cessed.

4. Insert operations can release the lock on a node if (a) the node is split safe
and (b) they have acquired a lock on a child of that node.

5. A next(currentkey, currentpage, highkey) operation needs to acquire a read
lock on currentpage. If it needs to follow the link to the currentpage’s sibling
it has to acquire a read lock for the sibling, but it does not have to hold the
read lock on the currentpage in order to obtain this lock.

4

Chapter 10 - Solutions to Exercises

Exercise 10.1 :

Discuss to what extent lock escalation may incur deadlocks or livelocks.

In the process of lock escalation the fine-grained locks are converted into coarser-
grained locks which increases the likelihood of additional conflicts between already
admitted transactions. Consider the following scenario. Initially record level lock-
ing is used. A transaction t1 updates records x1 and y1 in relations Rx and Ry,
respectively. Another transaction t2 reads records, say x2 and y2. This may re-
sult in the following interleaved execution of the two transactions on the server:
w1(x1)r2(x2)r2(y2)w1(y1). With all these records being pairwise distinct the trans-
actions do not block each other. As the number of parallel transactions reaches some
critical threshold, the data server might wish to start lock escalation and thereby
convert all record level locks into table locks. Before releasing the record locks the
transactions need to acquire the table locks. Thus, t1 acquires an exclusive lock on
Rx, and blocks t2, whereas t2 acquires a shared lock on Ry and prevents t2 from
obtaining an exclusive lock on Ry. In order to resolve this deadlock, one of the
transactions has to be aborted and restarted.

As we already emphasized the number of conflicts between concurrent transactions
increases significantly when the scheduler can grant coarse-grained locks only. So
does the probability for a transaction to get involved in a deadlock. This can po-
tentially lead to transaction starvation (livelock) as described in Section 4.3.3, such
that a restarted transaction is chosen as deadlock victim over and over again.

Exercise 10.2 :

Discuss if and under which conditions a form of lock de-escalation could make sense.
De-escalation would essentially be the opposite of lock escalation, converting one
(or a few) coarse-grained lock(s) into several fine-grained locks while a transaction
is executing.

When the number of deadlocks increases dramatically, it results in a major amount
of wasted work, i.e., executing and rolling back the deadlock victim transactions. As
a solution to this problem it could make sense to check, whether a deadlock persists
after the lock de-escalation. If the deadlock can be resolved this way, the scheduler
should carry out lock de-escalation only for transactions involved in the deadlock.

Exercise 10.3 :

Give examples for schedules that fall into the following five isolation-level classes
(but not into the next larger, surrounding class): not even read uncommitted, read
uncommitted, read committed, repeatable read, serializability.

(a) not even read uncommitted
In the schedule s1 = w1(x)r2(x)w2(x)c2c1 the transaction t2 not only reads x
from t1, t2 also overwrites x before t1 finishes.

(b) read uncommitted
By putting c1 between r2(x) and w2(x) in s1 we obtain the schedule s2 =
w1(x)r2(x)c1w2(x)c2 which can be produced under the read uncommitted iso-
lation level.

1

(c) read committed
Consider the schedule s3 = r1(x)r2(x)w2(x)c2w1(x)c1 which can be produced
under the read committed isolation level. Since this schedule represents the
lost-update anomaly, it does not satisfy the definition of the repeatable read
isolation level.

(d) repeatable read
Let P be a predicate and x is not in P . The operation w2(x) changes x in a way
that x satisfies P . Consider the schedule s4 = r1(P)w2(x)c2r1(P)c1. All locks
are acquired properly according to S2PL but it does not prevent phantoms.

(e) serializability
Let P be a predicate with x, y 6∈ P . The operation w2(x) changes x in a
way that x satisfies P . The operation w2(y) does not touch P. Consider the
schedule s5 = r1(P)w2(y)r1(P)c1w2(x)c2. Here the scheduler tests not only
the compatibility of the locks on data items, but it also takes the predicate
locks into account.

Exercise 10.4 :

Give an example for a snapshot-isolated history violating the consistency of the
persistent data. Explain what kinds of inconsistencies can arise.

We revise the schedule s = r1(x0)r1(y0)r2(y0)w1(x1)c1w2(y2)c2 which we have al-
ready investigated in Exercise 5.9. This schedule satisfies the criterion of snapshot
isolation.

As we have seen, the following data inconsistency may arise. Assume, that x and y
are two counters (e.g., stock investments) with the constraint x + y ≤ 100 (e.g., for
risk limitation). The initial values are x = 40 and y = 40. Then, t1 could set x to
60, and t2 could set y to 60, thus arriving in a state that violates the constraint.

Exercise 10.5 :

Design a concurrency control protocol that can guarantee snapshot isolation (and
can indeed generate all snapshot-isolated histories).

We can derive the following rules from the definition of the snapshot isolated sched-
ules:

1. If there is no tk with x ∈ WS(tk) and begin(ti) < ck, a step wi(x) is trans-
formed into wi(xi) (i.e., a write operation creates a new version of object x
without overwriting the previous one), and x is added to WS(ti). Otherwise
ti has to be aborted. WS is a special data structure by whose means we keep
track of write-accessed data items for each transaction.

2. A step ri(x) is transformed into ri(xk) where tk is the most recent committed
transaction that updated x, and finished before ti has started.

3. At the point where each transaction ti with begin(ti) < ck is finished (i.e.,
either committed or aborted), WS(tk) can be garbage-collected.

Exercise 10.6 :

Give examples for showing that MVSR and snapshot isolation are incomparable
classes of histories, i.e., neither one of them is included in the other.

First consider the following schedule: s1 = r1(x0)w1(x1)r2(y0)c1r2(x1)c2. This sched-
ule is equivalent to the serial schedule t1t2. However, s1 is not in SI, which you can
verify by observing that t2 reads x1 instead of x0.

2

Again reconsider the schedule s2 = r1(x0)r1(y0)r2(y0)w1(x1)c1w2(y2)c2 which we
have already investigated in Exercise 5.9. This schedule satisfies the criterion of
snapshot isolation. However, we have shown, that s2 is not in MVSR, since neither
t2 reads x from t1 nor t1 reads y from t2, and thus, none of the two possible
serialization is possible.

3

Chapter 11 - Solutions to Exercises

Exercise 11.1 :

Let s1 = w1(x)w1(y)r2(u)w2(x)r2(y)w2(y)a2w1(z)c1 and
s2 = w1(x)w1(y)r2(u)w2(x)r2(y)w2(y)w1(z)a1c2.

Determine exp(s1) and exp(s2) as well as the corresponding reductions.

exp(s1) = w1(x)w1(y)r2(u)w2(x)r2(y)w2(y)w−1
2 (y)w−1

2 (x)c2w1(z)c1

Then we obtain:

by UR: w1(x)w1(y)r2(u)w2(x)r2(y)w−1
2 (x)c2w1(z)c1

by CR: w1(x)w1(y)r2(u)w2(x)w−1
2 (x)r2(y)c2w1(z)c1

by UR: w1(x)w1(y)r2(u)r2(y)c2w1(z)c1

by NR: w1(x)w1(y)c2w1(z)c1

As you see s1 is a reducible schedule.

exp(s2) = w1(x)w1(y)r2(u)w2(x)r2(y)w2(y)w1(z)w−1
1 (z)w−1

1 (y)w−1
1 (x)c1c2

Then we obtain:

by UR: w1(x)w1(y)r2(u)w2(x)r2(y)w2(y)w−1
1 (y)w−1

1 (x)c1c2

There is no way to further reduce s2’s expansion because we cannot move w1(x) and
w−1

1 (x) together, since these two operations are totally ordered by
w1(x) <exp(s2) w2(x) <exp(s2) w−1

1 (x). A similar argument holds for the writes
on y because of: w1(y) <exp(s2) r2(y) <exp(s2) w2(y) <exp(s2) w−1

1 (y).

Exercise 11.2 :

Which of the properties RC, ST, RG, PRED, and LRC are satisfied by the following
schedules:

s1 = r1(a)r2(a)w1(a)c1c2

s2 = r1(a)w1(a)r2(b)w2(b)w2(a)c2c1

s3 = r1(a)incr2(a)incr2(b)incr3(b)c3a2c1

Some of the above properties cannot be applied to a schedule with operations other
than read and write, such as schedule s3 above. Try to define generalizations of
these properties to flat object schedules with arbitrary operations.

Consider s1 first. s1 ∈ CSR because there is only one conflict pair in this schedule.
s1 ∈ RC, because both transactions do not read from each other. s1 is not only
recoverable but also log recoverable because there is no write/write conflict so that
the second criterion for membership in LRC is automatically met. With s1 ∈ CSR
and s1 ∈ LRC we obtain by Theorem 11.5 s1 ∈ PRED. s1 6∈ RG because we have
a read/write conflict between t2 and t1 when they are both uncommitted, but the
schedule is strict, i.e., s1 ∈ ST because neither write/read nor write/write conflicts
appear in the schedule.

Let us turn to schedule s2. This schedule is recoverable (i.e., s2 ∈ RC), because
neither transaction reads from the other. However, s2 6∈ LRC because c2 <s2 c1

whereas w1(a) <s2 w2(a). s2 6∈ LRC implies that s2 6∈ PRED which follows from
Theorem 11.5. s2 6∈ ST because of the write/write conflict mentioned above between
the two uncommitted transactions and thus, the schedule is not in RG either.

1

In order to be able to apply the syntactic recoverability criteria that have been
introduced for the page model to flat objects, we first have to classify L1 operations
into read-only, mixed read/update and update-only operation classes. The updates
will play the same role as the writes in the page model and the read-only operations
can be handled the same way as the page model reads. The mixed operations have
to be considered as both, reads and writes, when we will adopt the page model cri-
teria. In this particular example the incr operation is clearly a mixed read/update
operation, since you have to read the current counter value first prior to increment-
ing and writing it back to the stable storage. Next, we have to define the inverse
operation for each update(-only) operation. Not surprisingly, decr is the inverse op-
eration for incr and vice versa; decr is also a mixed read/update operation. With
the considerations above the adoption of the definitions of the expanded schedule,
RED and PRED to the flat object schedules is quite straightforward.

Finally, we can consider schedule s3. This schedule is not in RC because it exposes
a typical dirty read situation. t3 reads from t2 by incr3(b), and t2 is aborted after
t3 is already committed. Consequently s3 is not in LRC and therefore not in PRED
either. s3 6∈ ST because the conflict between incr2(a) and incr3(a) (incr implies a
write operation) occurs when both corresponding transactions are active, and thus,
this schedule is not in RG either.

Exercise 11.3 :

For each of the following histories determine to which of the classes RC, ACA, or
ST it belongs:

s1 = w1(x)r2(y)r1(x)c1r2(x)w2(y)c2

s2 = w1(x)r2(y)r1(x)r2(x)c1w2(y)c2

s3 = w1(x)r2(y)r2(x)r1(x)c2w1(y)c1

The schedule s1 is in RC because for t2 reading from t1 we have also c1 <s1 c2. s1

is in ACA because w1(x) <s1 c1 <s1 r2(x). This is the only conflict occurring in the
schedule s1, therefore the criteria for s1 ∈ ST are satisfied as well.

The schedule s2 is a modification of s1 in a way that now t2 reads an uncommitted
data item x from t1. Thus, s2 is still recoverable (i.e., s2 ∈ RC), but it is neither in
ACA nor in ST.

The schedule s3 is not in RC because in contrast to s1 we obtain for t2 reading from
t1 c2 <s3 c1. Therefore s3 is automatically neither in ACA nor in ST (see Theorem
11.2).

Exercise 11.6 :

A history s is prefix expanded conflict serializable if each of its prefixes is expanded
conflict serializable. Let PXCSR denote the class of all prefix expanded conflict
serializable histories. Show the following:
(a) PXCSR ⊂ XCSR
(b) PXCSR ⊂ PRED
(c) RG ⊂ PXCSR
(d) PXCSR = ST ∩ XCSR
(e) Based on results (a)–(d), complete Figure 11.3.

(a) PXCSR ⊆ XCSR is trivially true since each schedule is a prefix of itself.
We have to show that the inclusion is strict. Consider the following schedule:
s = w1(x)r2(y)w2(x)c2c1. The expansion of this schedule is the schedule itself and
it is in XCSR because it contains only one conflict pair. However, if we consider the
longest proper prefix of the schedule (i.e., s′ = w1(x)r2(y)w2(x)c2), t1 appears in the
set of active transactions, and thus, must be aborted. So

2

exp(s′) = w1(x)r2(y)w2(x)c2w
−1
1 (x)c1 is not in XCSR because a cycle arises

w1(x) <exp(s′) w2(x) <exp(s′) w−1
1 (x). So we showed PXCSR ⊂ XCSR.

(b) XCSR ⊂ RED according to Theorem 11.1. This implies that a schedule which
is in PXCSR is automatically in PRED as well (i.e., PXCSR ⊆ PRED) . Now
consider the schedule s = r1(x)w2(x)w2(y)c2r1(y). This schedule is clearly not in
XCSR and thus not in PXCSR either. However, s is a prefix reducible schedule as
you may convince yourself by applying the Null Rule, which simply removes t1 from
s (and all of its prefixes). Therefore, we obtain PXCSR ⊂ PRED.

(c) Consider an arbitrary schedule s ∈ RG. By Theorem 11.3 we already showed
that CP (s) ∈ COCSR ⊂ CSR. Convince yourself that if we replace all abort by
commit operations the schedule remains rigorous. Now we are going to show that
no edges are added to the conflict graph in the process of the schedule expansion,
where all inverse operations are inserted immediately before the abort replaced
by a commit operation. For each conflict pair (pi, qj) with pi <s qj we obtain:
pi <exp(s) p−1

i <exp(s) ci <exp(s) qj <exp(s) q−1
j , but these conflicts are already re-

flected by the edge ti → tj in the original conflict graph. So we showed
RG ⊆ XCSR. It can be easily verified that each prefix of a rigorous schedule is also
rigorous and thus we obtain RG ⊆ PXCSR. With the schedule r1(x)w2(x)a2c1

which is in PXCSR but not in RG you may verify that the inclusion is strict, i.e.,
RG ⊂ PXCSR.

(d)
” ⊆: ” Consider an arbitrary schedule s ∈ PXCSR. Since PXCSR ⊂ XCSR,
we only have to show that s ∈ ST . Assume, this is not the case. Then there are
some wj(x) and pi(x) such that wj(x) <s pi(x) <s fj with pi ∈ {ri, wi} and
fj ∈ {aj , cj}. Now consider the prefix of s ending with pi(x). Let us denote it
s′. For its expansion we obtain wj(x) <exp(s′) pi(x) <exp(s′) w−1

j (x), which clearly
results in a cycle. s′ 6∈ XCSR which incurs s 6∈ PXCSR. This is a contradiction.
Thus, we obtain PXCSR ⊆ ST ∩XCSR.

” ⊇: ” Consider a schedule s ∈ ST ∩ XCSR. Assume, s 6∈ PXCSR. Consider
the longest prefix s′ which is not in XCSR. Some transaction tj , which is commit-
ted in the original schedule, becomes now active and has to be aborted and this
causes a cycle. So we have wj(x) <exp(s′) pk(x) <exp(s′) w−1

j (x) <exp(s′) cj with
pk ∈ {rk, wk}, k 6= j. But this implies that in the original schedule s we must have
had wj(x) <s pk(x) <s cj which is a contradiction to the fact s ∈ ST .

So we showed PXCSR = ST ∩XCSR

(e)

CSR ∩∩∩∩ RCCSR ∩∩∩∩ RC

RED RED

XCSR XCSR

PRED = LRC ∩∩∩∩ RCPRED = LRC ∩∩∩∩ RC

CSR ∩∩∩∩ STCSR ∩∩∩∩ ST

PXCSR = XCSR ∩∩∩∩ STPXCSR = XCSR ∩∩∩∩ ST

RG RG

Figure 1: Completed Figure 11.3

3

Exercise 11.7 :

Prove Theorem 11.6 stating that Gen(SS2PL) = RG.

” ⊆: ” With SS2PL write and read locks are held until the end (i.e, commit or
abort) of the transaction. Thus, if there is a conflict between two operations, say pi

and qj , then we obtain the following relationship:

pli <s pi <s pui <s {ci, ai} <s qlj <s qj

Thus, the rigorousness criteria are satisfied.

” ⊇: ” Let us examine an arbitrary rigorous schedule s (i.e., s ∈ RG). For each
conflict pair (pi, qj) we obtain pi <s {ci, ai} <s qj . Without changing the schedule
semantics we can add a lock acquisition step immediately before the corresponding
data operation and insert a lock release step after all data operations but before
commit or abort respectively: pli <s pi <s pui <s {ci, ai} <s qlj <s qj . Obviously
such a schedule can be produced by an SS2PL scheduler.

So we showed Gen(SS2PL) = RG.

Exercise 11.8 :

Consider a database consisting of positive integers with the following operations
defined on them:

• incr(x): increments x if x > 0 and returns 1; otherwise does nothing and
returns 0.

• incr−1(x, y): decrements x if y is the return value of the corresponding forward
operation and y 6= 0; otherwise does nothing, always return 0.

• reset(x): reset x to 1 and returns the old value of x.

• reset−1(x) set x to value y, where y is the return value of the corresponding
forward operation; always returns 0.

• retrieve(x): returns the current value of x.

• retrieve−1(x): is a null operation and returns an empty sequence.

• decr(x): decrements x and return 0.

• decr−1(x): increments x and returns 0.

Determine the commutativity relation for these operations, and find out whether it
is perfect or normal. If one of the latter properties does not hold, try to restrict the
relation in such a way that this respective property is achieved.

incr(x) reset(x) retrieve(x) decr(x) incr−1(x, y) reset−1(x) decr−1(x)

incr(x) + − − − − − −
reset(x) − − − − − − −

retrieve(x) − − + − − − −
decr(x) − − − + + − +

incr−1(x, y) − − − + + − +
reset−1(x) − − − − − + −
decr−1(x) − − − + + − +

Figure 2: Commutativity relation

The table in Figure 2 represents the commutativity relation for the operations.
retrieve−1 is omitted in the table, since it is a null operation which trivially com-
mutes with each other operation. The commutativity relation is not perfect because,
for instance, two incr operations do commute, whereas incr(x) and incr−1(x) do

4

incr(x) reset(x) retrieve(x) decr(x) incr−1(x, y) reset−1(x) decr−1(x)

incr(x) − − − − − − −
reset(x) − − − − − − −

retrieve(x) − − + − − − −
decr(x) − − − + − − +

incr−1(x, y) − − − − − − −
reset−1(x) − − − − − − −
decr−1(x) − − − + − − +

Figure 3: Perfect closure of the lock compatibility table

not. The commutativity relation is not normal either, because of the fact that, for
instance, decr and incr do not commute whereas decr and incr−1 are commutable.

The table in Figure 3 depicts the perfect closure of the commutativity relation,
which is perfect and normal as well.

5

Chapter 12 - Solutions to Exercises

Exercise 12.1 :

Assume that both the database cache and the log buffer are, to a large extent, crash
resilient (i.e., survive a system failure and are thus accessible with their pre-crash
contents during restart) by using battery backed, non-volatile RAM (also known as
“RAM disk” or “flash memory”). Discuss which types of failures still need recovery
measures? How safe is such a safe-RAM approach?

If the data structures kept in RAM can survive the crash, we can consider these
as equally safe as those on disk. Thus, there is no need to redo updates executed
on behalf of committed transactions, but we will still have to undo uncommitted
updates, in order to satisfy the correctness criterion given in Definition 12.6.

However, if it is Heisenbugs in the software that cause the crash then we cannot
trust the contents of the memory-resident data structures (for the software could
have misaddressed and thus corrupted data structures). In this case, memory should
be re-initiated anyway. A possible approach to guard critical data structures against
software errors would be to enable critical memory protection on these structures
and minimize the, then implicitly trusted, code for which the protection is tem-
porarily disabled.

Exercise 12.2 :

Assume again that both the database and the log buffer reside in safe RAM. In
addition, assume that virtual-memory page protection bits are used to carefully
control the software access to these data structures during normal operation. Discuss
again which types of failures still need explicit recovery measures. For the class of
system failures (i.e., soft crashes), which of the following statements are true, which
ones are false?

(a) Undo recovery is no longer needed at all.

(b) Redo recovery is no longer needed at all.

(c) When a page is flushed from the database cache during normal operation, the
log buffer must be forced beforehand.

(d) When a page is flushed from the database cache during restart, the log buffer
must be forced beforehand.

(e) When a transaction commits (during normal operation), the log buffer must
be forced beforehand.

(a) is false (see Exercise 12.1).

(b) is true (see Exercise 12.1).

(c) No, sufficient undo information is provided in the log buffer and it will be
available after the crash.

(d) No, for the same reason as (c).

(e) No, since we only have to guarantee that the cached database will reflect
committed updates. With safe RAM the cached database persists over crashes.

1

Chapter 13 - Solutions to Exercises

Exercise 13.1 :

Consider the the action history given in Figure 13.20, including checkpoints and
flush actions. Assume that there is a system crash right after the last action. Deter-
mine the necessary logging actions during normal operation and the recovery actions
during restart, by completing the table. First consider the case where heavy-weight
checkpoints are used and flush actions are not logged, then consider lightweight
checkpoints, and finally discuss the additional effect of keeping log entries for flush
actions. In all cases, assume that the redo-history paradigm is employed.

Now consider the extended scenario given in Figure 13.21. In contrast to the previ-
ous scenario, this action history contains two transaction rollbacks during normal
operation one of which is completed before the crash whereas the second one is
interrupted by the crash. Determine again the necessary logging and restart actions
for this scenario by completing Figure 13.21.

Sequence number: Change of Change of Log entry added Log entries added
action cached database stable database to log buffer to stable log

[PageNo: SeqNo] [PageNo: SeqNo] [LogSeqNo: action] [LogSeqNo’s]

1:begin(t1) 1: begin(t1)
2: write(p, t1) p:2 2: write(p, t1)
3: write(q, t1) q:3 3: write(q, t1)
4: commit(t1) 4: commit(t1) 1,2,3,4
5: flush(p) p:2
6: begin(t2) 6: begin(t2)
7: write(p, t2) p:7 7: write(p, t2)
8: write(r, t2) r:8 8: write(r, t2)
9: checkpoint p:7,q:3,r:8 9: CP 6,7,8,9

ActiveTrans={t2}
10: commit(t2) 10: commit(t2) 10
11: begin(t3) 11: begin(t3)
12: flush(p) 11
13: write(p, t3) p:13 13: write(p, t3)
14: write(q, t3) q:14 14: write(q, t3)
15: flush(q) q:14 13,14
16: write(r, t3) r:16 16: write(r, t3)

Crash
Analysis pass: losers={t3}

redo(13) p:13
consider-redo(14) q:14
16: compensate(14) q:16 16: compensate(14)
17: compensate(13) p:17 17: compensate(13)
18: rollback(t3) 18: rollback(t3) 16, 17, 18

Figure 1: Action history from Figure 13.20 with heavyweight checkpoints

1

Sequence number: Change of Change of Log entry added Log entries added
action cached database stable database to log buffer to stable log

[PageNo: SeqNo] [PageNo: SeqNo] [LogSeqNo: action] [LogSeqNo’s]

1:begin(t1) 1: begin(t1)
2: write(p, t1) p:2 2: write(p, t1)
3: write(q, t1) q:3 3: write(q, t1)
4: commit(t1) 4: commit(t1) 1, 2, 3, 4
5: flush(p) p:2
6: begin(t2) 6: begin(t2)
7: write(p, t2) p:7 7: write(p, t2)
8: write(r, t2) r:8 8: write(r, t2)
9: checkpoint 9: CP 6, 7, 8, 9

DirtyPages={p, q, r}
RedoLSNs={p:7, q:3, r:8}
ActiveTrans={t2}

10: commit(t2) 10: commit(t2) 10
11: begin(t3) 11: begin(t3)
12: flush(p) p:7 11
13: write(p, t3) p:13 13: write(p, t3)
14: write(q, t3) q:14 14: write(q, t3)
15: flush(q) q:14 13, 14
16: write(r, t3) r:16 16: write(r, t3)

Crash
Analysis pass: loser={t3} DirtyPages={p, q, r} RedoLSNs={p:7, q:3, r:8}

consider-redo(3) q:14
consider-redo(7) p:7
redo(8) r:8
redo(13) p:13
skip-redo(14)
16: compensate(14) q:16 16: compensate(14)
17: compensate(13) p:17 17: compensate(13)
18: rollback(t3) 18: rollback(t3) 16, 17, 18

Figure 2: Action history from Figure 13.20 with lightweight checkpoints

Sequence number: Change of Change of Log entry added Log entries added
action cached database stable database to log buffer to stable log

[PageNo: SeqNo] [PageNo: SeqNo] [LogSeqNo: action] [LogSeqNo’s]

1:begin(t1) 1: begin(t1)
2: write(p, t1) p:2 2: write(p, t1)
3: write(q, t1) q:3 3: write(q, t1)
4: commit(t1) 4: commit(t1) 1, 2, 3, 4
5:flush(p) p:2 5:flush(p) 5
6: begin(t2) 6: begin(t2)
7: write(p, t2) p:7 7: write(p, t2)
8: write(r, t2) r:8 8: write(r, t2)
9: checkpoint 9: CP 6, 7, 8, 9

DirtyPages={p, q, r}
RedoLSNs={p:7, q:3, r:8}
ActiveTrans={t2}

10: commit(t2) 10: commit(t2) 10
11: begin(t3) 11: begin(t3)
12: flush(p) p:7 12:flush(p) 11, 12
13: write(p, t3) p:13 13: write(p, t3)
14: write(q, t3) q:14 14: write(q, t3)
15: flush(q) q:14 15: flush(q) 13, 14, 15
16: write(r, t3) r:16 16: write(r, t3)

Crash
Analysis pass: losers={t3}, DirtyPages={p,r} RedoLSNs={p:13, r:8}

redo(8) r:8
redo(13) p:13
skip-redo(14)
16: compensate(14) q:16 16: compensate(14)
17: compensate(13) p:17 17: compensate(13)
18: rollback(t3) 18: rollback(t3) 16, 17, 18

Figure 3: Action history from Figure 13.20 with flush logentries and lightweight checkpoints

2

Sequence number: Change of Change of Log entry Log entries
action cached database stable database added to added to

log buffer stable log
[PageNo: SeqNo] [PageNo: SeqNo] [LogSeqNo: action] [LogSeqNo’s]

1:begin(t1) 1:begin(t1)
2: write(p, t1) p:2 2: write(p, t1)
3: write(q, t1)
4: commit(t1) 4: commit(t1) 1,2,3,4
5: flush(p) p:5 5: flush(p)
6: begin(t2) 6: begin(t2)
7: write(p, t2) p:7 7: write(p, t2)
8: write(r, t2) r:8 8: write(r, t2)
9: checkpoint 9: CP 5, 6, 7, 8, 9

DirtyPages={p, q, r}
RedoLSNs={p:7, q:3, r:8}
ActiveTrans={t2}

10: abort(t2)
11: compensate(8) r:11 11: commpensate(8: r, t2)

NextUndoSeqNo:7
12: compensate(7) p:12 12: compensate(7: p, t2)

NextUndoSeqNo:6
13: rollback(t2) 13: rollback(t2) 10, 11, 12, 13
14: begin(t3) 14: begin(t3)
15: flush(p) p:12 15: flush(p)
16: write(p, t3) p:16 16: write(p, t3)
17: write(q, t3) q:17 17: write(q, t3)
18: flush(q) q:17 18: flush(q) 14, 15, 16, 17, 18
19: write(r, t3) r:19 19: write(r, t3)
20: abort(t3)
21: compensate(19) r:21 21: compensate(19: r, t3)

NextUndoSeqNo:17
22: begin(t4) 22: begin(t4)
23: compensate(17) q:23 compensate(17: q, t3)

NextUndoSeqNo:16
24: write(s, t4) s:24 24: write(s, t4)
25: flush(q) q:23 25: flush(q) 19, 20, 21, 22, 23, 24, 25
26: commit(t4) 26: commit(t4) 26

Crash
Analysis pass: losers={t3} DirtyPages={p, r, s} RedoLSNs={16, 8, 24}

redo(8) r:8
redo(11) r:11
skip-redo(12)
redo(16) p:16
skip-redo(17)
redo(19) r:19
redo(21) r:21
skip-redo(23)
redo(24) s:24
27: compensate(16) p:27 27: compensate(16: p, t3)

NextUndoSeqNo:14
28: rollback(t3) 28: rollback(t3) 27, 28

Figure 4: Action history from Figure 13.21

Exercise 13.3 :

Consider the following specialization of the redo-winners algorithm. Assume that
all updates are logged as full-writes, so that log entries have the form of page before
images or after images. Further assume that the database cache is large enough to
have the “no-steal” property, which guarantees that a page that has been modified
by an active (i.e., incomplete) transaction is never flushed. In addition, assume that
the log buffer is also large enough to contain all before images of all active trans-
actions. Design a special recovery algorithm under this premise that (i) should be
simpler than the general purpose redo-winners algorithm and (ii) aims to shorten
the restart duration as much as possible. In particular address the following issues:

3

Are checkpoints still needed at all (under the no-steal premise)? How can you handle
transaction aborts? Is there a way of gracefully degrading the special algorithm if
the no-steal property cannot be guaranteed but the database cache is almost always
large enough to avoid flushing pages whose last modification belongs to an active
transaction?

Hint: The DB Cache algorithm of Bayer and Elhardt (1984) is such an algorithm
(see bibliographical remarks).

With “no-steal” guarantee provided, the undo pass is no longer needed, because
active transactions do not leave any traces in the stable databases. This simplifies
and speeds up the restart procedure after a system failure. As a consequence, undo
information has not to be logged during normal operation, which results in signif-
icant disk space saving when physical logging is used. The only limitation for the
log-truncation procedure is the oldest redo LSN. And if the data server deploys a
write-behind daemon, (which flushes pages with committed updates in the back-
ground starting with the lowest page sequence number whenever it discovers low
I/O activity on the disk) all committed updates will eventually be permanently
stored on the disk and log-truncation will always be possible. So we can essentially
abandon periodic checkpointing, which accelerates transaction processing during
normal operation.

Now consider the case, in which the data server has to deal with several long running
transactions so that the overall number of concurrent transactions increases in a
way that from time to time the “no-steal” property can no longer be guaranteed.
Bayer and Elhardt propose to handle some transactions in such a situation in a
similar way as in the original redo-winners algorithm. When a cache overflow arises
cache manager selects active transactions with the largest amount of allocated cache
memory. For each of these transactions a special before image log is created on
the disk. Note that before images can be obtained from the stable DB, since the
corresponding changed copies of the pages have not been flushed yet. After the logs
are created, the pages can be replaced by the cache manager. Upon a commit of a
“long” transaction all pages by this transaction are flushed and the before image
log is deleted (this is the commit point). So when the data server is restarted and
the redo pass is completed, the server looks for any before image logs and if present
the before images are written back to the disk. Note that this method as described
here works only with exclusive write locks on pages, where at any point in time only
one transaction may access a page in write-mode.

Exercise 13.4 :

Reconsider the redo pass of the redo-history algorithm. Show that writes for a page
that originate from loser transactions and are not followed by any winner writes on
the same page do not need to be redone during the redo pass. Design a variant of
the redo-history algorithm, both the redo and the undo pass, that avoids redoing
writes in the above category, thus reducing the overall work of the redo pass. Note
that this reduction is usually not a major gain as it affects only a small fraction
of log entries; this variant is interesting in that it consolidates and deepens the
understanding of the relationships between the redo and the undo pass.
Hint: The ARIES/RRH algorithm by Mohan and Pirahesh (1991) is such a variant
of the redo-history algorithm (see bibliographical remarks).

The effect of a complete recovery process after a failure is that each page in the
cached database along with all other pages on the stable database reflect the most
recent winner writes. This means that all the loser updates following the most
recent winner one will be erased anyway and thus do not have to be redone. This
is feasible because we apply page state testing and will not erroneously undo an

4

update, which has not been redone. As we handle completely aborted transactions
as winners (no matter, whether in the context of transaction recovery or complete
crash recovery) we can state that a winner update never follows a loser update
with regard to each particular page (since we still consider page-level locking). This
property immediately follows from the LRC criterion, which is fundamental for Part
III of this book.

With the previous considerations we can simply ignore the log entries of forward op-
erations belonging to loser transactions during the redo pass. In contrast to the redo-
winners paradigm we will still need to redo loser’s inverse steps (if needed according
to the result of page state testing) because otherwise we might erroneously “forget”
to undo a loser update which was already undone during prior transaction/crash-
recovery but was not written back to the stable database (note that this issue arises
only in the context of NextUndoSeqNo chains avoiding multiple-times inverse ac-
tions). Consider the following sample history:

1 : w1(x) 2 : c1 3 : w2(x) 4 : w2(y) flush(y) 5 : w−1
2 (y) logforce crash

Assume that log buffer had to be forced to the disk and then a system crash hap-
pened. In this scenario changes on y made by t2 are already part of the stable
database. Since in the undo pass we will immediately skip to
StableLog[5].NextUndoSeqNo (which is 3) thus leaving w2(y) undone, the loser’s
CLEs need special handling during the redo pass. So we repeat a loser’s CLE only
if the page sequence number is greater than or equal to the LSN of the forward
operation (which we now additionally include in each CLE, denoted UndoneLSN)
and less than the CLE’s LSN. The redo pass algorithm with this enhancement is
given in Figure 5. In the sample scenario, we would thus redo the operations with
LSNs 1 and 5, but would skip 3 (a loser update not yet undone) and 4 (an update
already flushed to disk).

The undo pass of the algorithm in its final presentation in this chapter does not
require any changes.

5

redo pass ():

SystemRedoLSN := min DirtyPages[p].RedoSeqNo;

max := LogSeqNo of most recent log entry in StableLog;

for i := SystemRedoLSN to max do

if (StableLog[i].TransId not in losers) and

(StableLog[i].ActionType = write or full-write or compensate)

then

pageno = StableLog[i].PageNo;

if pageno in DirtyPages and

DirtyPages[pageno].RedoSeqNo < i

then

fetch (pageno);

if DatabaseCache[pageno].PageSeqNo < i

then

read and write (pageno) according to StableLog[i].RedoInfo;

DatabaseCache[pageno].PageSeqNo := i;

end /*if*/;

end /*if*/;

end /*if*/;

if (StableLog[i].TransId is in losers) and

(StableLog[i].ActionType = compensate)

then

pageno = StableLog[i].PageNo;

if pageno in DirtyPages and

DirtyPages[pageno].RedoSeqNo < i

then

fetch (pageno);

if StableLog[i].UndoneLSN ≤ DatabaseCache[pageno].PageSeqNo and

DatabaseCache[pageno].PageSeqNo < i

then

read and write (pageno) according to StableLog[i].RedoInfo;

DatabaseCache[pageno].PageSeqNo := i;

end /*if*/;

end /*if*/;

end /*if*/;

end /*for*/;

Figure 5: Redo-history with avoidance of forward operation redo for losers

6

Chapter 14 - Solutions to Exercises

Exercise 14.1 :

Consider the algorithm for object model recovery. Assume that the undo informa-
tion and the redo information for an action are recorded in separate log entries,
rather than always combining them into one log entry. What is the impact on the
algorithm? In particular, what are the implications for the order in which log entries
must be created and the forcing of the log buffer? Sketch the modified algorithm.

The goal of each database recovery is to preserve committed updates and to erase all
loser traces from the stable database. Since each transaction which is currently active
is a potential loser we have to ensure that we can undo its updates after the redo
pass is completed. Now it is clear that the undo log entry has to be forced before the
redo log entry, because otherwise we may lose the undo information of the very last
forward operation detected in the stable log. Note that these considerations concern
only L0 operations, since we create a separate log entry with undo information for
object level operations anyway (i.e., subcommit).

The algorithm as it is presented in the book does not require significant changes:
in the redo pass we simply ignore the log entries with undo information and vice
versa. Backward chaining is needed only for the log entries with undo information.

Exercise 14.2 :

Consider the DB Cache method (see Exercise 13.3), applied to subtransactions, for
implementing the L0 recovery of the simple two-level recovery algorithm. When
adopted in a straightforward way, this method would force after-images to the sta-
ble log, coined the “safe”, upon each subcommit. Discuss under which conditions
these forced log I/Os can be avoided. As a hint, assume that a set of after-images
can be written to the safe atomically and analyze what happens when the forcing of
a subtransaction’s after-images is deferred until the transaction’s commit. In partic-
ular, analyze how to deal with subtransactions, belonging to the same or different
transactions, whose write sets have pages in common. How do such “dependencies”
between subtransactions affect the deferral of forced log I/Os?

These optimizations have been examined by Weikum and Hasse (1993) (see Bibli-
ographic Notes and References in the book).

The fact that subtransactions need not be made persistent at the subcommit point
is the main motivation for deferred L0 log forcing. The ideal solution would be
to postpone forcing after-images until the commit point of the transaction, which
does not work as you will see below. An issue which needs careful handling is that
now a particular page can be simultaneously accessed by multiple transactions (see
Chapters 6 and 7) and thus even with physical logging by means of after images we
have to take into account that an after-image reflects not only the updates made
on behalf of the transaction to be committed but it also reflects a number of poten-
tially uncommitted updates made on behalf of high-level commutative operations
belonging to some other active transactions. Consider a two-level history shown in
Figure 1. When t2 commits and we subsequently flush the after images produced by
t2, the changes made by t1 on the page p become also part of the stable database (or
of the safe). Imagine that the data server fails immediately after that. In this case
we cannot redo Withdraw1(a) completely since we do not have the after image for
the page q and therefore the subsequent undo by means of L1 undo information is
not possible either. Note that undo of partially executed subtransactions as in the

1

t1 t2

Withdraw(a) Withdraw(b)

r/w(p) r/w(p) r/w(s)

Deposit(b)

r/w(q)

c2 c1

r/w(p) r/w(s)

Figure 1: Sample two-level history

original simple recovery algorithm is not feasible because with DB Cache we don’t
store before images in the stable log. Even if Withdraw2(a) only read the page p
the subsequent write on the page s would most likely semantically depend on the
content of p. Therefore losing t1’s update on p together with making t2’s update
on s persistent is not acceptable either. These considerations motivate a “forces”
relationship between two completed subtransactions tij → tkl (pronounced: tij
forces tkl). tij → tkl holds if tij modifies or reads a page that has previously been
modified by tkl but had not been made persistent yet (i.e., forced to the safe, the
stable log)). This is a transitive, asymmetric relationship. The Persistence Sphere
of tij denoted PS(tij) contains all pages modified by tij but not yet made persistent
and it is transitively closed with respect to the → relationship.

Now the solution is obvious: upon commit of a transaction ti we have to force
not only the after images from the transaction’s write-set but also all other pages
from PS(ti) which is the union of the persistence spheres of its subtransactions.
Additionally, if some dirty page p is chosen as a cache replacement victim, we need
to force the persistence sphere of the last completed subtransaction which modified
p. Note that writing a persistence sphere to the safe can be easily made atomic, and
indeed needs to be made atomic, as this write is a sequential disk I/O.

In the example from Figure 1 we now obtain a recoverable execution because, as
Withdraw2(b) → Withdraw1(a) holds, the after image set we are going to force
consists not only of p and s but also of q and thus, the atomicity of Withdraw1(a)
is preserved as well. So it can be undone in the undo pass by using L1 undo infor-
mation, which must always be made persistent immediately before forcing L0 log
or writing back a page.

Exercise 14.3 :

Consider the two-level action history given in Figure 14.9, with operations on records
(store, modify) and index keys (insert, delete). For the latter operations, the first
parameter denotes a key and the second parameter the RID (i.e., address) of a stored
record. Assume that there is a system crash right after the last action. Determine the
necessary logging actions during normal operation and the recovery actions during
restart, by completing the table. Use the enhanced 2-level recovery algorithm with
a single log from Section 14.4.

2

Sequence number: action Cached changes Stable changes Log entry added
[PageNo:SeqNo] [PageNo:SeqNo] [LogSeqNo: action]

[NextUndoSeqNo]

1: begin(t1) 1: begin(t1), next=nil
2: modify(x, t1)
3: subbegin(t11)
4: write(p, t11) p:4 4: write(p, t11), next=nil
5: begin(t2) 5: begin(t2), next=nil
6: store(y, t2)
7: subbegin(t21)
8: write (q, t21) q:8 8: write(q, t21), next=nil
9: write(r, t21) r:9 9: write(r, t21), next=8

10: subcommit(t21) 10: store−1(y, t2), next=nil
11: write(r, t11) r:11 11: write(r, t11), next=4

12: subcommit(t11) 12: modify−1(x, t1), next=nil
13: delete(a,@x, t1)
14: subbegin(t12)
15: write(l, t12) l:15 15: write(l, t12), next=12

18: subcommit(t12) 16: delete−1(a,@x, t1), next=12
19: insert(f,@x, t1)
20: subbegin(t13)
21: write(l, t13) l:21 21: write(l, t13), next=18
22: write(k, t13) k:22 22: write(k, t13), next=21
23: write(n, t13) n:23 23: write(n, t13), next=22

24: subcommit(t13) 24: insert−1(f,@x, t1), next=18
25: begin(t3) 25: begin(t3), next=nil
26: store(z, t3)
27: subbegin(t31)
28: write(q, t31) q:28 28: write(q, t31), next=nil
29: write(r, t31) r:29 29: write(r, t31), next=28

30: subcommit(t31) 30: store−1(z, t3), next=nil
31: insert(h,@z, t3)
32: subbegin(t32)
33: write(k, t32) k:33 33: write(k, t32), next=30

34: subcommit(t32) 34: insert−1(h, @z, t3), next=30
35: commit(t3) 35: commit(t3)
36: insert(b,@y, t2)
37: subbegin(t22)
38: write(l, t22) l:38 38: write(l, t22), next=10

Crash
Analysis pass: loser{t1, t2}

redo(4) p:4
redo(8) q:8
redo(9) r:9
redo(11) r:11
redo(15) l:15
redo(21) l:21
redo(22) k:22
redo(23) n:23
redo(28) q:28
redo(29) r:29
redo(33) k:33
redo(38) l:38
39: compensate(38) l:39 39: CLE(38), next=10
40: compensate(24, t13) ↑ t14
41: subbegin(t14)
42: write(l, t14) l:42 42: write(l, t14), next=24
43: write(k, t14) k:43 43: write(k, t14), next=42
44: write(n, t14) n:44 44: write(n, t14), next=43
45: subcommit(t14) 45: CLE(24, t13, t14), next=18
46: compensate(18, t12) ↑ t15
47: subbegin(t15)
48: write(l, t15) l:48 48: write(l, t15), next=18
49: subcommit(t15) 49: CLE(18, t12, t15), next=12
50: compensate(12, t11) ↑ t16
51: subbegin(t16)
52: write(p, t16) l:52 52: write(p, t16), next=12
53: write(r, t16) k:53 53: write(r, t16), next=52
54: subcommit(t16) 54: CLE(12, t11, t16), next=nil
55: rollback(t1) complete 55: rollback(t1)
56: compensate(10, t21) ↑ t23
57: subbegin(t23)
58: write(q, t23) l:58 58: write(q, t23), next=10
59: write(r, t23) k:59 59: write(r, t23), next=59
60: subcommit(t23) 60: CLE(10, t21, t23), next=nil
61: rollback(t2) complete 61: rollback(t2)

Figure 2: Completed Figure 14.9

3

Chapter 15 - Solutions to Exercises

Exercise 15.1 :

Reconsider the two-level action history in Figure 15.7, which was already discussed
in Exercise 14.3. It contains operations on records (store, modify) and index keys
(insert, delete); for the latter operations, the first parameter denotes a key and
the second parameter the RID (i.e., address) of a stored record. Assume that the
insert(f, @x, t1) operation initiates a split of leaf page l, creating the new leaf page
k and posting the split to the parent node n. Discuss to what extent logical log
entries for the higher-level operations are feasible for redo purposes. (For undo,
such log entries are needed anyway.) Can we avoid creating physiological log entries
altogether? Which flush-order dependencies need to be observed for the execution?

As we learned from this chapter logical logging is feasible as long as arising flush-
order dependencies are rare, so that only a small amount of memory has to be ded-
icated to the flush-order graph data, and cyclic flush-order dependencies are rather
exceptional. In the case of a cycle we need to take special actions like atomically
writing after images for pages involved in the cycle. This would boil down to the
same amount of logged information as for physiological logging. So logical logging
is beneficial only in specific scenarios like node splitting or copying large objects
where these properties are known to hold. Having to dissolve cyclic dependencies
from time to time prevents us from completely abandoning physical or physiological
log entries.

r

q

l

k

n

Figure 1: Flush-order graph

Now let us turn to the flush-order dependencies for the example. As the log history
contains no read actions we assume that none of the subtransactions is a blind writer
(see Exercise 3.8), and for simplicity we further assume that each subtransaction
reads a page immediately before updating its content, and for the ease of notation we
assign the same identifier to both operations in such a pair (e.g., rijk(p) and wijk(p)).
We obtain for each operation f writeset(f) = readset(f). The only exception is the
insert operation mentioned above where a completely new page k has been created.
Thus, we observe:

• writeset(modify11(x)) = {p, r} with r111(p) < w111(p)
r112(r) < w112(r) < w312(r)

• writeset(store21(x)) = {q, r} with r211(q) < w211(q) < w311(q)
r212(r) < w212(r) < w112(r) < w312(r)

• writeset(delete12(a, @x)) = {l} with r121(l) < w121(l) < w131(l) < w221(l)

• writeset(insert13(f, @x)) = {k, l, n} with r131(l) < w131(l) < w221(l)
r133(n) < w133(n)

• writeset(store31(z)) = {q, r} with r311(q) < w311(q)
r312(r) < w312(r)

1

• writeset(insert32(h,@z)) = {k} with r321(k) < w321(k)

• writeset(insert22(b,@y)) = {l} with r221(l) < w221(l)

Then we can derive the flush-order graph shown in Figure 1. In this scenario we
have to deal with two set of pages involved in cycles; for each of these two sets which
we need to create after images and write them to the log atomically.

Exercise 15.2 :

Give all log entries and their proper NextUndoSeqNo backward chains for the
nested-transaction scenario of Figure 15.5. Assume that all of t11 is executed se-
quentially in the sense that a new subtransaction begins only after its previously
initiated siblings are terminated, and that t12 is spawned after the termination of t11.
Within t12 assume that all subtransactions are spawned asynchronously in separate
threads; so at the end of the scenario all subtransactions of t12 are simultaneously
active. Describe the necessary steps to abort subtransaction t12.

Sequence number: action Cached changes Stable changes Log entry added
[PageNo:SeqNo] [PageNo:SeqNo] [LogSeqNo: action]

[NextUndoSeqNo]

1: begin(t1) 1: begin(t1), next=nil
2: subbegin(t11) 2: subbegin(t11), next=1
3: subbegin(t111) 3: subbegin(t111), next=2
4: write(a,t111) a:4 4: write(a,t111), next=3
5: write(b,t111) b:5 5: write(b,t111), next=4
6: subcommit(t111) 6: subcommit(t111), next=2
7: subbegin(t112) 7: subbegin(t112),next=6
8: subbegin(t1121) 8: subbegin(t1121), next=7
9: write(c,t1121) c:9 9: write(c,t1121), next=8
10: write(d,t1121) d:10 10: write(d,t1121), next=9
11: subcommit(t1121) 11: subcommit(t1121), next=7
12: subbegin(t1122) 12: subbegin(t1122), next=11
13: write(e,t1122) e:13 13: write(e,t1122), next=12
14: subcommit(t1122) 14: subcommit(t1122), next=8
15: subcommit(t112) 15: subcommit(t112), next=7
16: subcommit(t11) 16: subcommit(t11), next=2
17: subbegin(t12) 17: subbegin(t12), next=16
18: subbegin(t121) 18: subbegin(t121), next=17
19: write(f,t121) f:19 19: write(f,t121), next=18
20: subbegin(t122) 20: subbegin(t122), next=17
21: subbegin(t1221) 21: subbegin(t1221), next=20
22: write(g,t1221) g:22 22: write(g,t1221), next=21
23: write(h,t1221) h:23 23: write(h,t1221), next=22
24: subbegin(t1222) 24: subbegin(t1222), next=20
25: write(j,t1222) j:25 25: write(j,t1222), next=24
26: rollback(t12)
27: compensate(25) j:27 27: compensate(25), next=24
28: compensate(23) h:28 28: compensate(23), next=22
29: compensate(22) g:29 29: compensate(22), next=21
30: compensate(19) f:30 30: compensate(19), next=18
31: rollback(t12) complete 31: rollback(t12) complete

Exercise 15.4 :

Develop pseudocode for the lock conflict test of new transactions that are admit-
ted during the redo pass of a restart, assuming that the OldestUndoLSN and the
DirtyPages data structure has been determined by the analysis pass and serves
as an approximative test for “uncritical” pages that require neither redo nor undo
steps. Assume that page locking is used, but no explicit locks are reacquired during
the restart to keep the overhead low.

With the enhanced redo algorithm the following can be observed: pages that are not
among DirtyPages are not accessed during the redo pass, and if the page sequence
number of such a page is smaller then OldestUndoLSN it is not touched by the undo
pass either. Thus, a lock for this page can be granted, if no conflicting lock is already
held by some other transaction.

2

is-in-conflict(pageno, lock-mode):

if pageno in DirtyPages or

there is a conflict lock

then

return yes;

end; /*if*/

fetch(pageno);

if DataBaseCache[pageno].PageSeqNo < OldestUndoLSN

then

return no;

else

return yes;

end; /*if*/

Exercise 15.6 :

Design a scenario, with concrete page numbers, transaction identifiers, log sequence
numbers, etc., that shows the need for synchronizing the local log sequence numbers
created at different servers of a data-sharing cluster. Construct anomalies that would
arise if the global sequence numbers merely were local numbers padded with server
identifiers.

Consider the following log history before one of the cluster servers crashes.

r1(x)r1(y)w1(y)w1(x)c1flush(x)r2(x)w2(x)c2

It consists of two transactions, t1 and t2. Assume that they are run by server 1 and 2
respectively. Let n denote the number of individual servers in the cluster, i be a local
counter incremented by one upon each local log entry. Assume that unique totally
ordered LSNs are generated according to the formula: lsn := n ∗ i + server id− 1.
Hence, server 1 will generate even-numbered LSNs 0, 2, 4, ... whereas server 2 will
produce odd-numbered LSNs 1, 3, 5, ...

Then server 1’s log looks like: 0 : begin(t1) 2 : w1(y) 4 : w1(x) 6 : c1

And server 2’s log is the following: 1 : begin(t2) 3 : w2(x) 5 : c2

Now assume that server 1 fails. During the analysis pass on the merged log the
surviving node (server 2) will fetch page x, finding that its page sequence number
is 4. The recovery would then errorneously infer that the action with LSN 3 must
not be redone. This is incorrect.

3

Chapter 16 - Solutions to Exercises

Exercise 16.1 :

Reconsider the MediaRecoveryLSN for the method based on backups and archive
logging. Give concrete examples, with histories referring to concrete page numbers
etc., to show each of the following points:

a. It is insufficient to start the redo pass of the media recovery at the most recent
begin-backup log entry if this most recent backup was not completed before
the media failure occurred.

b. It is insufficient to start the redo pass of the media recovery at the begin-backup
log entry of the most recent completed backup if the copying procedure for a
backup bypasses the server’s page cache.

c. It may be necessary (albeit extremely unlikely) to start the redo pass of the
media recovery at the OldestUndoLSN as of the time when the most recent
complete backup was initiated.

Consider the following sample log history and assume that physiological logging is
applied.

1:begin(t1) 2:w1(x) 3:begin-backup 4:c1 5:begin(t2) 5:w2(x)

Now imagine that the backup process was interrupted by a crash (case a.) and page
x is not yet copied. If we start the redo pass with LSN 3 we would erroneously apply
the operation with LSN 5 to some out-of-date backup copy of x without repeating
the operation with LSN 2, which results in incorrect execution.

But even if the backup procedure were completed (case b.), but the page cache
is bypassed, starting the redo pass with LSN 3 could lead to incorrect execution.
Imagine that t1’s update on x has not been flushed at the time x is copied to
the backup database. Thus, applying operation 5 to the stale version of x is still
incorrect.

With fine-grained locking a loser update on a page can be followed by a winner up-
date after an operation’s subcommit (sc). Hence, the following scenario is possible:

1:w111(x) 2:sc11 3:w211(x) 4:begin-backup 5:sc21 6:c2 7:end-backup 8:flush(x) 9:w121(x)

where OldestUndoLSN is 1 and SystemRedoLSN is 9. Now assume that a disk failure
occurrs and page x must be recovered. Since the backup copy of x is as of the time
immediately before OldestUndoLSN we have to start the redo from this log entry.

Exercise 16.2 :

Investigate the mean time to data loss (MTTDL) for mirrored disks as well as for
“triple mirroring” where each block is replicated on three different disks. To this
end, design a stochastic state-transition model and derive from it an exact formula
for the MTTDL, in close analogy to the derivation that we carried out in Section
16.2.

1

1
both ok

2
one failed

3
both failed

2/MTTF

1/MTTR

1/MTTF

Figure 1: Stochastic state-transition model for “simple mirroring”

The stochastic state-transition model for “simple mirroring” given in Figure 1 leads
to the following system of linear equations.

E13 = H1 + p12E23, H1 =
MTTF

2
, p12 = 1

E23 = H2 + p21E13, H2 =
MTTF ·MTTR

MTTR + MTTF
, p21 =

MTTF

MTTR + MTTF

E13 is MTTDL. For solving such a system of linear equations you can use, for
example, the advanced online solver on math.com. So we obtain:

MTTDL =
H1 + H2p21

1− p12p21
=

MTTF 2 + 3 ·MTTF ·MTTR

2 ·MTTR
≈ MTTF 2

2 ·MTTR

1
all ok

2
one failed

3
two failed

3/MTTF

1/MTTR

2/MTTF

1/MTTR

4
all failed

1/MTTF

Figure 2: Stochastic state-transition model for “triple mirroring”

Now consider the case of “triple mirroring”. The corresponding state-transition
diagram is shown in Figure 2. We can derive the following system of linear equations:

E14 = H1 + p12E24, H1 =
MTTF

3
, p12 = 1

E24 = H2 + p21E14 + p23E34, H2 =
MTTR ·MTTF

MTTF + 2 ·MTTR

p21 =
MTTF

MTTF + 2 ·MTTR
, p23 =

2 ·MTTR

MTTF + 2 ·MTTR

E34 = H3 + p32E24, H3 =
MTTR ·MTTF

MTTF + MTTR

p32 =
MTTF

MTTF + MTTR

MTTDL = E14 =
H1(1− p23p32) + H2p12 + H3p12p23

1− p12p21 − p23p32
=

=
MTTF 3 + 4 ·MTTR ·MTTF 2 + 11 ·MTTR2 ·MTTF

6 ·MTTR2
≈

≈ MTTF 3

6 ·MTTR2

2

Chapter 17 - Solutions to Exercises

Exercise 17.1 :

Extend the pseudocode for stateless queued transactions in a two-tier architecture,
given in Section 17.2, to include the case of testable output devices such as automatic
teller machines. The extended pseudocode should have the value-added property
that, once a user input is successfully enqueued, the corresponding output message
is delivered exactly once.

We assume that the client processes output transactions sequentially because we
consider the client as a single-user system. We assume further that we have special
hardware support for counting messages or dispensed cash in the case of an ATM.
Such a counter (let us denote it hc for hardware counter) is incremented if and only
if the corresponding output device really delivered a message (cash). An algorithm
for processing output exactly once in this setting is presented in Figure 1. Note that
we consider the updating hc on the stable storage (as proposed in Section 17.2) as
a part of an output transaction.

user-output processing by client:

wait until reply queue is not empty;

begin transaction;

dequeue (reply);

compute output message from reply;

read (lasthc);

hc := read current hardware counter from output device;

while lasthc = hc do

send output to output device;

hc := read current hardware counter from output device;

end /*while*/;

lasthc := hc;

write (lasthc);

commit transaction;

client restart:

check request queue;

if not empty then

initiate processing of requests like during normal operation;

end /*if*/;

Figure 1: Exactly-once output processing

Analysis of various cases (regarding client failures):

1. no failure at all: client dequeues reply, reads the current hc as of the last output
message, finds that the current hc equals the last remembered one, thus sends
the output once (and then exits the loop), and writes the, now incremented,
hc, to stable storage

2. client fails right before dequeue: restart will find the original reply queue and
retries the output processing procedure

3. client fails right after dequeue: transactional recovery will restore the reply
queue to its original state; so this case is identical to case 2

4. client fails right after sending the output message: transactional recovery will
restore the reply queue, then the client will retry the entire output processing,
after again reading the current hc, there are sub-cases:

1

(a) the hc is now larger than the remembered counter, so the output has been
received by the output device; the output is suppressed, and the new hc
is written to stable storage (and we obtain the same behavior if the client
fails again during this restart processing)

(b) the hc is stil the same as the remembered counter, so the output has not
been received by the output device; the output is sent again, the hc is read
again (now it has been incremented, or the loop body is iterated), and the
new hc is written to stable storage

5. client fails right after writing the new hc to stable storage, but before trans-
action commit: the hc on stable storage is restored to the original state; and
when retrying the entire output processing the client will compare this old
value of the hc to the newly read one; the client will realize that the new hc
is larger than the remembered one, it will thus suppress the output message,
but will try again to save the new hc on stable storage (and will eventually
succeed once the transaction commits)

Exercise 17.3 :

Consider a conversational client application such as the travel reservation scenario
of Section 17.3. Compare the number and data volume of forced log I/Os for running
this application as a pseudo-conversational queued transaction chain versus using
the general server reply logging method of Section 17.5, to provide application
recovery. Assume that the queue manager resides on the data server, and forced
logging is required only upon the commit of a transaction.

client server

1. begin transaction;
2. enqueue flight reservation request;
3. commit;

4. begin transaction;
5. dequeue flight reservation request;
6. execute flight reservation request;
7. enqueue flight reservation reply;
8. commit;

9. begin transaction;
10. dequeue flight reservation reply;
11. enqueue hotel reservation request;
12. commit;

13. begin transaction;
14. dequeue hotel reservation request;
15. execute hotel reservation request;
16. enqueue hotel reservation reply;
17. commit;

18. begin transaction;
19. dequeue hotel reservation reply;
20. enqueue rental car reservation request;
21. commit;

22. begin transaction;
23. dequeue rental car reservation request;
24. execute rental car reservation request;
25. enqueue rental car reservation reply;
26. commit;

27. begin transaction;
28. dequeue rental car reservation reply;
29. commit;

Figure 1: Travel reservation with queued transactions.

First consider the case of running the application when the queued transaction
paradigm is used. Travel reservation comprises three business transactions initiated
by the server (flight reservation, hotel reservation, and rental car reservation) and
four request/reply message delivery transactions initiated by the client. Thus, we

2

have at least 7 forced log I/Os. Note that all forced log I/Os take place on the
server because it hosts the queue manager (and the business data). Additionally to
conventional server logging which is needed for transaction/crash/media recovery
the server now has to store the contents of request and reply messages along with
application state for redo in the case of an enqueue operation and for undo in the
case of an dequeue operation. Altogether we have six message interchanges (i.e.,
6 × enqueue and 6 × dequeue). With an average message size m and application
state size s we obtain a total amount of logging volume of 12(m+s).

client server

1. force-log user input
2. send flight reservation request;

3. execute flight reservation request;
4. create flight reservation reply log;
5. force log;
6. send reply

7. present output;
8. force-log user input
9. send hotel reservation request;

10. execute hotel reservation request;
11. create hotel reservation reply log;
12. force log;
13. send reply;

14. present output
15. force-log user input
16. send rental car reservation request;

17. execute rental car reservation request;
18. create rental car reservation reply log;
19. force log;
20. send reply;

21. present output;

Figure 2: Travel reservation with server reply logging.

When the server reply logging algorithm is used, forced logging is needed only upon
server reply on the server side and upon each user input on the client side. As the
log information for read operations is rather small or can be derived from undo
information if physical logging is applied, the amount of logged information is not
that different from the standard data logging. Further we assume that the message
size is approximately the same as the user input. As the client can be replayed we
need not force application state to the disk. Thus, we obtain 3 forced I/Os on the
client for user input (with client logging volume 3m) and 3 forced I/Os on the
server for each server reply (sever logging volume 3m). It is clear that an interactive
client can easily sustain three forced I/Os. And the server benefits from significant
reduction of logging costs by more than 50% with regard to the number of forced
I/Os and by more than 75% with regard to the amount of logged information under
the assumptions made above.

Exercise 17.4 :

Construct a concrete example, with concrete transaction identifiers, page numbers,
etc., that shows the necessity for the data server to log data read operations on
behalf of client requests for the general client-server application recovery based on
the server reply logging method of Section 17.5.
Hint: Consider, for example, a client request that invokes a stored procedure on the
data server whose execution consists of a sequence of transactions.

When a client issues a request invoking a multi-transaction stored procedure then
its effects are not isolated from the other concurrent requests running on the server
at the same time. This means, that even if the request execution is not complete
at the time a server failure occurred, partial effects of the request might be already

3

propagated to the outside world as far as they are reflected in reply messages of some
concurrent requests. This implies that the server committed its state including the
incomplete request and it must be able to deterministically replay and to complete
the request.

client 1 : ↘
server : r1(x)w1(x)c1r2(x)r2(y)w2(s)c2r1(y)w1(y)c1 . . . †
client 2 : ↗ ↘

Figure 3: Problem scenario

Consider the example scenario depicted in Figure 3 with two clients concurrently
issuing requests to the server. Assume that data items x, y, z, etc. are items in an
online store, and data item s is a shopping cart filled on behalf of client 2. The
session of client 1 starts a batch of transactions in order to decide upon a special
sales promotion: each item is looked up, and based on its current price, current
quantity in stock, recent sales, and pending orders it is decided whether the item is
included in the sales promo or not (i.e., the price of the qualifying items is reduced).
This decision process may even be context-dependent in the sense that the decision
about an item z depends on the previously made decisions about items x and y.
For the concrete example, assume that both item x and item y are included in the
promo. Concurrently, client 2 places orders for various items. Seeing the reduced
price of item x, it decides to purchase an exceptionally large quantity of this item.
In addition, it decides to purchase some of item y at the standard price (as this step
precedes the price reduction for item y).

Note that this kind of concurrent behavior is, of course, not serializable in terms of
the entire client sessions. However, it is serializable in terms of the clients’ transac-
tions. This kind of application structuring is not uncommon in practice and is often
unavoidable for long-lived workflows. So the application run by client 1 has been
intentionally organized as a batch of transactions rather than a single transaction.

Now assume that the server crashes after the last action shown in Figure 3 (the
commit of client 1’s second transaction); note that this happens before sending the
reply message to client 1, but after a reply has been sent to client 2. Upon restart,
the server must not undo the actions on behalf of client 2, as it had already sent
the reply message and thus committed its state to the external world. Even worse,
the server must not undo the actions of the first transaction issued by client 1 as
the price reduction for item x affected the session of client 2. So the only solution is
to deterministically replay the pre-crash behavior of both sessions. For client 2 this
means recovering the database state (if necessary) and recreating the reply message
if needed. For client 1 this means recovering the database state (as of the time of the
crash) and, in addition, recreating the session state of the interrupted application
(i.e., the variables, cursor positions, etc. of a stored procedure or servlet). Note that
this is crucial for ensuring correct decision-making regarding the sales promotion
while being consistent with the decisions that were already made before the crash
and visible to other clients.

Exercise 17.5 :

Discuss possible generalizations of the server reply logging method for general client-
server applications towards the following settings:

1. client applications that interact with more than one data server,

2. a data server that does itself invoke requests on another data server, for exam-
ple, to resolve a higher-level data view or wrapped ADT-style object interface
by collecting some of the underlying data from a remote site, or to propagate

4

high-level updates onto the underlying base data (e.g., by firing remote trig-
gers) including the important case of maintaining replicated data at multiple
sites,

3. a three-tier architecture where the applications run on the middle-tier appli-
cation server.

Hint: Lomet and Weikum (1998) provide some high-level ideas about possible gen-
eralizations and also point out difficulties in specific kinds of extensions.

Meanwhile, an algorithm that addresses these issues is presented in:

R. Barga, D. Lomet, G. Weikum, Recovery Guarantees for General Multi-Tier Ap-
plications, Int. Conference on Data Engineering 2002, San Jose, CA, USA.

5

Chapter 18 - Solutions to Exercises

Exercise 18.2 :

Give a sample execution of a distributed history s s.t. (i) s itself is not conflict-
serializable, but (ii) each local projection of the execution obeys the distributed
2PL protocol. In particular, state the exact order in which a scheduler acquires and
releases locks and executes read and write steps.

Example 18.2 in the book demonstrates that applying 2PL to local projections with-
out synchronization of “lock points” may lead to globally non-serializable schedules.

Server 1: rl1(x)r1(x)ru1(x) wl2(x)w2(x)
Server 2: rl2(y)r2(y)ru2(y) wl1(y)w1(y)

Although both transactions in the example above locally acquire locks according
to the 2PL protocol, the conflict graph of the corresponding global schedule has a
cycle t1 → t2 → t1.

Exercise 18.3 :

Consider the distributed wait-for graph for transactions t1 through t6 running on
servers A, B, and C shown in Figure 18.10. Assume that transaction t1 now requests
a lock on server A for which transaction t2 already holds an incompatible lock.
Simulate the path pushing algorithm for deadlock detection at this point, and give
the resulting messages.

t2 t3

Server A

t1

t3

t4

t5

t6t6

t5t1

Server BServer C

Figure 1: Distributed WFG

When the edge t1 → t2 is added on server A, a new waits-for path (from t1 to t3)
arises with both incoming and outgoing waits-for message edges. Thus, this path
is pushed to server B. On server B, in turn, we obtain two paths which have to be
forwarded to server C: t1 → t2 → t3 → t4 → t5 and t1 → t2 → t3 → t4 → t6.
Finally on server C we detect the cycle t1 → t2 → t3 → t4 → t5 → t1. Note that
the path forwarding terminates on server C, because t6 does not have an outgoing
waits-for message edge, and ts(t5) > ts(t1) holds for the edge t5 → t1.

1

Exercise 18.4 :

Apply the optimistic ticket method (OTM) to the local histories from Examples
18.8, 18.11, and 18.12 and show how global serializability can be obtained in each
of these cases.

In each case we assume that the initial ticket value is zero (Ij [0]).

• Example 18.8 with OTM
s1 = r1(I1[0])w1(I1[1])r1(a)r3(a)r3(b)w3(a)w3(b)r2(I1[1])w2(I1[2])r2(b)
s2 = r2(I2[0])w2(I2[1])r2(c)r4(c)r4(d)w4(c)w4(d)r1(I2[1])w1(I2[2])r1(d)

When one of the two global transactions issues a commit request the GTM
will check whether the committing transactio is involved in a cycle. Let vi(Ij)
denote a ticket value obtained by the global transaction ti on the site j. For
this example we obtain a global cycle indicated by v1(I1) < v2(I1) and v2(I2) <
v1(I2), and one of the global transactions must be aborted.

• Example 18.11 with OTM
s1 = w1(a)r1(I1[0])w1(I1[1])c1r3(a)r3(b)c3r2(I1[1])w2(I1[2])w2(b)c2

s2 = r2(I2[0])w2(I2[1])w2(c)c2r4(c)r4(d)c4r1(I2[1])w1(I2[2])w1(d)c1

Here the GTM has to deal with a similar situation with regard to ticket values
as in Example 18.8, so that a global cycle in the conflict graph is detected
again.

• Example 18.12 with OTM
s1 = r1(I1[0])w1(I1[1])r1(a)w3(a)w3(b)r2(I1[1])w2(I1[2])r2(b)c1c3c2

s2 = w4(c)r1(I2[0])w1(I2[1])r1(c)r2(I2[1])w2(I2[2])r2(d)w4(d)c2c4c1

In this example a non-CSR execution cannot be detected by the GTM, because
the ticket values on both sites are now in the same order. But, fortunately, the
local scheduler on site 2 is able to detect this pathological situation by observ-
ing a local cycle t4 → t1 → t2 → t4. Then the local scheduler decides to abort
one of the transactions. If the local scheduler were aware of the presence of
global transactions, it would rather abort a local transaction because it is much
easier than having to abort the local subtransactions of a global transaction
at all sites where it is executed.

Exercise 18.7 :

Find a sample history proving that the containment COCSR ⊂ ECOCSR is proper.

Consider the local databases D1 = {a} and D2 = {b} with the corresponding
local histories s1 = r1(a)c1r3(a)w4(a)c4c3w2(a)c2 and s2 = w1(b)r2(b)c1c2. The
global transactions (t1 and t2) obey the commit ordering rule, whereas for the local
transactions (t3 and t4) on site 1 we obtain r3(a) <s1 w4(a) but c4 <s1 c3. So the
global schedule s1 ∪ s2 is in ECOCSR but not in COCSR.

Exercise 18.8 :

Discuss appropriate points for the take-a-ticket operation during the execution of
a global transaction’s subtransaction under the assumption that the underlying
server uses a) 2PL, b) strict 2PL, c) strong 2PL, d) BOCC, e) FOCC, f) ROMV
(see Chapters 4 and 5) for its local schedule. Consider the possibility that other
servers on which the global transaction executes may use different protocols.

a) With 2PL protocol the GTM should issue take-a-ticket requests at the trans-
action’s lock point, i.e., right before releasing the first lock on one of the under-
lying servers. This way, local lock on the ticket objects are held for a minimum
duration but still serve to “check” and “manifest” the local serialization order
and ensure global serialization.

2

b) Strict 2PL (S2PL) generates only strict schedules as it postpones releasing
write locks until the end of transaction. Since ST is a proper subset of ACA and
Gen(S2PL) is a proper subset CSR, we obtain Gen(S2PL) ⊂ ACA ∩ CSR.
Now we can apply Theorem 18.7 and use the implicit ticket method.

c) Strong 2PL (SS2PL) produces only rigorous schedules as both, read and write
locks are not released until the end of transaction, and as has been proven by
Theorem 18.4, with commit-deferred transactions the global serilazability is
guaranteed even without the ticket-method.

d) BOCC generates only rigorous schedules as well, which can be observed by
the following: consider the committed projection of a schedule s produced by
a BOCC scheduler. If there is a conflict of the form wi(x) → rj(x), then
ci <s rj(x) because otherwise tj could not be validated (i.e., committed). If
there is a conflict of the form wi(x) → wj(x), then the val-write phase of
ti precedes the val-write phase of tj (i.e., ci <s wj(x)). If there is a conflict
of the form ri(x) → wj(x), then ti must have been validated first, and thus
ci <s wj(x). This way we showed that there is no need for take-a-ticket request,
when BOCC is used.

e) As already noticed in Chapter 4 FOCC generates COCSR schedules as it val-
idates transactions against running transactions and the validation order cor-
responds to the commit order. Thus, no take-a-ticket operation is necessary
with this protocol either.

When servers use different protocols, the GTM should issue the take-a-ticket request
at the most appropriate point for each server separately depending on the particular
protocol of the corresponding server.

Exercise 18.10 :

Discuss the use of the optimistic ticket method for servers that merely guarantee
local snapshot isolation, as opposed to local conflict serializability (see Chapter
10 for the notion of snapshot isolation). What global correctness criteria can be
guaranteed this way? What are the performance implications?

The following paper contains a detailed discussion of these questions:

R. Schenkel, G. Weikum, Integrating Snapshot Isolation Into Transactional Feder-
ations, 5th IFCIS International Conference on Cooperative Information Systems
(CoopIS), Eilat, Israel, September 2000.

3

Exercise 18.11 :

Consider a data sharing system with three servers A, B, and C. Suppose that server
C is the home of pages a, b, c, and d, and that these pages are dynamically ac-
cessed during the execution of transactions on servers A and B. Give the necessary
messages between these servers under a page oriented callback locking protocol for
the following distributed history:

A: r1(a)w1(a)r1(c) c1r3(a)w3(a)c3 r6(b)r6(d)c6
B: r2(c)c2 r4(a)r4(b)r4(d)c4r5(b)w5(b)r5(d)c5

server A server Bserver C (home)

r1(a)Rlock (a)

Rlock authority (a)

w1(a)Wlock (a)

r1(c)Rlock (c)

Rlock authority (c)

r1(c)Rlock (c)

Rlock authority (c)
r1(c)Rlock (c)

Rlock authority (c)
c2c1

r3(a)
w3(a)

Wlock authority (a)

c3 r4(a)Rlock (a)

Callback (a)
OK

Rlock authority (a)

r4(b)Rlock (b)

Rlock authority (b)

r4(d)Rlock (d)

Rlock authority (d)
c4
r5(b)
w5(b)Wlock (b)

Wlock authority (b)

r5(d)
c5r6(b)Rlock (b) r6(b)Rlock (b)

Callback (b)
OK

Rlock authority (b)

r6(d)Rlock (d)

Rlock authority (d)

r6(d)Rlock (d)

Rlock authority (d)

c6

Figure 2: Message sequence diagram for callback locking

Note that Figure 2 shows lock requests only when the requesting site does not have
the corresponding lock authority at the time of the request.

4

Chapter 19 - Solutions to Exercises

Exercise 19.2 :

Consider the following scenario. A transaction is initiated from a PC to make reser-
vations for a vacation trip. The initiator communicates directly with a travel agency
and a rental car company. The travel agency communicates with a travel wholesaler,
which books two of the necessary flights (or flight legs) on the servers of the corre-
sponding airlines, and also with two other airlines to book the rest of the necessary
flights. All these steps belong to one distributed transaction, and all involved partic-
ipants are able and willing to commit the transaction. The communication structure
of this transaction is illustrated in the following figure.

(a) Give the message flow and log entries for the hierarchical 2PC protocol for
this scenario. Indicate which log entries need to be immediately forced to the
stable log.

(b) Which of the various optimizations that we discussed in this chapter are ap-
plicable and promising for the given scenario? What are the implications for
the protocol’s message and logging costs?

(c) How does the protocol and its execution cost change if the coordinator role were
transferred to the server of the travel agency (at the time when the initiator
issues its commit request)?

(d) Give the message flow and log entries for the case that the server of airline 3
is unable to commit and votes “no” in the hierarchical 2PC protocol.

(e) Apply the presumed-abort protocol to the case where the server of airline 3
votes “no”. Give the resulting message flow and log entries.

(a) Figure 1 on page 4 depicts the message flow and the log entries for this scenario.
We use the following abbreviations: RCC for rental car company, TA for travel
agency, TW for travel wholesaler and AL for airline. The total number of
messages is 28, the total number of log entries is 18, and all of them must be
forced to disk immediately.

(b) Due to the fact that all sites participating in the distributed transaction are go-
ing to commit and execute update operations, the most promising optimization
is the presumed commit 2PC protocol. Under this protocol only the top-level
coordinator (i.e., the Client) must force-write the commit log entry. Hence we
save seven forced writes. Moreover, since winner transactions do not have to
send ack messages, we also save seven messages.
We could also consider the presumed-abort 2PC protocol with omission of the
begin log entry on each (sub)coordinator. But in this case we would save only
three forced writes, and there is no savings in terms of communication costs.

(c) When the coordinator role is with the travel agency, the corresponding node
becomes the root of the communication tree. And the client node is converted
to a child node of the travel agency node. This way the tree decreases in height
from four nodes to three nodes, but the number of (sub)coordinators and the
number of participants do not change. Thus the execution cost in terms of
messages and forced writes does not change, but due to the lower tree height
the execution is more parallelized and is slightly faster in real time.

(d) Figure 2 on page 5 depicts the necessary log entries and messages for this
scenario.

1

(e) The execution under the presumed-abort 2PC protocol is shown in Figure 3 on
page 6. So begin log entries and ack messages are abandoned. And rollback log
entries are written in lazy manner. We can actually also avoid creating rollback
entries at all, since it fits perfectly with the abort presumption.

Exercise 19.3 :

Consider a binary, perfectly balanced tree of processes of height n where all leaf
nodes have the same distance from the root; so there is a total number of m = 2n−1
nodes in the tree. Assume that the root is the coordinator of the commit protocol.
Determine the number of messages and forced log writes for the presumed-nothing
(i.e., basic 2PC), presumed-abort, and presumed-commit protocols for the following
situations:

(a) all processes have performed updates and the transaction commits,

(b) all processes have performed updates and the transaction aborts,

(c) all nonroot nodes are read-only and the transaction commits,

(d) all leaf nodes are read-only and the transaction commits.

With the basic 2PC protocol the nonleaf nodes (m− 2n−1 = 2n−1− 1) force-write
a begin log entry. All participants, i.e., all nodes except the root, (m− 1 = 2n − 2)
force-write a prepared log entry. And finally all m nodes force-write a commit log
entry. Thus, we obtain in total 5 · 2n−1− 4 forced writes. And each participant (i.e.,
each nonroot node) exchanges 4 messages with its coordinator. So the total number
of messages is 4 · 2n − 8. Since basic 2PC does not include any optimizations, the
calculations above are valid for all of the four scenarios.

(a) In this scenario we cannot benefit from using the presumed-abort 2PC
protocol, because it is geared only for loser transactions. Thus, we obtain
identical costs as with the basic 2PC protocol. But if the begin log entry is
written in a non-forced manner or completely dropped, then we safe as many
forced writes as there are (sub)coordinators, i.e., the number of nonleaf nodes.
So the total number of forced writes then is (5·2n−1−4)−(2n−1−1) = 3·2n−1−3
Now consider the presumed-commit 2PC protocol. Here we save in compar-
ison with basic 2PC forced writes of the commit log entry on all participating
sites. Thus we obtain (5 · 2n−1 − 4)− (2n − 2) = 3 · 2n−1 − 2 forced writes. We
also save an ack message per participant. So the overall number of messages
is (4 · 2n − 8)− (2n − 2) = 3 · 2n − 6

(b) In this scenario the costs of presumed-commit 2PC are identical to the
costs of basic 2PC.
The following costs arise with presumed-abort 2PC. Only participants force-
write a prepared log entry. Hence, the total number of forced writes is 2n − 2.
Again we can abandon ack messages. 3 · 2n − 6 messages are still required.

(c) Consider presumed-commit 2PC first. We still need one forced write for the
begin log entry on each (sub)coordinator node (i.e., 2n−1−1 forced writes). And
there are only two messages to exchange for each participant (i.e., altogether
2 · 2n − 4).
With presumed-abort 2PC we obtain zero logging costs and the same
amount of messaging as when presumed-commit 2PC is used.

(d) Let us assume that all inner nodes perform local updates. Otherwise this sce-
nario boils down to case (c).
With presumed-commit 2PC, additionally to (a) we save one forced write
for the prepared log entry on each leaf node. Thus, the overall number of forced
writes is (3 · 2n−1 − 2) − 2n−1 = 2n − 2. We also save one commit message

2

for each leaf node in comparison to (a) (i.e., the total number of messages is
(3 · 2n − 6)− 2n−1 = 5 · 2n−1 − 6).
With presumed-abort 2PC, additionally to (a) we save the prepared and
the commit log entry on each leaf node. So the overall number of forced writes
amounts to (3 · 2n−1 − 3) − 2 · 2n−1 = 2n−1 − 3. And we also save one com-
mit message and one ack message for each leaf node. So the total number of
messages is (4 · 2n − 8)− 2 · 2n−1 = 3 · 2n − 8

The table in Figure 1 summarizes the results presented above. With PN, PA and
PC we abbreviate presumed-nothing, presumed-abort and presumed-commit, respec-
tively.

forced log writes messages
a b c d a b c d

PN 5 · 2n−1 − 4 5 · 2n−1 − 4 5 · 2n−1 − 4 5 · 2n−1 − 4 4 · 2n − 8 4 · 2n − 8 4 · 2n − 8 4 · 2n − 8

PA 3 · 2n−1 − 3 2n − 2 0 2n−1 − 3 4 · 2n − 8 3 · 2n − 6 2 · 2n − 4 3 · 2n − 8

PC 3 · 2n−1 − 2 5 · 2n−1 − 4 2n−1 − 1 2n − 2 3 · 2n − 6 4 · 2n − 8 2 · 2n − 4 5 · 2n−1 − 6

Figure 1: Logging and messaging costs for 2PC variants.

3

Client

Force-write
begin

RCCTAAL3AL2AL1 AL4TW

Prepare

Prepare

Yes

Force-write
prepared

Prepare

Prepare

Prepare

Yes

Force-write
prepared

Yes

Force-write
prepared

Prepare

Prepare

Yes

Force-write
prepared

Yes

Force-write
prepared

Yes

Force-write
prepared

Yes

Force-write
prepared

Force-write
commit

Commit

Commit

ACK

Force-write
commit

ACK

Force-write
commit

Commit

Commit

Commit

ACK

Force-write
commit

ACK

Force-write
commit

ACK

Force-write
commit

Commit

Commit

ACK

Force-write
commit

ACK

Force-write
commit

Force-write
begin

Force-write
begin

Figure 1: Message flow and log entries for case (a) of Exercise 19.2

4

Client

Force-write
begin

RCCTAAL3AL2AL1 AL4TW

Prepare

Prepare

Yes

Force-write
prepared

Prepare

Prepare

Prepare

No

Force-write
prepared

Yes

Force-write
prepared

Prepare

Prepare

Yes

Force-write
prepared

Yes

Force-write
prepared

Yes

Force-write
prepared

No

Force-write
prepared

Force-write
rollback

Abort

Abort

ACK

Force-write
rollback

ACK

Force-write
rollback

Abort

Abort

Abort

ACK

Force-write
rollback

ACK

Force-write
rollback

ACK

Force-write
rollback

Abort

Abort

ACK

Force-write
rollback

ACK

Force-write
rollback

Force-write
begin

Force-write
begin

Figure 2: Message flow and log entries for case (d) of Exercise 19.2

5

ClientRCCTAAL3AL2AL1 AL4TW

Prepare

Prepare

Yes

Force-write
prepared

Prepare

Prepare

Prepare

No

Force-write
prepared

Yes

Force-write
prepared

Prepare

Prepare

Yes

Force-write
prepared

Yes

Force-write
prepared

Yes

Force-write
prepared

No

Force-write
prepared

Abort

Abort

Write
rollback

Write
rollback

Abort

Abort

Abort

Write
rollback

Write
rollback

Write
rollback

Abort

Abort

Write
rollback

Write
rollback

Figure 3: Message flow and log entries for case (e) of Exercise 19.2

6

	Sample Solutions
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 18
	Chapter 19

