

Optimal Algorithms for Bounded Weighted Edit Distance

Alejandro Cassis Saarland University MPI-INF, SIC Tomasz Kociumaka MPI-INF. SIC

Philip Wellnitz

MPI-INF, SIC

1

- Bounded Weighted Edit Distance is harder than Bounded Unweighted Edit Distance
- (Weighted) Edit Distance is Shortest Paths on Planar Graphs
- APSP-based Lower Bounds via Grid Construction and Dynamic Intermediate Problem

How similar are two strings X and Y?

How similar are two strings X and Y?

How similar are two strings X and Y?

ed(0PIN1CIV, OPINION) = 5

ed(0PIN1CIV, OPINION) = 5

ed(0PIN1CIV, PICNIC) = 5

Background

 $w(0,0) := 1 \quad w(1,1) := 1 \quad w(C,0) := 1 \quad w(*,*) := 2 \quad w(*,\varepsilon) := 1 \quad w(\varepsilon,*) := 10$

Background

 $w(0,0) := 1 \quad w(1,1) := 1 \quad w(C,0) := 1 \quad w(*,*) := 2 \quad w(*,\varepsilon) := 1 \quad w(\varepsilon,*) := 10$

0 P I N I 0 N * | | | * * × × 0 P I N 1 C I V

ed^w(0PIN1CIV, PICNIC) ≤ 14

ed^w(0PIN1CIV, 0PINION) = 6

Background

 $w(0,0) := 1 \quad w(1,1) := 1 \quad w(C,0) := 1 \quad w(*,*) := 2 \quad w(*,\varepsilon) := 1 \quad w(\varepsilon,*) := 10$

0 P I N I 0 N * | | | * * * × 0 P I N 1 C I V

ed^w(0PIN1CIV, PICNIC) = 8

ed^w(0PIN1CIV, 0PINION) = 6

Computing (Weighted) Edit Distance

How fast can we compute the (weighted) edit distance of two strings? $\rightsquigarrow O(n^2)$ (you know this!)

Computing (Weighted) Edit Distance

How fast can we compute the (weighted) edit distance of two strings? $\rightsquigarrow O(n^2)$ (you know this!)

What if the (weighted) edit distance is small (at most k)?

How fast can we compute the (weighted) edit distance of two strings? $\rightsquigarrow O(n^2)$ (you know this!)

What if the (weighted) edit distance is small (at most *k*)?

→→ Bounded (Weighted) Edit Distance

Algorithms for (Bounded) Edit Distance

Existing algorithms for Edit Distance ed(X, Y), where $|X|, |Y| \le n$

Cassis, Kociumaka, **Wellnitz** Optimal Algorithms for Bounded Weighted Edit Distance

7-1

Algorithms for (Bounded) Edit Distance

Existing algorithms for Edit Distance ed(X, Y), where $|X|, |Y| \le n$

Cassis, Kociumaka, **Wellnitz** 7-2

Algorithms for (Bounded) Edit Distance

Existing algorithms for Edit Distance ed(X, Y), where $|X|, |Y| \le n$

Cassis, Kociumaka, **Wellnitz** 7-3

Algorithms for (Bounded) Weighted Edit Distance

What about Weighted Edit Distance?

Algorithms for (Bounded) Weighted Edit Distance

Existing algorithms for Weighted Edit Distance $ed^{w}(X, Y)$, where $|X|, |Y| \le n$

Algorithms for (Bounded) Weighted Edit Distance

Existing algorithms for Weighted Edit Distance $ed^{w}(X, Y)$, where $|X|, |Y| \le n$

Algorithms for (Bounded) Weighted Edit Distance

Existing algorithms for Weighted Edit Distance $ed^{w}(X, Y)$, where $|X|, |Y| \le n$

hms for (Poundad) Waightad Edit Dis

Algorithms for (Bounded) Weighted Edit Distance

Existing algorithms for Weighted Edit Distance $ed^{w}(X, Y)$, where $|X|, |Y| \le n$

Main Theorem 1 (Upper Bound)

Strings X, Y each of length at most n Oracle access to (normalized) weight function w Can compute $k = ed^{w}(X, Y)$ in time $O(n + \sqrt{nk^3} \log^3 n)$

Main Theorem 1 (Upper Bound)

Strings X, Y each of length at most n Oracle access to (normalized) weight function w Can compute $k = ed^{w}(X, Y)$ in time $O(n + \sqrt{nk^3} \log^3 n)$

Main Theorem 2 (Lower Bound)

Assuming the APSP Hypothesis and for $\sqrt{n} \le k \le n$, Main Theorem 1 is tight (up to $n^{o(1)}$ -factors)

• Justified Assumption: w is normalized, $w(x, y) \ge 1$ for all $x \ne y$.

◆ Justified Assumption: w is normalized, $w(x, y) \ge 1$ for all $x \ne y$. \rightarrow Have (via $O(n + k^2)$ algo): Alignment $A : X \rightarrow Y$ of unweighted cost $\le k$

Justified Assumption: w is normalized, w(x, y) ≥ 1 for all x ≠ y.
 → Have (via O(n + k²) algo): Alignment A : X → Y of unweighted cost ≤ k
 → A aligns edit-free most of X with Y [DGHKS23]

 \rightsquigarrow A aligns edit-free most of X with Y [DGHKS23]

Theorem (Universal Kernel)

Can trim X and Y to length- $O(k^4)$ strings X', Y' with $\operatorname{ed}_{\leq k}^{W}(X, Y) = \operatorname{ed}_{\leq k}^{W}(X', Y')$.

Cassis, Kociumaka, **Wellnitz**Optimal Algorithms for Bounded Weighted Edit Distance
10-5

[DGHKS23]

Tool 1: Alignment Graphs and Multiple-Source Shortest Path

• X and Y consist in $O(k^2)$ pieces of length $O(k^2)$ and with period O(k) each

- X and Y consist in $O(k^2)$ pieces of length $O(k^2)$ and with period O(k) each
- Idea: Use alignment graph AG of X and Y

- X and Y consist in $O(k^2)$ pieces of length $O(k^2)$ and with period O(k) each
- Idea: Use alignment graph AG of X and Y \rightsquigarrow ed^w(X, Y) is distance (0, 0) \rightsquigarrow (|X|, |Y|)

- X and Y consist in $O(k^2)$ pieces of length $O(k^2)$ and with period O(k) each
- Idea: Use alignment graph AG of X and $Y \rightarrow ed^{W}(X, Y)$ is distance $(0, 0) \rightarrow (|X|, |Y|)$
- Idea²: Trim AG to O(k) diagonals $\rightarrow ed_{\leq k}^{W}(X, Y)$ is distance $(0, 0) \rightarrow (|X|, |Y|)$

- X and Y consist in $O(k^2)$ pieces of length $O(k^2)$ and with period O(k) each
- Idea: Use alignment graph AG of X and $Y \rightarrow ed^{W}(X, Y)$ is distance $(0, 0) \rightarrow (|X|, |Y|)$
- Idea²: Trim AG to O(k) diagonals $\rightarrow ed_{\leq k}^{W}(X, Y)$ is distance $(0, 0) \rightarrow (|X|, |Y|)$
 - \rightsquigarrow AG has $O(k^5)$ vertices \rightsquigarrow Dijkstra yields $\tilde{O}(k^5)$ algo

- X and Y consist in $O(k^2)$ pieces of length $O(k^2)$ and with period O(k) each
- Idea: Use alignment graph AG of X and $Y \rightarrow ed^{W}(X, Y)$ is distance $(0, 0) \rightarrow (|X|, |Y|)$
- Idea²: Trim AG to O(k) diagonals $\rightarrow ed_{\leq k}^{W}(X, Y)$ is distance $(0, 0) \rightarrow (|X|, |Y|)$
- Idea³: Split AG according to structure of X and Y
 Compute all b-to-b dist [Kleino5] + stitch together results ((min, +)-product [SMAWK87])

- X and Y consist in $O(k^2)$ pieces of length $O(k^2)$ and with period O(k) each
- Idea: Use alignment graph AG of X and $Y \rightarrow ed^{W}(X, Y)$ is distance $(0, 0) \rightarrow (|X|, |Y|)$
- Idea²: Trim AG to O(k) diagonals $\rightsquigarrow \operatorname{ed}_{\leq k}^{W}(X, Y)$ is distance $(0, 0) \rightsquigarrow (|X|, |Y|)$
- Idea³: Split AG according to structure of X and Y
 Compute all b-to-b dist [Kleino5] + stitch together results ((min, +)-product [SMAWK87])
 → k² · Õ(k³) for periodic pieces + k² · Õ(k²) for stitching

Upper Bounds

••••••••••••

Tool 1: Alignment Graphs and Multiple-Source Shortest Path

- X and Y consist in $O(k^2)$ pieces of length $O(k^2)$ and with period O(k) each
- Idea: Use alignment graph AG of X and $Y \rightarrow ed^{W}(X, Y)$ is distance $(0, 0) \rightarrow (|X|, |Y|)$
- Idea²: Trim AG to O(k) diagonals $\rightarrow ed_{\leq k}^{w}(X, Y)$ is distance $(0, 0) \rightarrow (|X|, |Y|)$
- Idea³: Split AG according to structure of X and Y
 Compute all b-to-b dist [Kleino5] + stitch together results ((min, +)-product [SMAWK87]) for periodic pieces: fast exponentiation;

 $\rightsquigarrow k^2\cdot \tilde{O}(k^2)$ for periodic pieces + $k^2\cdot \tilde{O}(k^2)$ for stitching

- X and Y consist in $O(k^2)$ periodic pieces of length $O(k^2)$ and with period O(k) each
- Idea: Use AG, trimmed to O(k) diags $\rightsquigarrow \operatorname{ed}_{\leq k}^{W}(X, Y)$ is distance $(0, 0) \rightsquigarrow (|X|, |Y|)$
- Idea³: Compute all b-to-b dist for periodic pieces [Kleino5] + fast exponentiation; stitch together results using min-plus product [SMAWK87]
- Idea⁴: Use Divide-and-Conquer to reduce number of periodic pieces to O(k)

- X and Y consist in $O(k^2)$ periodic pieces of length $O(k^2)$ and with period O(k) each
- Idea: Use AG, trimmed to O(k) diags $\rightsquigarrow \operatorname{ed}_{\leq k}^{W}(X, Y)$ is distance $(0, 0) \rightsquigarrow (|X|, |Y|)$
- Idea³: Compute all b-to-b dist for periodic pieces [Kleino5] + fast exponentiation; stitch together results using min-plus product [SMAWK87]
- Idea⁴: Use Divide-and-Conquer to reduce number of periodic pieces to O(k) $\rightarrow k \cdot \tilde{O}(k^2)$ for periodic pieces (and padding) + $k \cdot \tilde{O}(k^2)$ for stitching

Tool 3: Compressibility instead of Periodicity

- X and Y consist in O(k) pieces of length $O(k^2)$ each
- Idea: Use AG, trimmed to O(k) diags $\rightsquigarrow \operatorname{ed}_{\leq k}^{W}(X, Y)$ is distance $(0, 0) \rightsquigarrow (|X|, |Y|)$
- Idea³: Compute all b-to-b dist for periodic pieces [Kleino5] + fast exponentiation; stitch together results using min-plus product [SMAWK87]
- ◆ Idea⁴: Use Divide-and-Conquer to reduce number of periodic pieces to O(k)
- Idea⁵: Use tailor-made compressibility measure instead of periodicity
 + (w)ED algorithms for compressed strings

 $\rightsquigarrow \tilde{O}(n + \sqrt{k^3 n})$ time in total

Main Theorem 1 (Upper Bound) 🗸

Strings X, Y each of length at most n Oracle access to (normalized) weight function w Can compute $k = ed^{w}(X, Y)$ in time $O(n + \sqrt{nk^3} \log^3 n)$

Main Theorem 2 (Lower Bound)

Assuming the APSP Hypothesis and for $\sqrt{n} \le k \le n$, Main Theorem 1 is tight (up to $n^{o(1)}$ -factors)

14

- ◆ Step 1: Compute matrix-vector product A ⊕ b as weighted ED of two gadget strings
 → encode matrix/vector as substitution costs
 → use telescoping sums
- Step 2: Compute A ⊕ b' by replacing single character of X

$\bullet \bullet \circ \circ \circ$

Tool 1: Matrix-Vector Min-Plus Multiplication via wED

Min-Plus Product Minimum

Given 3 matrices A, B, C, check if min diag entry of (min, +)-product $A \oplus B \oplus C$ is negative

- ◆ Step 1: Compute matrix-vector product A ⊕ b as weighted ED of two gadget strings
 → encode matrix/vector as substitution costs
 → use telescoping sums
- Step 2: Compute A ⊕ b' by replacing single character of X
 → Allows to compute A ⊕ B; encode C similarly to B
 → Use selection gadget for ed^w(X, Y) ≈ min(A ⊕ B ⊕ C)
 - \leadsto Lower bound for dynamic problem

Tool 2: Minimum Gadget via Intermediate Strings

◆ Have: Lower bound for dynamic problem
 → turn into LB for static problem

Tool 2: Minimum Gadget via Intermediate Strings

- ◆ Have: Lower bound for dynamic problem
 → turn into LB for static problem
- Step 3: Take snapshots (X_i, Y)

...

X₁

 X_{2}

X

Χ,

γ

γ

γ

Y

- ◆ Have: Lower bound for dynamic problem
 → turn into LB for static problem
- Step 3: Take snapshots (X_i, Y)
- Step 4: Create intermediate strings $(Y, \hat{X}_{(i-1)i})$

••••••

- ◆ Have: Lower bound for dynamic problem
 → turn into LB for static problem
- Step 3: Take snapshots (X_i, Y)
- Step 4: Create intermediate strings (Y, X̂_{(i-1)i})
 → may align X̂_i with either X_i or X_{i+1} for the same cost

- ◆ Have: Lower bound for dynamic problem
 → turn into LB for static problem
- Step 3: Take snapshots (X_i, Y)
- Step 4: Create intermediate strings (Y, X̂_{(i-1)i})
 → may align X̂_i with either X_i or X_{i+1} for the same cost

••••••

- ◆ Have: Lower bound for dynamic problem
 → turn into LB for static problem
- Step 3: Take snapshots (X_i, Y)
- Step 4: Create intermediate strings (Y, X̂_{(i-1)i})
 → may align X̂_i with either X_i or X_{i+1} for the same cost
- Step 5: Forbid inserting or deleting Y (simplification)
 (w(ε, Y) := ∞, w(Y, ε) := ∞)
 → Have to align exactly one X; to Y

•••••••••••••••

- ◆ Have: Lower bound for dynamic problem
 → turn into LB for static problem
- Step 3: Take snapshots (X_i, Y)
- Step 4: Create intermediate strings (Y, X̂_{(i-1)i})
 → may align X̂_i with either X_i or X_{i+1} for the same cost
- Step 5: Forbid inserting or deleting Y (simplification)
 (w(ε, Y) := ∞, w(Y, ε) := ∞)
 → Have to align exactly one X; to Y

- ◆ Have: Lower bound for dynamic problem
 → turn into LB for static problem
- Step 3: Take snapshots (X_i, Y)
- Step 4: Create intermediate strings (Y, X̂_{(i-1)i})
 → may align X̂_i with either X_i or X_{i+1} for the same cost
- Step 5: Forbid inserting or deleting Y (simplification)
 (w(ε, Y) := ∞, w(Y, ε) := ∞)
 → Have to align exactly one X; to Y

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◇

- ◆ Have: Lower bound for dynamic problem
 → turn into LB for static problem
- Step 3: Take snapshots (X_i, Y)
- Step 4: Create intermediate strings (Y, X̂_{(i-1)i})
 → may align X̂_i with either X_i or X_{i+1} for the same cost
- Step 5: Forbid inserting or deleting Y (simplification)
 (w(ε, Y) := ∞, w(Y, ε) := ∞)
 → Have to align exactly one X; to Y

- ◆ Have: Lower bound for dynamic problem
 → turn into LB for static problem
- Step 3: Take snapshots (X_i, Y)
- Step 4: Create intermediate strings (Y, X̂_{(i-1)i})
 → may align X̂_i with either X_i or X_{i+1} for the same cost
- Step 5: Forbid inserting or deleting Y (simplification)
 (w(ε, Y) := ∞, w(Y, ε) := ∞)
 - \rightsquigarrow Have to align exactly one X_i to Y
 - \rightsquigarrow Minimum gadget: $ed^{w}(\hat{X}, \hat{Y}) \approx \min ed^{w}(X_{i}, Y)$
 - \rightsquigarrow Static LB

Main Theorem 1 (Upper Bound) ✓

Strings X, Y each of length at most n Oracle access to (normalized) weight function w Can compute $k = ed^w(X, Y)$ in time $O(n + \sqrt{nk^3} \log^3 n)$

Main Theorem 2 (Lower Bound) 🗸

Assuming the APSP Hypothesis and for $\sqrt{n} \le k \le n$, Main Theorem 1 is tight (up to $n^{o(1)}$ -factors)

18

Key Messages and Open Problems

Key Messages

- Bounded Weighted Edit Distance is harder than Bounded Unweighted Edit Distance
- (Weighted) Edit Distance is Shortest Paths on Planar Graphs
- APSP-based Lower Bounds via Grid Construction and Dynamic Intermediate Problem

Key Messages and Open Problems

Key Messages

- Bounded Weighted Edit Distance is harder than Bounded Unweighted Edit Distance
- (Weighted) Edit Distance is Shortest Paths on Planar Graphs
- APSP-based Lower Bounds via Grid Construction and Dynamic Intermediate Problem

Open Questions

- What is the true complexity of $n^{1/3} \le k \le n^{1/2}$? Must be between $n + k^{2.5}$ and $\sqrt{nk^3}$.
- Is the problem easier for small (constant-sized) alphabets?
- Is there any easy class of weight functions?

