Optimal Algorithms for Bounded Weighted Edit Distance

Alejandro Cassis
Saarland University
MPI-INF, SIC

Tomasz Kociumaka
MPI-INF, SIC

Philip Wellnitz
MPI-INF, SIC

Key Messages

- Bounded Weighted Edit Distance is harder than Bounded Unweighted Edit Distance
- (Weighted) Edit Distance is Shortest Paths on Planar Graphs
- APSP-based Lower Bounds via Grid Construction and Dynamic Intermediate Problem

An Example

How similar are two strings X and Y ?

An Example

How similar are two strings X and Y ?

OPINION

An Example

How similar are two strings X and Y ?

Background

Edit Distance

Min number of character insertions, deletions, and substitutions that transform X to Y

Background

Edit Distance

Min number of character insertions, deletions, and substitutions that transform X to Y

```
OClllllll
ed(0PIN1CIV,OPINION) = 5
```


Background

Edit Distance

Min number of character insertions, deletions, and substitutions that transform X to Y

Background

Weighted Edit Distance

Min cost of transforming X to Y using character edits, where:

- inserting y costs $w(\varepsilon, y)$;
- deleting x costs $w(x, \varepsilon) ;$
- substituting x for y costs $w(x, y)$.

$$
w(0,0):=1 \quad w(1, I):=1 \quad w(C, 0):=1 \quad w(*, *):=2 \quad w(*, \varepsilon):=1 \quad w(\varepsilon, *):=10
$$

Background

Weighted Edit Distance

Min cost of transforming X to Y using character edits, where:

- inserting y costs $w(\varepsilon, y)$;
\bullet deleting x costs $w(x, \varepsilon)$;
- substituting x for y costs $w(x, y)$.

$$
w(0,0):=1 \quad w(1, \mathrm{I}):=1 \quad w(C, 0):=1 \quad w(*, *):=2 \quad w(*, \varepsilon):=1 \quad w(\varepsilon, *):=10
$$

$e^{w}(0$ PIN1CIV, OPINION $)=6$

ed $^{W}(0$ PIN1CIV, PICNIC) ≤ 14

Background

Weighted Edit Distance

Min cost of transforming X to Y using character edits, where:

- inserting y costs $w(\varepsilon, y)$;
\bullet deleting x costs $w(x, \varepsilon)$;
- substituting x for y costs $w(x, y)$.

$$
w(0,0):=1 \quad w(1, \mathrm{I}):=1 \quad w(C, 0):=1 \quad w(*, *):=2 \quad w(*, \varepsilon):=1 \quad w(\varepsilon, *):=10
$$

$e^{w}(0$ PIN1CIV, OPINION $)=6$

$e d^{W}(0 P I N 1 C I V, P I C N I C)=8$

Computing (Weighted) Edit Distance

How fast can we compute the (weighted) edit distance of two strings?
$\rightsquigarrow O\left(n^{2}\right) \quad$ (you know this!)

Computing (Weighted) Edit Distance

How fast can we compute the (weighted) edit distance of two strings?
$\rightsquigarrow O\left(n^{2}\right) \quad$ (you know this!)

What if the (weighted) edit distance is small (at most k)?

Computing (Weighted) Edit Distance

How fast can we compute the (weighted) edit distance of two strings?
$\rightsquigarrow O\left(n^{2}\right) \quad$ (you know this!)

What if the (weighted) edit distance is small (at most k)?
\rightsquigarrow Bounded (Weighted) Edit Distance

Algorithms for (Bounded) Edit Distance

Existing algorithms for Edit Distance ed (X, Y), where $|X|,|Y| \leq n$

Algorithms for (Bounded) Edit Distance

Existing algorithms for Edit Distance ed (X, Y), where $|X|,|Y| \leq n$

Algorithms for (Bounded) Edit Distance

Existing algorithms for Edit Distance ed (X, Y), where $|X|,|Y| \leq n$

Algorithms for (Bounded) Weighted Edit Distance

What about Weighted Edit Distance?

Algorithms for (Bounded) Weighted Edit Distance

Existing algorithms for Weighted Edit Distance ed ${ }^{w}(X, Y)$, where $|X|,|Y| \leq n$

Algorithms for (Bounded) Weighted Edit Distance

Existing algorithms for Weighted Edit Distance ed ${ }^{w}(X, Y)$, where $|X|,|Y| \leq n$

Algorithms for (Bounded) Weighted Edit Distance

Existing algorithms for Weighted Edit Distance ed ${ }^{w}(X, Y)$, where $|X|,|Y| \leq n$

Algorithms for (Bounded) Weighted Edit Distance

Existing algorithms for Weighted Edit Distance ed ${ }^{w}(X, Y)$, where $|X|,|Y| \leq n$

Main Results

Main Theorem 1 (Upper Bound)

Strings X, Y each of length at most n
Oracle access to (normalized) weight function w Can compute $k=\mathrm{ed}^{W}(X, Y)$ in time $O\left(n+\sqrt{n k^{3}} \log ^{3} n\right)$

Main Results

Main Theorem 1 (Upper Bound)

Strings X, Y each of length at most n

Oracle access to (normalized) weight function w Can compute $k=\mathrm{ed}^{W}(X, Y)$ in time $O\left(n+\sqrt{n k^{3}} \log ^{3} n\right)$

Main Theorem 2 (Lower Bound)

Assuming the APSP Hypothesis and for $\sqrt{n} \leq k \leq n$, Main Theorem 1 is tight (up to $n^{o(1)}$-factors)

Bounded Weighted Edit Distance

Min cost of transforming X to Y using character edits (if it is at most k), where:

- inserting y costs $w(\varepsilon, y)$;
- deleting x costs $w(x, \varepsilon)$;
- substituting x for y costs $w(x, y)$.

Bounded Weighted Edit Distance

Min cost of transforming X to Y using character edits (if it is at most k), where:

- inserting y costs $w(\varepsilon, y)$;
- deleting x costs $w(x, \varepsilon)$;
- substituting x for y costs $w(x, y)$.
- Justified Assumption: $\quad w$ is normalized, $w(x, y) \geq 1$ for all $x \neq y$.

Tool o: Unweighted ED and [DGHKS23]-Kernel

Bounded Weighted Edit Distance

Min cost of transforming X to Y using character edits (if it is at most k), where:

- inserting y costs $w(\varepsilon, y)$;
- deleting x costs $w(x, \varepsilon)$;
- substituting x for y costs $w(x, y)$.
- Justified Assumption: w is normalized, $w(x, y) \geq 1$ for all $x \neq y$.
\rightsquigarrow Have (via $O\left(n+k^{2}\right)$ algo): Alignment $A: X \rightsquigarrow>Y$ of unweighted cost $\leq k$

Tool o: Unweighted ED and [DGHKS23]-Kernel

Bounded Weighted Edit Distance

Min cost of transforming X to Y using character edits (if it is at most k), where:
\bullet inserting y costs $w(\varepsilon, y) ; \quad$ deleting $x \operatorname{costs} w(x, \varepsilon)$; substituting x for y costs $w(x, y)$.

- Justified Assumption: w is normalized, $w(x, y) \geq 1$ for all $x \neq y$.
\rightsquigarrow Have (via $O\left(n+k^{2}\right)$ algo): Alignment $A: X \leadsto \gg$ of unweighted cost $\leq k$
$\rightsquigarrow A$ aligns edit-free most of X with Y [DGHKS23]

Bounded Weighted Edit Distance

Min cost of transforming X to Y using character edits (if it is at most k), where:
\bullet inserting y costs $w(\varepsilon, y)$; deleting x costs $w(x, \varepsilon)$; substituting x for y costs $w(x, y)$.

- Justified Assumption: w is normalized, $w(x, y) \geq 1$ for all $x \neq y$.
\rightsquigarrow Have (via $O\left(n+k^{2}\right)$ algo): Alignment $A: X \rightsquigarrow \gg$ of unweighted cost $\leq k$
$\rightsquigarrow A$ aligns edit-free most of X with Y [DGHKS23]

Theorem (Universal Kernel)

Can trim X and Y to length- $O\left(k^{4}\right)$ strings X^{\prime}, Y^{\prime} with $\operatorname{ed}_{s k}^{w}(X, Y)=\operatorname{ed}_{s k}^{w}\left(X^{\prime}, Y^{\prime}\right)$.

Bounded Weighted Edit Distance

Min cost of transforming X to Y using character edits (if it is at most k), where:
\bullet inserting y costs $w(\varepsilon, y)$; deleting $x \operatorname{costs} w(x, \varepsilon)$; substituting x for $y \operatorname{costs} w(x, y)$.

- Justified Assumption: w is normalized, $w(x, y) \geq 1$ for all $x \neq y$.
\rightsquigarrow Have (via $O\left(n+k^{2}\right)$ algo): Alignment $A: X \rightsquigarrow \gg$ of unweighted cost $\leq k$
$\rightsquigarrow A$ aligns edit-free most of X with Y [DGHKS23]

Theorem (Universal Kernel)

Can trim X and Y to length- $O\left(k^{4}\right)$ strings X^{\prime}, Y^{\prime} with $\operatorname{ed}_{s k}^{w}(X, Y)=\operatorname{ed}_{s k}^{w}\left(X^{\prime}, Y^{\prime}\right)$. X^{\prime} and Y^{\prime} consist in $O\left(k^{2}\right)$ pieces of length $O\left(k^{2}\right)$ and with period $O(k)$ each

Tool 1: Alignment Graphs and Multiple-Source Shortest Path

- X and Y consist in $O\left(k^{2}\right)$ pieces of length $O\left(k^{2}\right)$ and with period $O(k)$ each
- X and Y consist in $O\left(k^{2}\right)$ pieces of length $O\left(k^{2}\right)$ and with period $O(k)$ each
- Idea: Use alignment graph AG of X and Y

- X and Y consist in $O\left(k^{2}\right)$ pieces of length $O\left(k^{2}\right)$ and with period $O(k)$ each
- Idea: Use alignment graph AG of X and $Y \rightsquigarrow \mathrm{ed}^{w}(X, Y)$ is distance $(0,0) \rightsquigarrow(|X|,|Y|)$

- X and Y consist in $O\left(k^{2}\right)$ pieces of length $O\left(k^{2}\right)$ and with period $O(k)$ each
- Idea: Use alignment graph AG of X and $Y \rightsquigarrow \mathrm{ed}^{w}(X, Y)$ is distance $(0,0) \rightsquigarrow(|X|,|Y|)$
- Idea ${ }^{2}$: Trim AG to $O(k)$ diagonals $\rightsquigarrow \operatorname{ed}_{\leq k}^{w}(X, Y)$ is distance $(0,0) \rightsquigarrow(|X|,|Y|)$

- X and Y consist in $O\left(k^{2}\right)$ pieces of length $O\left(k^{2}\right)$ and with period $O(k)$ each
- Idea: Use alignment graph AG of X and $Y \rightsquigarrow \mathrm{ed}^{W}(X, Y)$ is distance $(0,0) \rightsquigarrow(|X|,|Y|)$
- Idea ${ }^{2}$: Trim AG to $O(k)$ diagonals $\rightsquigarrow \mathrm{ed}_{\leq k}^{w}(X, Y)$ is distance $(0,0) \rightsquigarrow(|X|,|Y|)$ \rightsquigarrow AG has $O\left(k^{5}\right)$ vertices \rightsquigarrow Dijkstra yields $\tilde{O}\left(k^{5}\right)$ algo

- X and Y consist in $O\left(k^{2}\right)$ pieces of length $O\left(k^{2}\right)$ and with period $O(k)$ each
- Idea: Use alignment graph AG of X and $Y \rightsquigarrow \operatorname{ed}^{w}(X, Y)$ is distance $(0,0) \rightsquigarrow(|X|,|Y|)$
- Idea ${ }^{2}$: Trim AG to $O(k)$ diagonals $\rightsquigarrow \operatorname{ed}_{s k}^{w}(X, Y)$ is distance $(0,0) \rightsquigarrow(|X|,|Y|)$
- Idea ${ }^{3}$: Split AG according to structure of X and Y

Compute all b-to-b dist [Kleino5] + stitch together results ((min, +)-product [SMAWK87])

- X and Y consist in $O\left(k^{2}\right)$ pieces of length $O\left(k^{2}\right)$ and with period $O(k)$ each
- Idea: Use alignment graph AG of X and $Y \rightsquigarrow \operatorname{ed}^{W}(X, Y)$ is distance $(0,0) \rightsquigarrow(|X|,|Y|)$
- Idea ${ }^{2}$: Trim AG to $O(k)$ diagonals $\rightsquigarrow \mathrm{ed}_{s k}^{w}(X, Y)$ is distance $(0,0) \rightsquigarrow(|X|,|Y|)$
- Idea ${ }^{3}$: Split AG according to structure of X and Y

Compute all b-to-b dist [Kleino5] + stitch together results ((min, +)-product [SMAWK87]) $\rightsquigarrow k^{2} \cdot \tilde{O}\left(k^{3}\right)$ for periodic pieces $+k^{2} \cdot \tilde{O}\left(k^{2}\right)$ for stitching

- X and Y consist in $O\left(k^{2}\right)$ pieces of length $O\left(k^{2}\right)$ and with period $O(k)$ each
- Idea: Use alignment graph AG of X and $Y \rightsquigarrow \operatorname{ed}^{w}(X, Y)$ is distance $(0,0) \rightsquigarrow(|X|,|Y|)$
- Idea ${ }^{2}$: Trim AG to $O(k)$ diagonals $\rightsquigarrow \operatorname{ed}_{s k}^{w}(X, Y)$ is distance $(0,0) \rightsquigarrow(|X|,|Y|)$
- Idea ${ }^{3}$: Split AG according to structure of X and Y Compute all b-to-b dist [Kleino5] + stitch together results ((min, +)-product [SMAWK87]) for periodic pieces: fast exponentiation;
$\rightsquigarrow k^{2} \cdot \tilde{O}\left(k^{2}\right)$ for periodic pieces $+k^{2} \cdot \tilde{O}\left(k^{2}\right)$ for stitching

Tool 2: Divide and Conquer

- X and Y consist in $O\left(k^{2}\right)$ periodic pieces of length $O\left(k^{2}\right)$ and with period $O(k)$ each
- Idea: Use AG, trimmed to $O(k)$ diags $\rightsquigarrow \operatorname{ed}_{s k}^{w}(X, Y)$ is distance $(0,0) \rightsquigarrow(|X|,|Y|)$
- Idea ${ }^{3}$: Compute all b-to-b dist for periodic pieces [Klein05] + fast exponentiation; stitch together results using min-plus product [SMAWK87]
- Idea ${ }^{4}$: Use Divide-and-Conquer to reduce number of periodic pieces to $O(k)$
- X and Y consist in $O\left(k^{2}\right)$ periodic pieces of length $O\left(k^{2}\right)$ and with period $O(k)$ each
- Idea: Use AG, trimmed to $O(k)$ diags $\rightsquigarrow \operatorname{ed}_{s k}^{w}(X, Y)$ is distance $(0,0) \rightsquigarrow(|X|,|Y|)$
- Idea ${ }^{3}$: Compute all b-to-b dist for periodic pieces [Kleino5] + fast exponentiation; stitch together results using min-plus product [SMAWK87]
- Idea ${ }^{4}$: Use Divide-and-Conquer to reduce number of periodic pieces to $O(k)$ $\rightsquigarrow k \cdot \tilde{O}\left(k^{2}\right)$ for periodic pieces (and padding) $+k \cdot \tilde{O}\left(k^{2}\right)$ for stitching
- X and Y consist in $O(k)$ pieces of length $O\left(k^{2}\right)$ each
- Idea: Use AG, trimmed to $O(k)$ diags $\rightsquigarrow \operatorname{ed}_{s k}^{w}(X, Y)$ is distance $(0,0) \rightsquigarrow(|X|,|Y|)$
- Idea ${ }^{3}$: Compute all b-to-b dist for periodic pieces [Kleino5] + fast exponentiation; stitch together results using min-plus product [SMAWK87]
- Idea4: Use Divide-and-Conquer to reduce number of periodic pieces to $O(k)$
- Idea ${ }^{5}$: Use tailor-made compressibility measure instead of periodicity $+(w) E D$ algorithms for compressed strings
$\rightsquigarrow \tilde{O}\left(n+\sqrt{k^{3} n}\right)$ time in total

Main Results

Main Theorem 1 (Upper Bound)

Strings X, Y each of length at most n
Oracle access to (normalized) weight function w Can compute $k=\mathrm{ed}^{W}(X, Y)$ in time $O\left(n+\sqrt{n k^{3}} \log ^{3} n\right)$

Main Theorem 2 (Lower Bound)

Assuming the APSP Hypothesis and for $\sqrt{n} \leq k \leq n$, Main Theorem 1 is tight (up to $n^{o(1)}$-factors)

> All-Pairs Shortest Paths Hypothesis

There is no algorithm for APSP on n vertex graphs with running time $O\left(n^{3-\varepsilon}\right)$.

All-Pairs Shortest Paths Hypothesis

There is no algorithm for APSP on n vertex graphs with running time $O\left(n^{3-\varepsilon}\right)$.

Check if n vertex graph has a negative triangle (3 vertices u, v, x with $w(u, v)+w(v, x)+w(u, x)<0$)
APSP-H $\stackrel{[\mathrm{VWW} 18]}{\Longleftrightarrow}$ Negative Triangle

All-Pairs Shortest Paths Hypothesis

There is no algorithm for APSP on n vertex graphs with running time $O\left(n^{3-\varepsilon}\right)$.

Min-Plus Product Minimum

Given 3 matrices A, B, C, check if min diag entry of (min, +)-product $A \oplus B \oplus C$ is negative
APSP-H $\stackrel{[\mathrm{VWW} 18]}{\Longleftrightarrow}$ Negative Triangle $\stackrel{[\mathrm{VWW} 18]}{\Longleftrightarrow} \quad$ MPP-Minimum

$$
\min (\triangle A \oplus \square \oplus C)<0
$$

Min-Plus Product Minimum

Given 3 matrices A, B, C, check if min diag entry of (min, +)-product $A \oplus B \oplus C$ is negative

- Step 1: Compute matrix-vector product $A \oplus b$ as weighted ED of two gadget strings \rightsquigarrow encode matrix/vector as substitution costs

Min-Plus Product Minimum

Given 3 matrices A, B, C, check if min diag entry of (min, +)-product $A \oplus B \oplus C$ is negative

- Step 1: Compute matrix-vector product $A \oplus b$ as weighted ED of two gadget strings \rightsquigarrow encode matrix/vector as substitution costs

Min-Plus Product Minimum

Given 3 matrices A, B, C, check if min diag entry of (min, +)-product $A \oplus B \oplus C$ is negative

- Step 1: Compute matrix-vector product $A \oplus b$ as weighted ED of two gadget strings
\rightsquigarrow encode matrix/vector as substitution costs

Min-Plus Product Minimum

Given 3 matrices A, B, C, check if min diag entry of (min, +)-product $A \oplus B \oplus C$ is negative

- Step 1: Compute matrix-vector product $A \oplus b$ as weighted ED of two gadget strings
\rightsquigarrow encode matrix/vector as substitution costs

Min-Plus Product Minimum

Given 3 matrices A, B, C, check if min diag entry of (min, +)-product $A \oplus B \oplus C$ is negative

- Step 1: Compute matrix-vector product $A \oplus b$ as weighted ED of two gadget strings
\rightsquigarrow encode matrix/vector as substitution costs
\rightsquigarrow use telescoping sums

Min-Plus Product Minimum

Given 3 matrices A, B, C, check if min diag entry of (min, +)-product $A \oplus B \oplus C$ is negative

- Step 1: Compute matrix-vector product $A \oplus b$ as weighted ED of two gadget strings
\rightsquigarrow encode matrix/vector as substitution costs
\rightsquigarrow use telescoping sums
- Step 2: Compute $A \oplus b^{\prime}$ by replacing single character of X

Min-Plus Product Minimum

Given 3 matrices A, B, C, check if min diag entry of (min, +)-product $A \oplus B \oplus C$ is negative

- Step 1: Compute matrix-vector product $A \oplus b$ as weighted ED of two gadget strings
\rightsquigarrow encode matrix/vector as substitution costs
\rightsquigarrow use telescoping sums
- Step 2: Compute $A \oplus b^{\prime}$ by replacing single character of X
\rightsquigarrow Allows to compute $A \oplus B$; encode C similarly to B
\rightsquigarrow Use selection gadget for $\operatorname{ed}^{W}(X, Y) \approx \min (A \oplus B \oplus C)$
\rightsquigarrow Lower bound for dynamic problem

Tool 2: Minimum Gadget via Intermediate Strings

- Have: Lower bound for dynamic problem
\rightsquigarrow turn into LB for static problem
- Have: Lower bound for dynamic problem
\rightsquigarrow turn into LB for static problem
- Step 3: Take snapshots $\left(X_{i}, Y\right)$

X_{1}	Y
X_{2}	Y

$X_{3} \quad Y$
$X_{4} \quad Y$

- Have: Lower bound for dynamic problem
\rightsquigarrow turn into LB for static problem
- Step 3: Take snapshots (X_{i}, Y)
- Step 4: Create intermediate strings $\left(Y, \hat{X}_{(i-1) i}\right)$

	\hat{X}_{01}
X_{1}	Y
y	\hat{X}_{12}
x_{2}	Y
y	\hat{X}_{23}
x_{3}	Y
Y	\hat{X}_{34}
x_{4}	Y
	\hat{X}_{45}

- Have: Lower bound for dynamic problem
\rightsquigarrow turn into LB for static problem
- Step 3: Take snapshots $\left(X_{i}, Y\right)$
- Step 4: Create intermediate strings $\left(Y, \hat{X}_{(i-1) i}\right)$
\rightsquigarrow may align \hat{X}_{i} with either X_{i} or X_{i+1} for the same cost

\hat{X}_{45}

- Have: Lower bound for dynamic problem
\rightsquigarrow turn into LB for static problem
- Step 3: Take snapshots (X_{i}, Y)
- Step 4: Create intermediate strings $\left(Y, \hat{X}_{(i-1) i}\right)$
\rightsquigarrow may align \hat{X}_{i} with either X_{i} or X_{i+1} for the same cost
- Step 5: Forbid inserting or deleting Y (simplification)
$(w(\varepsilon, Y):=\infty, w(Y, \varepsilon):=\infty)$
\rightsquigarrow Have to align exactly one X_{i} to Y

- Have: Lower bound for dynamic problem
\rightsquigarrow turn into LB for static problem
- Step 3: Take snapshots (X_{i}, Y)
- Step 4: Create intermediate strings $\left(Y, \hat{X}_{(i-1) i}\right)$
\rightsquigarrow may align \hat{X}_{i} with either X_{i} or X_{i+1} for the same cost
- Step 5: Forbid inserting or deleting Y (simplification)
$(w(\varepsilon, Y):=\infty, w(Y, \varepsilon):=\infty)$
\rightsquigarrow Have to align exactly one X_{i} to Y

$x_{4}-Y$
- Have: Lower bound for dynamic problem
\rightsquigarrow turn into LB for static problem
- Step 3: Take snapshots (X_{i}, Y)
- Step 4: Create intermediate strings $\left(Y, \hat{X}_{(i-1) i}\right)$
\rightsquigarrow may align \hat{X}_{i} with either X_{i} or X_{i+1} for the same cost
- Step 5: Forbid inserting or deleting $Y_{\text {(simplification) }}$
$(w(\varepsilon, Y):=\infty, w(Y, \varepsilon):=\infty)$

\rightsquigarrow Have to align exactly one X_{i} to Y
\rightsquigarrow Minimum gadget: $\operatorname{ed}^{w}(\hat{X}, \hat{Y}) \approx \min ^{w}\left(X_{i}, Y\right)$
\rightsquigarrow Static LB

Main Results

Main Theorem 1 (Upper Bound)

Strings X, Y each of length at most n
Oracle access to (normalized) weight function w Can compute $k=\mathrm{ed}^{W}(X, Y)$ in time $O\left(n+\sqrt{n k^{3}} \log ^{3} n\right)$

Main Theorem 2 (Lower Bound)

Assuming the APSP Hypothesis and for $\sqrt{n} \leq k \leq n$, Main Theorem 1 is tight (up to $n^{0(1)}$-factors)

Key Messages and Open Problems

Key Messages

- Bounded Weighted Edit Distance is harder than Bounded Unweighted Edit Distance
- (Weighted) Edit Distance is Shortest Paths on Planar Graphs
- APSP-based Lower Bounds via Grid Construction and Dynamic Intermediate Problem

Key Messages and Open Problems

Key Messages

- Bounded Weighted Edit Distance is harder than Bounded Unweighted Edit Distance
- (Weighted) Edit Distance is Shortest Paths on Planar Graphs
- APSP-based Lower Bounds via Grid Construction and Dynamic Intermediate Problem

Open Questions

- What is the true complexity of $n^{1 / 3} \leq k \leq n^{1 / 2}$? Must be between $n+k^{2.5}$ and $\sqrt{n k^{3}}$.
- Is the problem easier for small (constant-sized) alphabets?
- Is there any easy class of weight functions?

Navigation

Start
End

