
1

Optimal Algorithms for Bounded Weighted Edit Distance

Alejandro Cassis Tomasz Kociumaka Philip Wellnitz
Saarland University MPI-INF, SIC MPI-INF, SIC

MPI-INF, SIC

2

Key Messages

Bounded Weighted Edit Distance is harder than Bounded Unweighted Edit Distance

(Weighted) Edit Distance is Shortest Paths on Planar Graphs

APSP-based Lower Bounds via Grid Construction and Dynamic Intermediate Problem

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

3-1

An Example

How similar are two strings 𝑋 and 𝑌?

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

3-2

An Example

How similar are two strings 𝑋 and 𝑌?

OPINION PICNIC

0PIN1CIV

?

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

3-3

An Example

How similar are two strings 𝑋 and 𝑌?

OPINION PICNIC

0PIN1CIV

? ?

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

4-1

Background

Edit Distance ed(𝑋, 𝑌)

Min number of character insertions, deletions, and substitutions that transform 𝑋 to 𝑌

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

4-2

Background

Edit Distance ed(𝑋, 𝑌)

Min number of character insertions, deletions, and substitutions that transform 𝑋 to 𝑌

O P I N I O N

0 P I N 1 C I V

ed(0PIN1CIV,OPINION) = 5

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

4-3

Background

Edit Distance ed(𝑋, 𝑌)

Min number of character insertions, deletions, and substitutions that transform 𝑋 to 𝑌

O P I N I O N

0 P I N 1 C I V

P I C N I C

O P I N 1 C I V0

ed(0PIN1CIV,OPINION) = 5 ed(0PIN1CIV,PICNIC) = 5

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

5-1

Background

Weighted Edit Distance ed𝑤(𝑋, 𝑌)

Min cost of transforming 𝑋 to 𝑌 using character edits, where:
inserting 𝑦 costs 𝑤(𝜀, 𝑦); deleting 𝑥 costs 𝑤(𝑥, 𝜀);

substituting 𝑥 for 𝑦 costs 𝑤(𝑥, 𝑦).

𝑤(0,O) ∶= 1 𝑤(1,I) ∶= 1 𝑤(C,O) ∶= 1 𝑤(∗, ∗) ∶= 2 𝑤(∗, 𝜀) ∶= 1 𝑤(𝜀, ∗) ∶= 10

O P I N I O N

0 P I N 1 C I V

P I C N I C

O P I N 1 C I V0

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

5-2

Background

Weighted Edit Distance ed𝑤(𝑋, 𝑌)

Min cost of transforming 𝑋 to 𝑌 using character edits, where:
inserting 𝑦 costs 𝑤(𝜀, 𝑦); deleting 𝑥 costs 𝑤(𝑥, 𝜀);

substituting 𝑥 for 𝑦 costs 𝑤(𝑥, 𝑦).

𝑤(0,O) ∶= 1 𝑤(1,I) ∶= 1 𝑤(C,O) ∶= 1 𝑤(∗, ∗) ∶= 2 𝑤(∗, 𝜀) ∶= 1 𝑤(𝜀, ∗) ∶= 10

O P I N I O N

0 P I N 1 C I V

P I C N I C

O P I N 1 C I V0

ed𝑤(0PIN1CIV,OPINION) = 6 ed𝑤(0PIN1CIV,PICNIC) ≤ 14

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

5-3

Background

Weighted Edit Distance ed𝑤(𝑋, 𝑌)

Min cost of transforming 𝑋 to 𝑌 using character edits, where:
inserting 𝑦 costs 𝑤(𝜀, 𝑦); deleting 𝑥 costs 𝑤(𝑥, 𝜀);

substituting 𝑥 for 𝑦 costs 𝑤(𝑥, 𝑦).

𝑤(0,O) ∶= 1 𝑤(1,I) ∶= 1 𝑤(C,O) ∶= 1 𝑤(∗, ∗) ∶= 2 𝑤(∗, 𝜀) ∶= 1 𝑤(𝜀, ∗) ∶= 10

O P I N I O N

0 P I N 1 C I V

P I C N I C

O P I N 1 C I V0

ed𝑤(0PIN1CIV,OPINION) = 6 ed𝑤(0PIN1CIV,PICNIC) = 8

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

6-1

Computing (Weighted) Edit Distance

How fast can we compute the (weighted) edit distance of two strings?

 𝑂(𝑛2) (you know this!)

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

6-2

Computing (Weighted) Edit Distance

How fast can we compute the (weighted) edit distance of two strings?

 𝑂(𝑛2) (you know this!)

What if the (weighted) edit distance is small (at most 𝑘)?

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

6-3

Computing (Weighted) Edit Distance

How fast can we compute the (weighted) edit distance of two strings?

 𝑂(𝑛2) (you know this!)

What if the (weighted) edit distance is small (at most 𝑘)?

 Bounded (Weighted) Edit Distance

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

7-1

Algorithms for (Bounded) Edit Distance

𝑂(𝑛2), [Vin68,NW70,Sel74,WF74]

𝑘 ≈
1

𝑘 ≈
𝑛

◷(𝑛, 𝑘) ≈ 𝑛

◷(𝑛, 𝑘) ≈ 𝑛2

“almost equal” “completely different”

“fast”

“slow”

“fast”

“slow”

Existing algorithms for Edit Distance ed(𝑋, 𝑌), where |𝑋|, |𝑌| ≤ 𝑛

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

7-2

Algorithms for (Bounded) Edit Distance

𝑂(
𝑛 +
𝑘2
) [L
V8
8]

𝑂(𝑛2), [Vin68,NW70,Sel74,WF74]

𝑂(𝑛
𝑘),

[Uk
k85

,My
e86

]

𝑘 ≈
1

𝑘 ≈
𝑛
1/
2

𝑘 ≈
𝑛

◷(𝑛, 𝑘) ≈ 𝑛

◷(𝑛, 𝑘) ≈ 𝑛2

“almost equal” “completely different”

“fast”

“slow”

“fast”

“slow”

Existing algorithms for Edit Distance ed(𝑋, 𝑌), where |𝑋|, |𝑌| ≤ 𝑛

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

7-3

Algorithms for (Bounded) Edit Distance

𝑂(
𝑛 +
𝑘2
) [L
V8
8]

Ω(
𝑛 +
𝑘2
) [B
I18
]

𝑂(𝑛2), [Vin68,NW70,Sel74,WF74]

𝑂(𝑛
𝑘),

[Uk
k85

,My
e86

]

𝑘 ≈
1

𝑘 ≈
𝑛
1/
2

𝑘 ≈
𝑛

◷(𝑛, 𝑘) ≈ 𝑛

◷(𝑛, 𝑘) ≈ 𝑛2

“almost equal” “completely different”

“fast”

“slow”

“fast”

“slow”

Existing algorithms for Edit Distance ed(𝑋, 𝑌), where |𝑋|, |𝑌| ≤ 𝑛

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

8-1

Algorithms for (Bounded) Weighted Edit Distance

What about Weighted Edit Distance?

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

8-2

Algorithms for (Bounded) Weighted Edit Distance

𝑂(
𝑛 +
𝑘2
) [L
V8
8]

Ω(
𝑛 +
𝑘2
) [B
I18
]

𝑂(𝑛2), [Vin68,NW70,Sel74,WF74]

𝑂(𝑛
𝑘),

[Uk
k85

,My
e86

]

𝑘 ≈
1

𝑘 ≈
𝑛
1/
2

𝑘 ≈
𝑛

◷(𝑛, 𝑘) ≈ 𝑛

◷(𝑛, 𝑘) ≈ 𝑛2

“almost equal” “completely different”

“fast”

“slow”

“fast”

“slow”

Existing algorithms for Weighted Edit Distance ed𝑤(𝑋, 𝑌), where |𝑋|, |𝑌| ≤ 𝑛

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

8-3

Algorithms for (Bounded) Weighted Edit Distance

𝑂(
𝑛 +
𝑘2
) [L
V8
8]

Ω(
𝑛 +
𝑘2
) [B
I18
]

𝑂(𝑛2), [Vin68,NW70,Sel74,WF74]

𝑂(𝑛
𝑘),

[Uk
k85

,My
e86

]

𝑂(
𝑛
+ 𝑘

5),
[D
GH
KS
23
]

𝑘 ≈
1

𝑘 ≈
𝑛
1/
5

𝑘 ≈
𝑛
1/
4

𝑘 ≈
𝑛
1/
2

𝑘 ≈
𝑛

◷(𝑛, 𝑘) ≈ 𝑛

◷(𝑛, 𝑘) ≈ 𝑛5/4

◷(𝑛, 𝑘) ≈ 𝑛2

“almost equal” “completely different”

“fast”

“slow”

“fast”

“slow”

Existing algorithms for Weighted Edit Distance ed𝑤(𝑋, 𝑌), where |𝑋|, |𝑌| ≤ 𝑛

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

8-4

Algorithms for (Bounded) Weighted Edit Distance

𝑂̃(
𝑛 +
√𝑘
3 𝑛)
, T
his
wo
rk

𝑂(
𝑛 +
𝑘2
) [L
V8
8]

Ω(
𝑛 +
𝑘2
) [B
I18
]

𝑂(𝑛2), [Vin68,NW70,Sel74,WF74]

𝑂(𝑛
𝑘),

[Uk
k85

,My
e86

]

𝑂(
𝑛
+ 𝑘

5),
[D
GH
KS
23
]

𝑘 ≈
1

𝑘 ≈
𝑛
1/
5

𝑘 ≈
𝑛
1/
4

𝑘 ≈
𝑛
1/
3

𝑘 ≈
𝑛
1/
2

𝑘 ≈
𝑛

◷(𝑛, 𝑘) ≈ 𝑛

◷(𝑛, 𝑘) ≈ 𝑛5/4

◷(𝑛, 𝑘) ≈ 𝑛2

“almost equal” “completely different”

“fast”

“slow”

“fast”

“slow”

Existing algorithms for Weighted Edit Distance ed𝑤(𝑋, 𝑌), where |𝑋|, |𝑌| ≤ 𝑛

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

8-5

Algorithms for (Bounded) Weighted Edit Distance

𝑂̃(
𝑛 +
√𝑘
3 𝑛)
, T
his
wo
rk

Ω(
𝑛 +
√𝑘
3 𝑛)
, T
his
wo
rk

Ω(
𝑛
+ 𝑘

2.5
),

Th
is
wo
rk

Ω(
𝑛 +
𝑘2
) [B
I18
]

𝑂(𝑛2), [Vin68,NW70,Sel74,WF74]

𝑂(𝑛
𝑘),

[Uk
k85

,My
e86

]

𝑂(
𝑛
+ 𝑘

5),
[D
GH
KS
23
]

𝑘 ≈
1

𝑘 ≈
𝑛
1/
5

𝑘 ≈
𝑛
1/
4

𝑘 ≈
𝑛
1/
3

𝑘 ≈
𝑛
2/
5

𝑘 ≈
𝑛
1/
2

𝑘 ≈
𝑛

◷(𝑛, 𝑘) ≈ 𝑛

◷(𝑛, 𝑘) ≈ 𝑛5/4

◷(𝑛, 𝑘) ≈ 𝑛2

“almost equal” “completely different”

“fast”

“slow”

“fast”

“slow”

Existing algorithms for Weighted Edit Distance ed𝑤(𝑋, 𝑌), where |𝑋|, |𝑌| ≤ 𝑛

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

9-1

Main Results

Main Theorem 1 (Upper Bound)
Strings 𝑋, 𝑌 each of length at most 𝑛

Oracle access to (normalized) weight function 𝑤
Can compute 𝑘 = ed𝑤(𝑋, 𝑌) in time 𝑂(𝑛 + √𝑛𝑘3 log3 𝑛)

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

9-2

Main Results

Main Theorem 1 (Upper Bound)
Strings 𝑋, 𝑌 each of length at most 𝑛

Oracle access to (normalized) weight function 𝑤
Can compute 𝑘 = ed𝑤(𝑋, 𝑌) in time 𝑂(𝑛 + √𝑛𝑘3 log3 𝑛)

Main Theorem 2 (Lower Bound)
Assuming the apsp Hypothesis and for √𝑛 ≤ 𝑘 ≤ 𝑛,
Main Theorem 1 is tight (up to 𝑛𝑜(1)-factors)

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

10-1

Tool 0: Unweighted ED and [DGHKS23]-KernelUpper
Bounds

Bounded Weighted Edit Distance ed
𝑤
≤𝑘(𝑋, 𝑌)

Min cost of transforming 𝑋 to 𝑌 using character edits (if it is at most 𝑘), where:
inserting 𝑦 costs 𝑤(𝜀, 𝑦); deleting 𝑥 costs 𝑤(𝑥, 𝜀); substituting 𝑥 for 𝑦 costs 𝑤(𝑥, 𝑦).

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

10-2

Tool 0: Unweighted ED and [DGHKS23]-KernelUpper
Bounds

Bounded Weighted Edit Distance ed
𝑤
≤𝑘(𝑋, 𝑌)

Min cost of transforming 𝑋 to 𝑌 using character edits (if it is at most 𝑘), where:
inserting 𝑦 costs 𝑤(𝜀, 𝑦); deleting 𝑥 costs 𝑤(𝑥, 𝜀); substituting 𝑥 for 𝑦 costs 𝑤(𝑥, 𝑦).

Justified Assumption: 𝑤 is normalized, 𝑤(𝑥, 𝑦) ≥ 1 for all 𝑥 ≠ 𝑦.

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

10-3

Tool 0: Unweighted ED and [DGHKS23]-KernelUpper
Bounds

Bounded Weighted Edit Distance ed
𝑤
≤𝑘(𝑋, 𝑌)

Min cost of transforming 𝑋 to 𝑌 using character edits (if it is at most 𝑘), where:
inserting 𝑦 costs 𝑤(𝜀, 𝑦); deleting 𝑥 costs 𝑤(𝑥, 𝜀); substituting 𝑥 for 𝑦 costs 𝑤(𝑥, 𝑦).

Justified Assumption: 𝑤 is normalized, 𝑤(𝑥, 𝑦) ≥ 1 for all 𝑥 ≠ 𝑦.
 Have (via 𝑂(𝑛 + 𝑘2) algo): Alignment 𝐴 ∶ 𝑋 𝑌 of unweighted cost ≤ 𝑘

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

10-4

Tool 0: Unweighted ED and [DGHKS23]-KernelUpper
Bounds

Bounded Weighted Edit Distance ed
𝑤
≤𝑘(𝑋, 𝑌)

Min cost of transforming 𝑋 to 𝑌 using character edits (if it is at most 𝑘), where:
inserting 𝑦 costs 𝑤(𝜀, 𝑦); deleting 𝑥 costs 𝑤(𝑥, 𝜀); substituting 𝑥 for 𝑦 costs 𝑤(𝑥, 𝑦).

Justified Assumption: 𝑤 is normalized, 𝑤(𝑥, 𝑦) ≥ 1 for all 𝑥 ≠ 𝑦.
 Have (via 𝑂(𝑛 + 𝑘2) algo): Alignment 𝐴 ∶ 𝑋 𝑌 of unweighted cost ≤ 𝑘
 𝐴 aligns edit-free most of 𝑋 with 𝑌 [DGHKS23]

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

10-5

Tool 0: Unweighted ED and [DGHKS23]-KernelUpper
Bounds

Bounded Weighted Edit Distance ed
𝑤
≤𝑘(𝑋, 𝑌)

Min cost of transforming 𝑋 to 𝑌 using character edits (if it is at most 𝑘), where:
inserting 𝑦 costs 𝑤(𝜀, 𝑦); deleting 𝑥 costs 𝑤(𝑥, 𝜀); substituting 𝑥 for 𝑦 costs 𝑤(𝑥, 𝑦).

Justified Assumption: 𝑤 is normalized, 𝑤(𝑥, 𝑦) ≥ 1 for all 𝑥 ≠ 𝑦.
 Have (via 𝑂(𝑛 + 𝑘2) algo): Alignment 𝐴 ∶ 𝑋 𝑌 of unweighted cost ≤ 𝑘
 𝐴 aligns edit-free most of 𝑋 with 𝑌 [DGHKS23]

Theorem (Universal Kernel) [DGHKS23]

Can trim 𝑋 and 𝑌 to length-𝑂(𝑘4) strings 𝑋′, 𝑌 ′ with ed
𝑤
≤𝑘(𝑋, 𝑌) = ed

𝑤
≤𝑘(𝑋′, 𝑌 ′).

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

10-6

Tool 0: Unweighted ED and [DGHKS23]-KernelUpper
Bounds

Bounded Weighted Edit Distance ed
𝑤
≤𝑘(𝑋, 𝑌)

Min cost of transforming 𝑋 to 𝑌 using character edits (if it is at most 𝑘), where:
inserting 𝑦 costs 𝑤(𝜀, 𝑦); deleting 𝑥 costs 𝑤(𝑥, 𝜀); substituting 𝑥 for 𝑦 costs 𝑤(𝑥, 𝑦).

Justified Assumption: 𝑤 is normalized, 𝑤(𝑥, 𝑦) ≥ 1 for all 𝑥 ≠ 𝑦.
 Have (via 𝑂(𝑛 + 𝑘2) algo): Alignment 𝐴 ∶ 𝑋 𝑌 of unweighted cost ≤ 𝑘
 𝐴 aligns edit-free most of 𝑋 with 𝑌 [DGHKS23]

Theorem (Universal Kernel) [DGHKS23]

Can trim 𝑋 and 𝑌 to length-𝑂(𝑘4) strings 𝑋′, 𝑌 ′ with ed
𝑤
≤𝑘(𝑋, 𝑌) = ed

𝑤
≤𝑘(𝑋′, 𝑌 ′).

𝑋′ and 𝑌 ′ consist in 𝑂(𝑘2) pieces of length 𝑂(𝑘2) and with period 𝑂(𝑘) each

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

11-1

Tool 1: Alignment Graphs and Multiple-Source Shortest PathUpper
Bounds

𝑋 and 𝑌 consist in 𝑂(𝑘2) pieces of length 𝑂(𝑘2) and with period 𝑂(𝑘) each

Idea: Use alignment graph AG of 𝑋 and 𝑌
Idea2: Trim AG to 𝑂(𝑘) diagonals ed

𝑤
≤𝑘(𝑋, 𝑌) is distance (0, 0) (|𝑋|, |𝑌|)

Idea3: Split AG according to structure of 𝑋 and 𝑌
Compute all b-to-b dist [Klein05] + stitch together results ((min, +)-product [SMAWK87])

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

11-2

Tool 1: Alignment Graphs and Multiple-Source Shortest PathUpper
Bounds

𝑋 and 𝑌 consist in 𝑂(𝑘2) pieces of length 𝑂(𝑘2) and with period 𝑂(𝑘) each
Idea: Use alignment graph AG of 𝑋 and 𝑌

Idea2: Trim AG to 𝑂(𝑘) diagonals ed
𝑤
≤𝑘(𝑋, 𝑌) is distance (0, 0) (|𝑋|, |𝑌|)

Idea3: Split AG according to structure of 𝑋 and 𝑌
Compute all b-to-b dist [Klein05] + stitch together results ((min, +)-product [SMAWK87])

𝑤(x,y)

𝑤
(𝜀,y)

𝑤
(𝜀,y)

𝑤(x, 𝜀)

𝑤(x, 𝜀)

x

y

a b c d e f

z

x

w

v

u

o

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

11-3

Tool 1: Alignment Graphs and Multiple-Source Shortest PathUpper
Bounds

𝑋 and 𝑌 consist in 𝑂(𝑘2) pieces of length 𝑂(𝑘2) and with period 𝑂(𝑘) each
Idea: Use alignment graph AG of 𝑋 and 𝑌 ed𝑤(𝑋, 𝑌) is distance (0, 0) (|𝑋|, |𝑌|)

Idea2: Trim AG to 𝑂(𝑘) diagonals ed
𝑤
≤𝑘(𝑋, 𝑌) is distance (0, 0) (|𝑋|, |𝑌|)

Idea3: Split AG according to structure of 𝑋 and 𝑌
Compute all b-to-b dist [Klein05] + stitch together results ((min, +)-product [SMAWK87])

𝑤(x,y)

𝑤
(𝜀,y)

𝑤
(𝜀,y)

𝑤(x, 𝜀)

𝑤(x, 𝜀)

x

y

a b c d e f

z

x

w

v

u

o

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

11-4

Tool 1: Alignment Graphs and Multiple-Source Shortest PathUpper
Bounds

𝑋 and 𝑌 consist in 𝑂(𝑘2) pieces of length 𝑂(𝑘2) and with period 𝑂(𝑘) each
Idea: Use alignment graph AG of 𝑋 and 𝑌 ed𝑤(𝑋, 𝑌) is distance (0, 0) (|𝑋|, |𝑌|)
Idea2: Trim AG to 𝑂(𝑘) diagonals ed

𝑤
≤𝑘(𝑋, 𝑌) is distance (0, 0) (|𝑋|, |𝑌|)

Idea3: Split AG according to structure of 𝑋 and 𝑌
Compute all b-to-b dist [Klein05] + stitch together results ((min, +)-product [SMAWK87])

𝑤(x,y)

𝑤
(𝜀,y)

𝑤
(𝜀,y)

𝑤(x, 𝜀)

𝑤(x, 𝜀)

x

y

a b c d e f

z

x

w

v

u

o

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

11-5

Tool 1: Alignment Graphs and Multiple-Source Shortest PathUpper
Bounds

𝑋 and 𝑌 consist in 𝑂(𝑘2) pieces of length 𝑂(𝑘2) and with period 𝑂(𝑘) each
Idea: Use alignment graph AG of 𝑋 and 𝑌 ed𝑤(𝑋, 𝑌) is distance (0, 0) (|𝑋|, |𝑌|)
Idea2: Trim AG to 𝑂(𝑘) diagonals ed

𝑤
≤𝑘(𝑋, 𝑌) is distance (0, 0) (|𝑋|, |𝑌|)

 AG has 𝑂(𝑘5) vertices Dijkstra yields 𝑂̃(𝑘5) algo

Idea3: Split AG according to structure of 𝑋 and 𝑌
Compute all b-to-b dist [Klein05] + stitch together results ((min, +)-product [SMAWK87])

𝑤(x,y)

𝑤
(𝜀,y)

𝑤
(𝜀,y)

𝑤(x, 𝜀)

𝑤(x, 𝜀)

x

y

a b c d e f

z

x

w

v

u

o

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

11-6

Tool 1: Alignment Graphs and Multiple-Source Shortest PathUpper
Bounds

𝑋 and 𝑌 consist in 𝑂(𝑘2) pieces of length 𝑂(𝑘2) and with period 𝑂(𝑘) each
Idea: Use alignment graph AG of 𝑋 and 𝑌 ed𝑤(𝑋, 𝑌) is distance (0, 0) (|𝑋|, |𝑌|)
Idea2: Trim AG to 𝑂(𝑘) diagonals ed

𝑤
≤𝑘(𝑋, 𝑌) is distance (0, 0) (|𝑋|, |𝑌|)

Idea3: Split AG according to structure of 𝑋 and 𝑌
Compute all b-to-b dist [Klein05] + stitch together results ((min, +)-product [SMAWK87])

𝑤(x,y)

𝑤
(𝜀,y)

𝑤
(𝜀,y)

𝑤(x, 𝜀)

𝑤(x, 𝜀)

x

y

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

11-7

Tool 1: Alignment Graphs and Multiple-Source Shortest PathUpper
Bounds

𝑋 and 𝑌 consist in 𝑂(𝑘2) pieces of length 𝑂(𝑘2) and with period 𝑂(𝑘) each
Idea: Use alignment graph AG of 𝑋 and 𝑌 ed𝑤(𝑋, 𝑌) is distance (0, 0) (|𝑋|, |𝑌|)
Idea2: Trim AG to 𝑂(𝑘) diagonals ed

𝑤
≤𝑘(𝑋, 𝑌) is distance (0, 0) (|𝑋|, |𝑌|)

Idea3: Split AG according to structure of 𝑋 and 𝑌
Compute all b-to-b dist [Klein05] + stitch together results ((min, +)-product [SMAWK87])
 𝑘2 ⋅ 𝑂̃(𝑘3) for periodic pieces + 𝑘2 ⋅ 𝑂̃(𝑘2) for stitching

𝑤(x,y)

𝑤
(𝜀,y)

𝑤
(𝜀,y)

𝑤(x, 𝜀)

𝑤(x, 𝜀)

x

y

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

11-8

Tool 1: Alignment Graphs and Multiple-Source Shortest PathUpper
Bounds

𝑋 and 𝑌 consist in 𝑂(𝑘2) pieces of length 𝑂(𝑘2) and with period 𝑂(𝑘) each
Idea: Use alignment graph AG of 𝑋 and 𝑌 ed𝑤(𝑋, 𝑌) is distance (0, 0) (|𝑋|, |𝑌|)
Idea2: Trim AG to 𝑂(𝑘) diagonals ed

𝑤
≤𝑘(𝑋, 𝑌) is distance (0, 0) (|𝑋|, |𝑌|)

Idea3: Split AG according to structure of 𝑋 and 𝑌
Compute all b-to-b dist [Klein05] + stitch together results ((min, +)-product [SMAWK87])
for periodic pieces: fast exponentiation;
 𝑘2 ⋅ 𝑂̃(𝑘2) for periodic pieces + 𝑘2 ⋅ 𝑂̃(𝑘2) for stitching

𝑤(x,y)

𝑤
(𝜀,y)

𝑤
(𝜀,y)

𝑤(x, 𝜀)

𝑤(x, 𝜀)

x

y

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

12-1

Tool 2: Divide and ConquerUpper
Bounds

𝑋 and 𝑌 consist in 𝑂(𝑘2) periodic pieces of length 𝑂(𝑘2) and with period 𝑂(𝑘) each
Idea: Use AG, trimmed to 𝑂(𝑘) diags ed

𝑤
≤𝑘(𝑋, 𝑌) is distance (0, 0) (|𝑋|, |𝑌|)

Idea3: Compute all b-to-b dist for periodic pieces [Klein05] + fast exponentiation;
stitch together results using min-plus product [SMAWK87]

Idea4: Use Divide-and-Conquer to reduce number of periodic pieces to 𝑂(𝑘)

 𝑘 ⋅ 𝑂̃(𝑘2) for periodic pieces (and padding) + 𝑘 ⋅ 𝑂̃(𝑘2) for stitching

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

12-2

Tool 2: Divide and ConquerUpper
Bounds

𝑋 and 𝑌 consist in 𝑂(𝑘2) periodic pieces of length 𝑂(𝑘2) and with period 𝑂(𝑘) each
Idea: Use AG, trimmed to 𝑂(𝑘) diags ed

𝑤
≤𝑘(𝑋, 𝑌) is distance (0, 0) (|𝑋|, |𝑌|)

Idea3: Compute all b-to-b dist for periodic pieces [Klein05] + fast exponentiation;
stitch together results using min-plus product [SMAWK87]

Idea4: Use Divide-and-Conquer to reduce number of periodic pieces to 𝑂(𝑘)
 𝑘 ⋅ 𝑂̃(𝑘2) for periodic pieces (and padding) + 𝑘 ⋅ 𝑂̃(𝑘2) for stitching

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

13

Tool 3: Compressibility instead of PeriodicityUpper
Bounds

𝑋 and 𝑌 consist in 𝑂(𝑘) pieces of length 𝑂(𝑘2) each
Idea: Use AG, trimmed to 𝑂(𝑘) diags ed

𝑤
≤𝑘(𝑋, 𝑌) is distance (0, 0) (|𝑋|, |𝑌|)

Idea3: Compute all b-to-b dist for periodic pieces [Klein05] + fast exponentiation;
stitch together results using min-plus product [SMAWK87]

Idea4: Use Divide-and-Conquer to reduce number of periodic pieces to 𝑂(𝑘)

Idea5: Use tailor-made compressibility measure instead of periodicity
+ (w)ED algorithms for compressed strings
 𝑂̃(𝑛 + √𝑘3𝑛) time in total

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

14

Main Results

Main Theorem 1 (Upper Bound)
Strings 𝑋, 𝑌 each of length at most 𝑛

Oracle access to (normalized) weight function 𝑤
Can compute 𝑘 = ed𝑤(𝑋, 𝑌) in time 𝑂(𝑛 + √𝑛𝑘3 log3 𝑛)

Main Theorem 2 (Lower Bound)
Assuming the apsp Hypothesis and for √𝑛 ≤ 𝑘 ≤ 𝑛,
Main Theorem 1 is tight (up to 𝑛𝑜(1)-factors)

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

15-1

Tool 0: APSP Hypothesis and Negative TriangleLower
Bounds

All-Pairs Shortest Paths Hypothesis [VWW18]

There is no algorithm for APSP on 𝑛 vertex graphs with running time 𝑂(𝑛3−𝜀).

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

15-2

Tool 0: APSP Hypothesis and Negative TriangleLower
Bounds

All-Pairs Shortest Paths Hypothesis [VWW18]

There is no algorithm for APSP on 𝑛 vertex graphs with running time 𝑂(𝑛3−𝜀).

Negative Triangle
Check if 𝑛 vertex graph has a negative triangle (3 vertices 𝑢, 𝑣, 𝑥 with 𝑤(𝑢, 𝑣) + 𝑤(𝑣, 𝑥) + 𝑤(𝑢, 𝑥) < 0)

APSP-H
[VWW18]
⟺ Negative Triangle

1

4

-1
6

5 1

59

9

41

3 1

11

-3
4 6

5

5

9

4

1

-5 1

-1

1

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

15-3

Tool 0: APSP Hypothesis and Negative TriangleLower
Bounds

All-Pairs Shortest Paths Hypothesis [VWW18]

There is no algorithm for APSP on 𝑛 vertex graphs with running time 𝑂(𝑛3−𝜀).

Min-Plus Product Minimum
Given 3 matrices 𝐴, 𝐵, 𝐶, check if min diag entry of (min, +)-product 𝐴 ⊕ 𝐵 ⊕ 𝐶 is negative

APSP-H
[VWW18]
⟺ Negative Triangle

[VWW18]
⟺ MPP-Minimum

1

4

-1
6

5 1

59

9

41

3 1

11

-3
4 6

5

5

9

4

1

-5 1

-1

1

min (𝐴 ⊕ 𝐵 ⊕ 𝐶) < 0

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

16-1

Tool 1: Matrix-Vector Min-Plus Multiplication via wEDLower
Bounds

Min-Plus Product Minimum
Given 3 matrices 𝐴, 𝐵, 𝐶, check if min diag entry of (min, +)-product 𝐴 ⊕ 𝐵 ⊕ 𝐶 is negative

Step 1: Compute matrix-vector product 𝐴 ⊕ 𝑏
as weighted ED of two gadget strings
 encode matrix/vector as substitution costs

𝑋 →

𝑌
↓

min𝑖 𝐴𝑖,𝑗 ⊕ 𝑏𝑖 ≈ ed
𝑤(𝑋[𝑗 . . |𝑋| − 𝑗), 𝑌)

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

16-2

Tool 1: Matrix-Vector Min-Plus Multiplication via wEDLower
Bounds

Min-Plus Product Minimum
Given 3 matrices 𝐴, 𝐵, 𝐶, check if min diag entry of (min, +)-product 𝐴 ⊕ 𝐵 ⊕ 𝐶 is negative

Step 1: Compute matrix-vector product 𝐴 ⊕ 𝑏
as weighted ED of two gadget strings
 encode matrix/vector as substitution costs

𝑋 →

𝑌
↓

min𝑖 𝐴𝑖,𝑗 ⊕ 𝑏𝑖 ≈ ed
𝑤(𝑋[𝑗 . . |𝑋| − 𝑗), 𝑌)

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

16-3

Tool 1: Matrix-Vector Min-Plus Multiplication via wEDLower
Bounds

Min-Plus Product Minimum
Given 3 matrices 𝐴, 𝐵, 𝐶, check if min diag entry of (min, +)-product 𝐴 ⊕ 𝐵 ⊕ 𝐶 is negative

Step 1: Compute matrix-vector product 𝐴 ⊕ 𝑏
as weighted ED of two gadget strings
 encode matrix/vector as substitution costs

𝑋 →

𝑌
↓

min𝑖 𝐴𝑖,𝑗 ⊕ 𝑏𝑖 ≈ ed
𝑤(𝑋[𝑗 . . |𝑋| − 𝑗), 𝑌)

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

16-4

Tool 1: Matrix-Vector Min-Plus Multiplication via wEDLower
Bounds

Min-Plus Product Minimum
Given 3 matrices 𝐴, 𝐵, 𝐶, check if min diag entry of (min, +)-product 𝐴 ⊕ 𝐵 ⊕ 𝐶 is negative

Step 1: Compute matrix-vector product 𝐴 ⊕ 𝑏
as weighted ED of two gadget strings
 encode matrix/vector as substitution costs

𝑋 →

𝑌
↓

min𝑖 𝐴𝑖,𝑗 ⊕ 𝑏𝑖 ≈ ed
𝑤(𝑋[𝑗 . . |𝑋| − 𝑗), 𝑌)

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

16-5

Tool 1: Matrix-Vector Min-Plus Multiplication via wEDLower
Bounds

Min-Plus Product Minimum
Given 3 matrices 𝐴, 𝐵, 𝐶, check if min diag entry of (min, +)-product 𝐴 ⊕ 𝐵 ⊕ 𝐶 is negative

Step 1: Compute matrix-vector product 𝐴 ⊕ 𝑏
as weighted ED of two gadget strings
 encode matrix/vector as substitution costs
 use telescoping sums

𝑋 →

𝑌
↓

min𝑖 𝐴𝑖,𝑗 ⊕ 𝑏𝑖 ≈ ed
𝑤(𝑋[𝑗 . . |𝑋| − 𝑗), 𝑌)

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

16-6

Tool 1: Matrix-Vector Min-Plus Multiplication via wEDLower
Bounds

Min-Plus Product Minimum
Given 3 matrices 𝐴, 𝐵, 𝐶, check if min diag entry of (min, +)-product 𝐴 ⊕ 𝐵 ⊕ 𝐶 is negative

Step 1: Compute matrix-vector product 𝐴 ⊕ 𝑏
as weighted ED of two gadget strings
 encode matrix/vector as substitution costs
 use telescoping sums
Step 2: Compute 𝐴 ⊕ 𝑏′ by replacing single
character of 𝑋

𝑋 →

𝑌
↓

min𝑖 𝐴𝑖,𝑗 ⊕ 𝑏
′
𝑖 ≈ ed𝑤(𝑋[𝑗 . . |𝑋| − 𝑗), 𝑌)

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

16-7

Tool 1: Matrix-Vector Min-Plus Multiplication via wEDLower
Bounds

Min-Plus Product Minimum
Given 3 matrices 𝐴, 𝐵, 𝐶, check if min diag entry of (min, +)-product 𝐴 ⊕ 𝐵 ⊕ 𝐶 is negative

Step 1: Compute matrix-vector product 𝐴 ⊕ 𝑏
as weighted ED of two gadget strings
 encode matrix/vector as substitution costs
 use telescoping sums
Step 2: Compute 𝐴 ⊕ 𝑏′ by replacing single
character of 𝑋
 Allows to compute 𝐴 ⊕ 𝐵; encode 𝐶 similarly to 𝐵
 Use selection gadget for
ed𝑤(𝑋, 𝑌) ≈ min(𝐴 ⊕ 𝐵 ⊕ 𝐶)
 Lower bound for dynamic problem

𝑋 →

𝑌
↓

min𝑖 𝐴𝑖,𝑗 ⊕ 𝑏
′
𝑖 ≈ ed𝑤(𝑋[𝑗 . . |𝑋| − 𝑗), 𝑌)

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

17-1

Tool 2: Minimum Gadget via Intermediate StringsLower
Bounds

Have: Lower bound for dynamic problem
 turn into LB for static problem

Step 3: Take snapshots (𝑋𝑖, 𝑌)
Step 4: Create intermediate strings (𝑌, 𝑋̂(𝑖−1)𝑖)

 may align 𝑋̂𝑖 with either 𝑋𝑖 or 𝑋𝑖+1 for the same cost

Step 5: Forbid inserting or deleting 𝑌 (simplification)

(𝑤(𝜀, 𝑌) ∶= ∞, 𝑤(𝑌, 𝜀) ∶= ∞)
 Have to align exactly one 𝑋𝑖 to 𝑌

 Minimum gadget: ed𝑤(𝑋̂, 𝑌̂) ≈ min ed𝑤(𝑋𝑖, 𝑌)
 Static LB

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

17-2

Tool 2: Minimum Gadget via Intermediate StringsLower
Bounds

Have: Lower bound for dynamic problem
 turn into LB for static problem
Step 3: Take snapshots (𝑋𝑖, 𝑌)

Step 4: Create intermediate strings (𝑌, 𝑋̂(𝑖−1)𝑖)

 may align 𝑋̂𝑖 with either 𝑋𝑖 or 𝑋𝑖+1 for the same cost

Step 5: Forbid inserting or deleting 𝑌 (simplification)

(𝑤(𝜀, 𝑌) ∶= ∞, 𝑤(𝑌, 𝜀) ∶= ∞)
 Have to align exactly one 𝑋𝑖 to 𝑌

 Minimum gadget: ed𝑤(𝑋̂, 𝑌̂) ≈ min ed𝑤(𝑋𝑖, 𝑌)
 Static LB

𝑋1

𝑋2

𝑋3

𝑋4

𝑌

𝑌

𝑌

𝑌

…

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

17-3

Tool 2: Minimum Gadget via Intermediate StringsLower
Bounds

Have: Lower bound for dynamic problem
 turn into LB for static problem
Step 3: Take snapshots (𝑋𝑖, 𝑌)
Step 4: Create intermediate strings (𝑌, 𝑋̂(𝑖−1)𝑖)

 may align 𝑋̂𝑖 with either 𝑋𝑖 or 𝑋𝑖+1 for the same cost
Step 5: Forbid inserting or deleting 𝑌 (simplification)

(𝑤(𝜀, 𝑌) ∶= ∞, 𝑤(𝑌, 𝜀) ∶= ∞)
 Have to align exactly one 𝑋𝑖 to 𝑌

 Minimum gadget: ed𝑤(𝑋̂, 𝑌̂) ≈ min ed𝑤(𝑋𝑖, 𝑌)
 Static LB

𝑋1

𝑋2

𝑋3

𝑋4

𝑌

𝑌

𝑌

𝑌

…

𝑌

𝑌

𝑌

𝑋̂01

𝑋̂12

𝑋̂23

𝑋̂34

𝑋̂45

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

17-4

Tool 2: Minimum Gadget via Intermediate StringsLower
Bounds

Have: Lower bound for dynamic problem
 turn into LB for static problem
Step 3: Take snapshots (𝑋𝑖, 𝑌)
Step 4: Create intermediate strings (𝑌, 𝑋̂(𝑖−1)𝑖)
 may align 𝑋̂𝑖 with either 𝑋𝑖 or 𝑋𝑖+1 for the same cost

Step 5: Forbid inserting or deleting 𝑌 (simplification)

(𝑤(𝜀, 𝑌) ∶= ∞, 𝑤(𝑌, 𝜀) ∶= ∞)
 Have to align exactly one 𝑋𝑖 to 𝑌

 Minimum gadget: ed𝑤(𝑋̂, 𝑌̂) ≈ min ed𝑤(𝑋𝑖, 𝑌)
 Static LB

𝑋1

𝑋2

𝑋3

𝑋4

𝑌

𝑌

𝑌

𝑌

…

𝑌

𝑌

𝑌

𝑋̂01

𝑋̂12

𝑋̂23

𝑋̂34

𝑋̂45

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

17-5

Tool 2: Minimum Gadget via Intermediate StringsLower
Bounds

Have: Lower bound for dynamic problem
 turn into LB for static problem
Step 3: Take snapshots (𝑋𝑖, 𝑌)
Step 4: Create intermediate strings (𝑌, 𝑋̂(𝑖−1)𝑖)
 may align 𝑋̂𝑖 with either 𝑋𝑖 or 𝑋𝑖+1 for the same cost

Step 5: Forbid inserting or deleting 𝑌 (simplification)

(𝑤(𝜀, 𝑌) ∶= ∞, 𝑤(𝑌, 𝜀) ∶= ∞)
 Have to align exactly one 𝑋𝑖 to 𝑌

 Minimum gadget: ed𝑤(𝑋̂, 𝑌̂) ≈ min ed𝑤(𝑋𝑖, 𝑌)
 Static LB

𝑋1

𝑋2

𝑋3

𝑋4

𝑌

𝑌

𝑌

𝑌

…

𝑌

𝑌

𝑌

𝑋̂01

𝑋̂12

𝑋̂23

𝑋̂34

𝑋̂45

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

17-6

Tool 2: Minimum Gadget via Intermediate StringsLower
Bounds

Have: Lower bound for dynamic problem
 turn into LB for static problem
Step 3: Take snapshots (𝑋𝑖, 𝑌)
Step 4: Create intermediate strings (𝑌, 𝑋̂(𝑖−1)𝑖)
 may align 𝑋̂𝑖 with either 𝑋𝑖 or 𝑋𝑖+1 for the same cost
Step 5: Forbid inserting or deleting 𝑌 (simplification)

(𝑤(𝜀, 𝑌) ∶= ∞, 𝑤(𝑌, 𝜀) ∶= ∞)
 Have to align exactly one 𝑋𝑖 to 𝑌

 Minimum gadget: ed𝑤(𝑋̂, 𝑌̂) ≈ min ed𝑤(𝑋𝑖, 𝑌)
 Static LB

𝑋1

𝑋2

𝑋3

𝑋4

𝑌

𝑌

𝑌

𝑌

…

𝑌

𝑌

𝑌

𝑋̂01

𝑋̂12

𝑋̂23

𝑋̂34

𝑋̂45

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

17-7

Tool 2: Minimum Gadget via Intermediate StringsLower
Bounds

Have: Lower bound for dynamic problem
 turn into LB for static problem
Step 3: Take snapshots (𝑋𝑖, 𝑌)
Step 4: Create intermediate strings (𝑌, 𝑋̂(𝑖−1)𝑖)
 may align 𝑋̂𝑖 with either 𝑋𝑖 or 𝑋𝑖+1 for the same cost
Step 5: Forbid inserting or deleting 𝑌 (simplification)

(𝑤(𝜀, 𝑌) ∶= ∞, 𝑤(𝑌, 𝜀) ∶= ∞)
 Have to align exactly one 𝑋𝑖 to 𝑌

 Minimum gadget: ed𝑤(𝑋̂, 𝑌̂) ≈ min ed𝑤(𝑋𝑖, 𝑌)
 Static LB

𝑋1

𝑋2

𝑋3

𝑋4

𝑌

𝑌

𝑌

𝑌

…

𝑌

𝑌

𝑌

𝑋̂01

𝑋̂12

𝑋̂23

𝑋̂34

𝑋̂45

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

17-8

Tool 2: Minimum Gadget via Intermediate StringsLower
Bounds

Have: Lower bound for dynamic problem
 turn into LB for static problem
Step 3: Take snapshots (𝑋𝑖, 𝑌)
Step 4: Create intermediate strings (𝑌, 𝑋̂(𝑖−1)𝑖)
 may align 𝑋̂𝑖 with either 𝑋𝑖 or 𝑋𝑖+1 for the same cost
Step 5: Forbid inserting or deleting 𝑌 (simplification)

(𝑤(𝜀, 𝑌) ∶= ∞, 𝑤(𝑌, 𝜀) ∶= ∞)
 Have to align exactly one 𝑋𝑖 to 𝑌

 Minimum gadget: ed𝑤(𝑋̂, 𝑌̂) ≈ min ed𝑤(𝑋𝑖, 𝑌)
 Static LB

𝑋1

𝑋2

𝑋3

𝑋4

𝑌

𝑌

𝑌

𝑌

…

𝑌

𝑌

𝑌

𝑋̂01

𝑋̂12

𝑋̂23

𝑋̂34

𝑋̂45

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

17-9

Tool 2: Minimum Gadget via Intermediate StringsLower
Bounds

Have: Lower bound for dynamic problem
 turn into LB for static problem
Step 3: Take snapshots (𝑋𝑖, 𝑌)
Step 4: Create intermediate strings (𝑌, 𝑋̂(𝑖−1)𝑖)
 may align 𝑋̂𝑖 with either 𝑋𝑖 or 𝑋𝑖+1 for the same cost
Step 5: Forbid inserting or deleting 𝑌 (simplification)

(𝑤(𝜀, 𝑌) ∶= ∞, 𝑤(𝑌, 𝜀) ∶= ∞)
 Have to align exactly one 𝑋𝑖 to 𝑌

 Minimum gadget: ed𝑤(𝑋̂, 𝑌̂) ≈ min ed𝑤(𝑋𝑖, 𝑌)
 Static LB

𝑋1

𝑋2

𝑋3

𝑋4

𝑌

𝑌

𝑌

𝑌

…

𝑌

𝑌

𝑌

𝑋̂01

𝑋̂12

𝑋̂23

𝑋̂34

𝑋̂45

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

17-10

Tool 2: Minimum Gadget via Intermediate StringsLower
Bounds

Have: Lower bound for dynamic problem
 turn into LB for static problem
Step 3: Take snapshots (𝑋𝑖, 𝑌)
Step 4: Create intermediate strings (𝑌, 𝑋̂(𝑖−1)𝑖)
 may align 𝑋̂𝑖 with either 𝑋𝑖 or 𝑋𝑖+1 for the same cost
Step 5: Forbid inserting or deleting 𝑌 (simplification)

(𝑤(𝜀, 𝑌) ∶= ∞, 𝑤(𝑌, 𝜀) ∶= ∞)
 Have to align exactly one 𝑋𝑖 to 𝑌
 Minimum gadget: ed𝑤(𝑋̂, 𝑌̂) ≈ min ed𝑤(𝑋𝑖, 𝑌)
 Static LB

𝑋1

𝑋2

𝑋3

𝑋4

𝑌

𝑌

𝑌

𝑌

…

𝑌

𝑌

𝑌

𝑋̂01

𝑋̂12

𝑋̂23

𝑋̂34

𝑋̂45

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

18

Main Results

Main Theorem 1 (Upper Bound)
Strings 𝑋, 𝑌 each of length at most 𝑛

Oracle access to (normalized) weight function 𝑤
Can compute 𝑘 = ed𝑤(𝑋, 𝑌) in time 𝑂(𝑛 + √𝑛𝑘3 log3 𝑛)

Main Theorem 2 (Lower Bound)
Assuming the apsp Hypothesis and for √𝑛 ≤ 𝑘 ≤ 𝑛,
Main Theorem 1 is tight (up to 𝑛𝑜(1)-factors)

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

19-1

Key Messages and Open Problems

Key Messages
Bounded Weighted Edit Distance is harder than Bounded Unweighted Edit Distance
(Weighted) Edit Distance is Shortest Paths on Planar Graphs
APSP-based Lower Bounds via Grid Construction and Dynamic Intermediate Problem

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

19-2

Key Messages and Open Problems

Key Messages
Bounded Weighted Edit Distance is harder than Bounded Unweighted Edit Distance
(Weighted) Edit Distance is Shortest Paths on Planar Graphs
APSP-based Lower Bounds via Grid Construction and Dynamic Intermediate Problem

Open Questions
What is the true complexity of 𝑛1/3 ≤ 𝑘 ≤ 𝑛1/2?
Must be between 𝑛 + 𝑘2.5 and √𝑛𝑘3.
Is the problem easier for small (constant-sized) alphabets?
Is there any easy class of weight functions?

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

20

21

Navigation

Start

End

Cassis, Kociumaka, Wellnitz
Optimal Algorithms for Bounded Weighted Edit Distance

	Overview
	Upper Bounds
	Lower Bounds
	Open Questions
	Appendix

