Annotation-Efficient Learning: Class-Incremental Learning and Few-Shot Learning

Yaoyao Liu

11 Sept. 2020
Outline of today’s talk

1. Class-Incremental Learning
 Mnemonics Training: Multi-Class Incremental Learning without Forgetting
 CVPR 2020

2. Few-Shot Learning
 An Ensemble of Epoch-wise Empirical Bayes for Few-shot Learning
 ECCV 2020
Background: class-incremental learning

Phase 1

- Train on Data 1
- Classifier
- Test for Data 1
Background: class-incremental learning

Phase 2

Data 2

Classifier

train

Classifier

Test for Data 1

Test for Data 1+2
Background: class-incremental learning

Phase 3

Classifier

Test for Data 1

Classifier

Test for Data 1+2

Classifier

Test for Data 1+2+3

Data 3

train
Background: Class-Incremental Learning

Phase 3

Challenge: catastrophic forgetting

Classifier
Test for Data 1

Classifier
Test for Data 1+2

Classifier
Test for Data 1+2+3

Data 3

train

overfit
Literature review

Technique 1: Replay samples for the old classes:

iCaRL\(^1\), IL2M\(^2\), ...

\(\rightarrow\) **Mnemonics exemplars**

Technique 2: Preserve the knowledge for the old model:

LwF\(^3\), LUCIR\(^4\), PODNet\(^5\)...

\(\rightarrow\) **Weight transfer operations**

References

Replay samples for the old classes

Phase 1

Data 1

Exemplar 1

Classifier

Train

Test for Data 1
Replay samples for the old classes

Phase 2

- **Exemplar 1**
- **Data 2**

Classifier

train

Question: How to extract the exemplars?
Question: how to extract the exemplars?

Existing methods:

E.g., herding\(^{[1, 4, 6]}\): select the samples near the average embedding

Limitations for existing methods:
- Heuristic selection, not performance-based
- Select from finite sets (real images)

Our method: Mnemonics exemplars

Question: Can we generate the optimal exemplars?

Benefits for our method:
- Optimal selection by end-to-end training
- Select from continuous (infinite) synthetic data

References

Question: how to formulate the optimization of the exemplars?

In the i-th incremental phase,

We have: Exemplars for previous phases $\mathcal{E}_{0:i-1} \cup D_i$ → Θ^*_i (model)

We aim to get: Exemplars for the current phase $\mathcal{E}_{0:i}$ → Θ^ε_i

Bilevel optimization formulation:

$$\min_{\Theta^\varepsilon_i} \mathcal{L}(\Theta^\varepsilon_i; \mathcal{E}_{0:i-1} \cup D_i)$$

s. t. $\Theta^\varepsilon_i = \min_{\Theta_i} \mathcal{L}(\Theta_i; \mathcal{E}_{0:i})$
Literature review

Technique 1: Replay samples for the old classes:

iCaRL[1], IL2M[2], ...

→ Mnemonics exemplars

Technique 2: Preserve the knowledge for the old model:

LwF[3], LUCIR[4], PODNet[5]...

→ Weight transfer operations

References
Preserve the knowledge for the old model

Phase 1

Data 1

train

Classifier

Exemplar 1

Test for Data 1
Preserve the knowledge for the old model

Phase 2

Motivation:
Force the new model and the old model to be similar

Predictions for old classes

Groundtruth for new classes

Distillation loss
Classification loss
Preserve the knowledge for the old model

iCaRL[1] (CVPR 2017) \rightarrow Distillation on predictions

LUCIR[4] (CVPR 2019) \rightarrow Distillation on the final feature maps

PODNet[5] (ECCV 2020) \rightarrow Distillation on the feature maps from all layers

\textit{Distillation: preserve high-level knowledge for the old model}

\textit{It is better to transfer low-level knowledge among tasks…}[7]

\textit{Q: Can we preserve the low-level knowledge for the old model?}

\textbf{References}
How to transfer low-level knowledge for class-incremental learning?

Weight transfer operations: Channel-wise masks
Global computing glow

Our method: **Technique 1 + Technique 2**

Data D_0 \[\xrightarrow{\text{Model } \Theta_0} \] Exemplars \mathcal{E}_0 \[\xrightarrow{\text{BOP}} \] Data D_1

Data D_1 \[\xrightarrow{\text{Model } \Theta_1} \] Exemplars $\tilde{\mathcal{E}}_0, \mathcal{E}_1$

Weight transfer operations

BOP = Bilevel Optimization Program
Our method boosts the performance

Dataset: ImageNet-Subset

References
Our method boosts the performance

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LwF° (2016)[2]</td>
<td>49.59</td>
<td>46.98</td>
<td>45.51</td>
<td>53.62</td>
<td>47.64</td>
<td>44.32</td>
<td>44.35</td>
<td>38.90</td>
<td>36.87</td>
</tr>
<tr>
<td></td>
<td>LwF w/ ours</td>
<td>54.21</td>
<td>52.72</td>
<td>51.59</td>
<td>60.94</td>
<td>59.25</td>
<td>59.71</td>
<td>52.70</td>
<td>50.37</td>
<td>50.79</td>
</tr>
<tr>
<td>Average acc. (%) ↑</td>
<td>iCaRL (2017)[1]</td>
<td>57.12</td>
<td>52.66</td>
<td>48.22</td>
<td>65.44</td>
<td>59.88</td>
<td>52.97</td>
<td>51.50</td>
<td>46.89</td>
<td>43.14</td>
</tr>
<tr>
<td></td>
<td>iCaRL w/ ours</td>
<td>60.00</td>
<td>57.37</td>
<td>54.13</td>
<td>72.34</td>
<td>70.50</td>
<td>67.12</td>
<td>60.61</td>
<td>58.62</td>
<td>53.46</td>
</tr>
<tr>
<td>(\bar{A} = \frac{1}{N+1} \sum_{i=0}^{N} A_i)</td>
<td>BiC (2019) [6]</td>
<td>59.36</td>
<td>54.20</td>
<td>50.00</td>
<td>70.07</td>
<td>64.96</td>
<td>57.73</td>
<td>62.65</td>
<td>58.72</td>
<td>53.47</td>
</tr>
<tr>
<td></td>
<td>BiC w/ ours</td>
<td>60.67</td>
<td>58.11</td>
<td>55.51</td>
<td>71.92</td>
<td>70.73</td>
<td>69.22</td>
<td>64.63</td>
<td>62.71</td>
<td>60.20</td>
</tr>
<tr>
<td></td>
<td>LUCIR (2019)[4]</td>
<td>63.17</td>
<td>60.14</td>
<td>57.54</td>
<td>70.84</td>
<td>68.32</td>
<td>61.44</td>
<td>64.45</td>
<td>61.57</td>
<td>56.56</td>
</tr>
<tr>
<td></td>
<td>LUCIR w/ ours</td>
<td>63.34</td>
<td>62.28</td>
<td>60.96</td>
<td>72.58</td>
<td>71.37</td>
<td>69.74</td>
<td>64.54</td>
<td>63.01</td>
<td>61.00</td>
</tr>
</tbody>
</table>

- **Generic**
- Boost the performance for **FOUR** different baselines

References
Ablation study

<table>
<thead>
<tr>
<th>Method</th>
<th>CIFAR-100</th>
<th></th>
<th></th>
<th>ImagNet-Subset</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N=5</td>
<td>10</td>
<td>25</td>
<td>5</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Baseline (LUCIR [4])</td>
<td>63.17</td>
<td>60.14</td>
<td>57.54</td>
<td>70.84</td>
<td>68.32</td>
<td>61.44</td>
</tr>
<tr>
<td>+ weight transfer operations</td>
<td>62.98</td>
<td>61.23</td>
<td>60.36</td>
<td>71.66</td>
<td>71.02</td>
<td>69.40</td>
</tr>
<tr>
<td>+ weight transfer operations and mnemonics exemplars</td>
<td>63.34</td>
<td>62.28</td>
<td>60.96</td>
<td>72.58</td>
<td>71.37</td>
<td>69.74</td>
</tr>
</tbody>
</table>

References

t-SNE results: clearer separation in the data

Phase 25

One region for one class

Light color: original data

Deep color: exemplars

Dataset: ImageNet

Herding [1, 4]

Mnemonics (ours)

Our method:

- Clearer separation in data
- Exemplars locate on the class boundaries

References

Outline of today’s talk

1. Class-Incremental Learning
 Mnemonics Training: Multi-Class Incremental Learning without Forgetting
 CVPR 2020

2. Few-Shot Learning
 An Ensemble of Epoch-wise Empirical Bayes for Few-shot Learning
 ECCV 2020
Research background

- **Limitation**: most algorithms are based on supervised learning, so we need lots of labeled samples to train the model.

Medical images: expensive to label the data

Mitosis detection

(From Yao Lu)
Few-shot learning: learning with limited data

Question: how to learn a model with limited labeled data?

Task: few-shot image classification

(Images from Ravi and Larochelle)
Review: meta-learning

Seen classes
Many-shot

Unseen classes
Few-shot

Same class number, same shot number

(Images from Ravi and Larochelle)
Review: meta-learning

Training tasks

Seen classes

Meta-train

Meta-test

Test task

Unseen classes

(Images from Ravi, Larochelle)
Existing methods vs. our E³BM

(a) MAML [8]
(b) MTL [9]
(c) SIB [10]
(d) E³BM (ours)

Existing methods:
- A single base-learner
- Arbitrary base-learning hyperparameters
 - Unstable

Our E³BM:
- An ensemble of multiple base-learners
- Task-specific base-learning hyperparameters
 + Stable and robust

References
Existing method: MAML\cite{8}

For one training task:

\[\nabla L_1^{(tr)} \rightarrow \Theta_0 \rightarrow \Theta_1 \rightarrow \Theta_2 \rightarrow \cdots \rightarrow \Theta_M \]

\[\nabla L_1^{(tr)} \rightarrow \nabla L_2^{(tr)} \rightarrow \cdots \rightarrow \nabla L_M^{(tr)} \]

Predictions from a single base-learner

\[z_M^{(te)} \rightarrow \mathcal{L}^{(te)} \]

\[\Theta \quad \text{Epoch-wise base-learner} \quad \theta \quad \text{Base-learner initializer} \quad \alpha \quad \text{Learning rate} \quad \nu \quad \text{Combination weight} \]

References

Existing method: MAML\[^8\]

For one training task:

- **\(\Theta\)**: Epoch-wise base-learner
- **\(\theta\)**: Base-learner initializer
- **\(\alpha\)**: Learning rate
- **\(\upsilon\)**: Combination weight

References

Our method: E^3BM framework

For one training task:

- θ: Epoch-wise base-learner
- Θ_0: Base-learner initializer
- α: Learning rate
- ν: Combination weight

Predictions from multiple base-learners
Our method: E^3BM framework

For one training task:

\[\mathcal{T}^{(tr)} \rightarrow \text{Hyperprior Learner} \]

\[\nabla L_1^{(tr)} \rightarrow \alpha_1 \rightarrow \Theta_1 \]

\[\nabla L_2^{(tr)} \rightarrow \alpha_2 \rightarrow \Theta_2 \]

\[\vdots \]

\[\nabla L_M^{(tr)} \rightarrow \alpha_M \rightarrow \Theta_M \]

\[\Theta_0 \rightarrow \Theta \]

\[\text{Predictions from multiple base-learners} \]

\[\bar{z}_1^{(te)} \rightarrow \theta \rightarrow \bar{z}_2^{(te)} \rightarrow \cdots \rightarrow \bar{z}_M^{(te)} \]

\[\mathcal{L}^{(te)} \rightarrow \text{meta update} \]

\[\text{Task-specific base-learning hyperparameters} \]

\[\Theta \] Epoch-wise base-learner \quad \theta \] Base-learner initializer \quad \alpha \] Learning rate \quad \nu \] Combination weight
The architecture of the hyperprior learner

For the m-th base epoch:

\[\nabla_\Theta \mathcal{L}_m^{(tr)} \]

\[x^{(tr)} \]

(a) Epoch-independent
Boost the performance on **THREE baselines**

The 5-class few-shot classification results (%).

<table>
<thead>
<tr>
<th>Methods</th>
<th>Backbone</th>
<th>miniImageNet</th>
<th>tieredImageNet</th>
<th>FC100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1-shot</td>
<td>5-shot</td>
<td>1-shot</td>
</tr>
<tr>
<td>MAML</td>
<td>4CONV</td>
<td>48.70</td>
<td>63.11</td>
<td>49.0</td>
</tr>
<tr>
<td>MTL</td>
<td>ResNet-25</td>
<td>63.4</td>
<td>80.1</td>
<td>69.1</td>
</tr>
<tr>
<td>MAML+E³BM</td>
<td>4CONV</td>
<td>(53.2↑4.5)</td>
<td>(65.1↑2.0)</td>
<td>(52.1↑3.1)</td>
</tr>
<tr>
<td>(+time, +param)</td>
<td>–</td>
<td>(8.9, 2.2)</td>
<td>(9.7, 2.2)</td>
<td>(10.6, 2.2)</td>
</tr>
<tr>
<td>MTL+E³BM</td>
<td>ResNet-25</td>
<td>64.3↑0.9</td>
<td>81.0↑0.9</td>
<td>70.0↑0.9</td>
</tr>
<tr>
<td>(+time, +param)</td>
<td>–</td>
<td>(5.9, 0.7)</td>
<td>(10.2, 0.7)</td>
<td>(6.7, 0.7)</td>
</tr>
</tbody>
</table>

(a) Inductive Methods

SIB	WRN-28-10	70.0	79.2	72.9	82.8	**45.2**	**55.9**
SIB+E³BM	WRN-28-10	**71.4**↑1.4	**81.2**↑2.0	**75.6**↑2.7	**84.3**↑1.5	**46.0**↑0.8	**57.1**↑1.2
(+time, +param)	–	(2.1, 0.04)	(5.7, 0.04)	(5.2, 0.04)	(4.9, 0.04)	(6.1, 0.04)	(7.3, 0.04)

(b) Transductive Methods

References

1. Class-Incremental Learning

Mnemonics Training: Multi-Class Incremental Learning without Forgetting

GitHub: https://github.com/yaoyao-liu/mnemonics-training

2. Few-Shot Learning

An Ensemble of Epoch-wise Empirical Bayes for Few-shot Learning

GitHub: https://github.com/yaoyao-liu/e3bm
Thanks!
Any questions?

Yaoyao Liu
yaoyao.liu@mpi-inf.mpg.de
References