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Abstract

The Exact Perfect Matching problem is simple to state: Given a graph G
whose edges are coloured either red or blue, is there a perfect matching
that contains exactly k reds? Soon after its proposal in [21], an efficient
randomised algorithm was found [20]. However, our combinatorial and
structural understanding remained limited despite effort for four decades.
Neither did people discover deterministic polynomial-time algorithms.

Sporadic progress were made for specific G, initially complete and
complete bipartite graphs [14], later graphs of small independence number
[6], and recently graphs with certain chordal properties [11]. One goal
of the thesis is to present these (not-so-many) tools in a unified and
accessible language. In particular, they are subsumed by what we call
a sandwich paradigm which captures continuity. We supplement sev-
eral new results relating to the paradigm.

Another goal is to depict the challenge behind Exact Perfect Matching.
We offer our take from combinatorial, algebraic, and polyhedral per-
spectives. In addition to some classical material, we develop many cute
results and counterexamples to sharpen our understanding of the affairs.
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1

Introduction

Given some pairs of integers from the range f1; : : : ; 2ng, can you pick k pairs so that the
sorted 2k integers alternate in parity? After some trial and error you might find the game
challenging, as the pairs could be intertwined and thus every decision deeply correlates
with other choices.

This game is a special case of our protagonist, the Exact Perfect Matching problem
proposed by Papadimitriou and Yannakakis [21] four decades ago. Here you are given a
graph G on 2n vertices, some edges being red while the others being blue. Can you pick
k reds and n¡ k blues so that they do not share any common vertex?1.1

Many equivalent formulations of the problem exist, some of which are summarised in
Chapter 2. But it is most conveniently stated in terms of matchings. A matching in G

is a set of disjoint edges. It is perfect if every vertex is touched. A perfect matching that
contains exactly k reds (thus n¡k blues) is dubbed a k-PM. Now the problem asks: Does
G have a k-PM?

Classical matching theory revolves around the Perfect Matching problem which asks if G
has a perfect matching at all. The subject has matured over a century-long development:
combinatorial tools found, structures revealed, and algorithms realised. It seems natural to
assume that Exact Perfect Matching is no different, and this is utterly wrong. Let us start
with two aspects that mark the peculiarity of this innocent-looking variant.

1.1 Discontinuity

The quirks of the problem can be illustrated by a simple instance. It consists of disjoint
cycles, each of length four and coloured with �red-blue-red-blue�. A perfect matching can
pick either zero or two reds from a cycle, and the choices for different cycles are inde-
pendent. Therefore, the graph admits a k-PM iff k 2f0; 2; 4; : : : ; ng; the feasibility regime
contains plenty of �holes�.

A slightly more general instance is the following. It consists of t disjoint cycles of lengths
2 `1; : : : ; 2 `t respectively. Every cycle is coloured with red and blue in alternation. So k-
PM exists iff k=

P

i2I `i for some subset I �f1;:::; tg. This models the famous Subset Sum

problem where the input values are polynomially bounded. Although we can solve such
instance efficiently by a dynamic program, the picture for the feasibility regime is quite
obscure. Understanding the structure of these subset sums is still an ongoing direction in
additive combinatorics.

1.1. To model our motivational game, we simply link the integers 1,. . . ,2n consecutively in a blue cycle
and, for each given pair (a, b), connect the integers a and b by a red edge.



But these are just the tip of the iceberg! Consider a general graph whose cycles are
tangled so that their edge choices are interdependent. It becomes less clear how things
interact. The moral is that the feasibility of k-PM can be quite discontinuous in k. Knowing
the existence of 2-PM and 5-PM, say, does not imply the existence of 3-PM or 4-PM.

One may ask how fractured the feasibility regime can be. Our following result brings
the bad news: it can be as fractured as you want.

Theorem 1.1. Let n 2 2N. Given any subset K � f0; 1; : : : ; /n 2g, we can construct a
bipartite graph on 2n vertices such that there exists a k-PM if and only if k 2K.

Proof. Consider the following bipartite graph G on 2n vertices:

. . .e0 e1 e2 en/2

Note that every perfect matching in G must use exactly one vertical edge ek. Moreover,
picking ek would enforce all reds to its left and kill all reds to its right, thus leading to a
k-PM.

Now we obtain a new graph G0 from G by keeping the vertical edges fek : k 2Kg and
removing the others. Then clearly G0 has a k-PM if and only if k 2K. �

It is worth comparing a continuity result by Yuster [26]. Informally speaking, if we relax
the stringent �perfectness� to �almost perfectness�, i.e. allow the matching to take n¡ 1 or
n edges, then continuity holds.

Theorem 1.2. (Yuster) If a graph admits a k1-PM and a k2-PM, then it also admits an
almost perfect matching with k reds, for all k16 k6 k2.

Continuity is the overarching theme in Chapters 3 and 4, and we will prove the theorem
there after introducing necessary tools. In another pursuit, one can also stick to perfectness
but try to identify graphs that exhibit certain amount of continuity. To this end, we will
present an algorithmic paradigm inspired by [6, 11] that outputs a (k � ")-PM for all
k16k6k2. The error term " quantifies the continuity of the input G. When G has constant
modular width t, for example, we show that the error "6 t/2 is small. We also provide new
theorems that can generate small-error graphs based on others. These results supplement
previous work, but Theorem 1.1 clearly delineates their limitations and we cannot hope to
generalise them to arbitrary graphs.

1.2 Lack of Negative Certificate

A decision problem is in NP if every yes-instance has an efficiently verifiable certificate.
For example, Exact Perfect Matching is in NP because if G contains a k-PM then one can
present a concrete solution as certificate, allowing others to verify quickly (in fact, in linear
time). A decision problem is in coNP if every no-instance has an efficiently verifiable
certificate. For example, the Perfect Matching problem is in coNP due to Tutte's theorem
(see Theorem 1.5 later).

Note that P�NP\coNP, so towards a suspected polynomial-time algorithm we must
at least show that Exact Perfect Matching is in coNP. At present, however, such modest
goal seems out of reach even when the graph is bipartite.
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To get some insights, let us review the classical matching theorems that once provided
coNP certificates for Perfect Matching. We begin with bipartite graph G=(V ; E) where
V =X ]Y . How can one certify that it does not admit a perfect matching?

There are some quick criteria that exclude the existence of perfect matchings. For
example, if we have found a subset S � V of size jS j<n to which all edges are incident,
then no n edges can be disjoint. As another example, if we have found a subset X0�X
whose neighbourhood is smaller than itself, i.e. jN(X0)j< jX0j, then by no means can we
fully match every vertex in X0.

It turns out that both criteria are necessary, meaning that we can always use them to
certify non-existence of perfect matching in a bipartite graph G.

Theorem 1.3. (K®nig) A bipartite graph G= (V ; E) on 2n vertices does not admit a
perfect matching iff there is subset S �V of size jS j<n to which all edges are incident.

We venture to provide a quick proof.

Proof. We have already argued about the (() direction. For the ()) direction, write
V =X ]Y and fix M to be a maximum cardinality matching. Denote by U �X the set
of unmatched vertices in X.

Let U+ be all the vertices reachable from U via a path that alternates between non-
matching and matching edges. Note that such path always travels from X to Y via a non-
matching edge, then from Y to X via a matching edge. We claim that S := (X nU+) [
(Y \U+) is the set that we are looking for.

X

Y

U

U
+

First, every edge is incident to S. Suppose to the contrary that some edge xy is between
X \U+ and Y nU+, so x is reached via an alternating path whereas y is not. If xy 2M
then the path should have visited y prior to x. If xy2/M then the path can extend to y.
Either case comes to a contradiction.

Second, all vertices in S are matched and so jS j6 jM j<n. Indeed, X nU+�X nU
is fully matched by definition. Also is Y \U+ fully matched, because otherwise there is
an alternating path P leading from an unmatched x 2X to an unmatched y 2 Y , and
(M nP )[ (P nM) would be a larger matching. �

Theorem 1.4. (Hall) A bipartite graph G = (X ] Y ; E) does not contain a perfect
matching iff there is a subset X0�X with jN(X0)j< jX0j.
Proof. We have already shown the (() direction. For the ()) direction, we reuse the
notation in the proof of Theorem 1.3 and takeX0 :=X\U+. Observe thatN(X0)=Y \U+

is fully matched to vertices in X0. But X0�U contains unmatched vertices as well, so we
conclude jN(X0)j< jX0j. �

The X0 in Hall's theorem and the S in K®nig's theorem are �bottlenecks� that prevent
perfect matching in a bipartite graph. Both can serve as a negative certificate. When we
turn to general graphs, however, the X0 is not defined any more. The S is still a sufficient
criterion for ruling out perfect matchings, but it is no longer necessary (consider e.g. the
triangle graphK3). Hence we need to hunt for another notion that captures the bottleneck.

1.2 Lack of Negative Certificate 9



A trivial (though not necessary) condition that prevents perfect matching is the number
of vertices being odd. Can we strengthen it? Suppose we have found a set S � V whose
removal from G results in several odd-cardinality components H1; : : : ; Ht (and possibly
some even-cardinality components). Each Hi is not perfectly matchable internally, so it
has to send at least one vertex to S for help. But if jS j< t then the matching cannot be
perfect, and such S is a bottleneck.

To rephrase, let nodd(H) denote the number of odd-cardinality components in graph
H. Then any set S � V with jS j<nodd(G¡ S) shall rule out the existence of a perfect
matching in G. It turns out that this criterion is necessary, which we state without proof.

Theorem 1.5. (Tutte) A graph G= (V ; E) on 2n vertices does not admit a perfect
matching iff there is a set S of size jS j<nodd(G¡S).

The situation for Exact Perfect Matching is much more awkward. There do exist some
obvious (and not necessary) criteria that rule out the existence of k-PM; for example
if k is larger than the size of maximum matching in the red subgraph. But there is no
good characterisation in sight. To our knowledge, only two criteria can lead to a negative
certificate, but both have a brute-force nature:

� For every set of k disjoint red edges, apply Tutte's theorem to certify that the residual
graph, obtained from removing all their endpoints and other red edges, is not perfectly
matchable. This requires about

�

jE j
k

�

encoding length and checking time.

� A smarter criterion is the following. If G=(V ;E) contains a k-PM, then we can map
each selected red edge to its lower vertex. This gives a set of vertices S 2

�

V

k

�

that

match to V nS via only red edges. Hence the graph GS= (V ; ES) where ES := fred
uv :u2S; v 2/ Sg[ fblue uv :u2/ S; v 2/ Sg should have a perfect matching. Thinking
reversely, to refute the existence of k-PM, we may enumerate all subsets S 2

�

V

k

�

and

certify via Tutte's theorem that GS is not perfectly matchable. This requires about
�

2n
k

�

encoding length and checking time.

These certificates are very inefficient when k=!(1); in fact exponential when k=Θ(n). It
raises the question whether we can compress them combinatorially, which leads us to the
big challenge to bake colours into classical matching theorems. The main difficulty lies in
the type of argument we employ. All known proofs of the theorems of K®nig's, Hall's and
Tutte's use the �alternating path� machinery that we have already seen. Applying such
path guides us from a suboptimal solution to a better one smoothly. In the context of Exact
Perfect Matching, however, applying the path can change the number of reds abruptly, so
we are risking overshoot. The issue will become apparent when you read Chapter 3.

1.3 What Next?

We have been conveying pessimism from the outset to let the reader appreciate the diffi-
culty of Exact Perfect Matching. You might now wonder if it is NP-complete after all. But
it comes at a surprise that the problem can be solved efficiently by a randomised algorithm
[20]!

There has been a belief among complexity theorists that every randomised polynomial
time algorithm can be efficiently derandomised; see [12] for an evidence. This pushes Exact
Perfect Matching to the frontier to test such belief. In particular, can we really remove the
randomness in that algorithm?
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We do not know. The algorithm, to be detailed in Chapter 5, relates perfect matchings
with a symbolic matrix determinant. Randomness plays a key role in probing the determ-
inant, and at present people fail to get rid of it while retaining efficiency. This is consistent
with our lack of structural understanding of k-PMs; randomness gets away with it luckily,
but conceals the truth on the other hand.

We should mention that the algorithm can be made deterministic when the graph is
planar [15] or more generally K3;3-free [17]. Chapter 5 contains a simplified analysis, too.
Unfortunately, these results do not extend to denser graphs.

1.4 Polytope Descriptions

Classical matching theory can be viewed through the lens of polytopes, too. In this dir-
ection, we represent a matching by a 0-1 vector indicating which edges are included. The
disjointness condition can be easily enforced by linear inequalities, one for each vertex.
This gives rise to an integer program. Solving general integer linear programs is an NP-
complete problem, but when it comes to matchings, the difficulties may be circumvented by
a relaxed linear program. This means that we do not study the discrete vectors directly but
rather their convex hull�thus a polytope. For bipartite graphs, this polytope is especially
easy to describe; for general graphs, it has exponentially many facets but they are nicely
characterised by Edmonds [4]. Hence, the problem of finding the maximum cardinality
matching, and the more general problem of finding a maximum weighted matching, can
be solved via the theory of linear programming.

How do these transfer to Exact Perfect Matching? Not much. Even in the bipartite case,
and even if we look at k= 1, the related polytopes would already be bizarre. Chapter 6
delves in this direction and sheds some light on the polytopes as well as their complexity.
It remains a big problem if we can find a description in the same spirit of Edmonds'
description of the matching polytope.

1.5 A Step Further

The concluding Chapter 7 initiates the study of a generalised problem called Exact Perfect

f -Matching. Here f is a function that specifies an integer �quota� for every vertex. A perfect
f -matching picks a multiset of edges so that every vertex v is incident to f(v) of them.
When f � 1 it degenerates to a perfect matching. The problem asks if the graph admits a
perfect f -matching with exactly k reds.

Despite its generality, we will show that the problem reduces to Exact Perfect Matching

when f is polynomially bounded. In such case, we present a dynamic program that solves
the problem for graphs with small tree-width. This is rather standard�perhaps too boring
to be documented by experts�but we did the labour once and for all.

The intriguing case, though, is when we allow exponential values. First, the reduction
does not work any more. Second, the determinant-based approach does not seem to adapt,
so we are not aware of any efficient randomised algorithm. And third, we fail to prove its
hardness. What is the complexity of the problem then? I find it an ideal place to stop and
allow reflection.

The goal of this thesis is to organise things in one place, to simplify proofs and establish
new connections or insights, and ultimately to serve the reader as an in-depth reference in
the field.

1.5 A Step Further 11





2

Notations and Reformulations

This chapter sets up the notations to be used throughout the thesis. We then present
several reformulations of Exact Perfect Matching which suggest the essence of the problem
from multiple perspectives.

2.1 Notations

Unless otherwise stated, we study a graph G=(V ;E) on jV j=2n vertices whose edges are
coloured either red or blue: E=R]B. When the graph is bipartite, we assume bipartition
V =X ] Y . We usually abbreviate an edge fu; vg as uv. The neighbourhood of vertex
v 2V is denoted N(v). For a subset of vertices U �V , we write E[U ] for the set of edges
with both ends in U , and G[U ] := (U ;E[U ]) for the subgraph induced by U .

A matching M �E is a set of edges that do not share vertices. If jM j=n then it is a
perfect matching ; if in addition jM \Rj= k then we call it a k-PM . Vertices incident to
a matching edge are said to be matched or covered .

We assume thatG has at least one perfect matching. Denote kmin and kmax, respectively,
to be the minimum and maximum k for which k-PM exists in G. These numbers can
be computed in polynomial time: Place unit weights on red edges and nil weights on
blue edges, then invoke Edmonds' primal-dual algorithm to obtain a minimum/maximum
weight perfect matching in G.

Clearly if G admits a k-PM then kmin6 k6 kmax. However, this condition is far from
sufficient by Theorem 1.1.

2.2 Making the Reds Disjoint

In general the graph may contain Θ(n2) red edges, but it turns out that we can sparsify
them without loss of generality.

Lemma 2.1. For every graph G on 2n vertices, there is a graph G0 on 6n vertices with
exactly 2n disjoint red edges, such that G admits a k-PM iff G0 admits a 2k-PM.

Proof. Assume G= (V ; R ]B). We separate two graphs GR := (V ; R) and GB := (V ; B)
that encode the red and blue parts in G, respectively. All edges are now coloured black. On
top of these, we make a third copy of V and connect each new vertex to its counterparts
in GR (using a black edge) and GB (using an orange edge). Call the resulting graph G0.
The figure below illustrates the reduction.



G

GR GB

For every perfect matching in G0, the third copy of vertex v has to make a binary choice:
either go for the black, which covers the v 2GR but leaves open the v 2GB; or go for the
orange, which covers the v 2GB but leaves open the v 2GR. After all decisions are made,
the remaining open vertices need to be matched within GB or GR. These correspond to
vertex v being covered by a blue or a red matching edge in G, respectively.

Conversely, every perfect matching in G can be translated to a perfect matching in G0,
under the same interpretation.

Note that every red matching edge uv in G correspond to two orange matching edges
in G0: one for u and one for v. Therefore, k-PM in G corresponds to 2k-PM in G0, and the
proof is complete. �

For bipartite graphs, we can additionally save half of the orange edges and preserve the
parameter k in the transformation.

Lemma 2.2. For any bipartite graph G on 2n vertices, there is a bipartite graph G0 on 6n
vertices with exactly n disjoint red edges, such that G admits a k-PM iff G0 admits a k-PM.

Proof. Assume G= (X ] Y ; R ]B), and split two graphs GR := (X ] Y ; R) and GB :=
(X ] Y ; B). All edges are coloured black. Then we make a copy of X and connect each
new vertex to its counterparts in GR (using a black edge) and GB (using an orange edge).
Finally we make a copy of Y and connect each new vertex to its counterparts in GR and
GB in black. Clearly the result G0 is bipartite. See the figure below for an example.

The correspondence between perfect matchings in G and G0 is as before. But this time,
every red matching edge xy 2X �Y in G corresponds to only one orange matching edge
in G0: the one incident to vertex x. Hence k-PM in G corresponds to k-PM in G0, as we
claimed. �

In some situations one might want to reduce the instance so that the red edges in the
graph form a perfect matching; that is, every vertex is incident to exactly one red edge.
This is indeed possible:
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Lemma 2.3. For any (bipartite) graph G on 2n vertices, there is a (bipartite) graph G0

on 6n+4n2 vertices whose red edges form a perfect matching, such that G admits a k-PM
iff G0 admits a 2k-PM for k6n.

Proof. First we apply the reduction in Lemma 2.1 and obtain a graph H on 6n vertices
with disjoint orange edges. Exactly 2n vertices are not yet incident to orange. Pick any
two of them and add a path of length 4n+1 in between. Colour the path by orange and
black in alternation, starting and ending with orange. We repeat the procedure until every
vertex gets (exactly) one incident orange edge. This is our graph G0.

Every k-PM inG corresponds to a 2k-PM inH. The latter naturally maps to a 2k-PM in
G0 by �ignoring� the additional paths; that is, using only the black edges along those paths.

Conversely, any 2k-PM in G0 must ignore all additional paths; otherwise it has to use
the 2n+1 oranges along that path, which already exceeds 2k. �

2.3 Exact Cycle Cover

With the last reduction, it is now easy to show that Exact Perfect Matching in bipartite
graphs is polynomially equivalent to Exact Cycle Cover in directed graphs. The latter
problem asks if you can cover exactly k vertices by disjoint cycles in a directed graph.
The relation between the two was already pointed out by Papadimitriou and Yannakakis
in their original paper [21].

Theorem 2.4. Exact Perfect Matching in bipartite graphs can be reduced to Exact Cycle

Cover in directed graphs within polynomial time, and vice versa.

Proof. Given a bipartite graph, we apply the reduction in Lemma 2.3 to get a bipartite
graph G= (X ] Y ; R ]B) where the red edges form a perfect matching. We label the
vertices in parts X and Y both by integers f1; : : : ; ng, so that each red edge goes between
�parallel� vertices i 2X and i 2 Y . Next, orient the blue edges from X to Y , and then
contract the red edges. This leads to a directed graph G0 on f1; : : : ; ng.

Note that every k-PM in G picks k red (parallel) edges, and n¡ k blue (non-parallel)
edges. These blues form a perfect matching between I \X and I \Y for some I �f1;:::;ng
of size n¡ k. Every blue edge ij corresponds to a directed edge i! j in G0, so the latter
together form a cycle cover inG0[I ]. Conversely, cycles inG0 that cover n¡k vertices can be
interpreted as a k-PM in G. Therefore, Exact Perfect Matching reduces to Exact Cycle Cover.

1

2

3

4

1

2

3

4

1

2

3

4

⇐⇒

The reduction also works in reversal. Namely, given a directed graph, we can construct
a bipartite graph by splitting each vertex into two copies joined by a parallel red edge, and
replacing each directed edge i! j with an undirected blue edge from the left copy of i to the
right copy of j. We omit the rest of the argument as it is similar to the other direction. �
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2.4 Max Weight Extendable k-Set

Next we introduce a less obvious reformulation, first studied by El Maalouly [5]. An edge
subset F �E is extendable if it is contained in some perfect matching. Consider a weight
function w:E!N0 and write w(F ) :=

P

e2Fw(e) for F �E. The Max Weight Extendable k-

Set problem is stated as (1) below. For convenience, we also list the Exact Perfect Matching

problem as (3) and an intermediate problem as (2).

(1) Given G=(V ;E;w) and k 2N, maximise w(F ) over all extendable sets F of size k.

(2) Given G=(V ;R]B;w) and k 2N, maximise w(M) over all k-PMs M .

(3) Given G=(V ;R]B) and k 2N, find a k-PM.

That the three problems are equivalent was shown in [5] and [8]. Here we give a different
and simpler proof.

Reducing (1) to (2)

Note that (1) is the same as optimising w(F ) over all pairs (F ; M) where F 2
�

M

k

�

is

contained in perfect matching M . Given an instance of (1), we colour every edge e= uv

red and attach a parallel blue path of length three and zero weight:

u v

w(e)

0

00

This gadget can model the three possible states of the edge:

e ̸∈ M e ∈ M \ F e ∈ F

u v
w(e)

0

00

u v
w(e)

0

00

u v
w(e)

0

00

So a valid pair (F ;M) in the old graph one-one corresponds to a k-PM M 0 in the new
graph, and w(F ) equals the weight of M 0. Hence the problem reduces to (2).

Reducing (2) with polynomial weight to (3)

Given an instance of (2), we fix a constant L>w(E) and replace every red edge e by a red-
blue alternating path Pe of length 2 (L+w(e))¡ 1 that starts and ends with reds. Note
that such construction is efficient only if the weights are polynomially bounded.

Every perfect matchingM in the old graph corresponds to a perfect matchingM 0 in the
new graph, and vice versa: M picks a red edge e iff M 0 picks all the L+w(e) reds in Pe.
Moreover jM 0\Rj= jM \Rj �L+w(M). Therefore, a k-PM in the old graph corresponds
to some k 0-PM in the new graph for kL6 k 0= kL+w(M)< (k+1)L. The large cushion
L prevented the mixing of different number of reds.

To solve (2), we invoke (3) multiple times to decide whether there is a k 0-PM in the
new graph, for k 0= (k+1)L¡ 1 down to kL. If at some point we detect such a perfect
matching then we stop. It maps to k-PM of maximum weight k 0¡ kL in the old graph.

Reducing (3) to (1)

Given an instance of (3), we replace

� each red edge by a path of length three with weights 2; 3; 2; and
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� each blue edge by an edge of weight 0.

Every perfect matching M in the old graph G naturally corresponds to a perfect matching
M 0 in the new graph G0, and vice versa. For each e2E(G),
� if e2R\M then it contributes to M 0 two edges of weight 2;

� if e2R nM then it contributes to M 0 an edge of weight 3;

� if e2B \M then it contributes to M 0 an edge of weight 0;

� if e2B nM then it does not contribute to M 0.

Denote r := jRj and i := jM \Rj. Then M 0 has 2i edges of weight 2 and r ¡ i edges of
weight 3; other edges have weight 0. Note that only r + i edges have non-zero weights.
Consider the heaviest k 0 := r+ k edges F 0�M 0.

� If i6k then all non-zero edges are included in F 0, so w(F 0)=2 �2i+3 (r¡ i)=3 r+ i.

� Otherwise i > k, thus r ¡ i < k 0< r+ i. So all the 3's are included but some 2's are
missed by F 0. It follows that w(F 0)=2 (k 0¡ (r¡ i))+3 (r¡ i)=3 r¡ i+2 k.

Apparently w(F 0)6 3 r+ k. It attains the maximum possible value iff i= k, that is, when
M has k reds.

Remark. For problem (3) one can assume r=Θ(n) via Lemma 2.1. Then reduction (3))(1)
constructs a graph G0 on n+2r=Θ(n) vertices. Suppose we are able to "-approximate (1),
i.e. report a pair (F ;M) such that w(F ) is within 1� " times the optimum 3 r+k=Θ(n).
It corresponds to a matching M with i= k �Θ(n) reds. In the most interesting (and
trickiest) scenario k=Θ(n), this gives a constant-factor approximation for (3). Similarly,
if we are able to additively approximate (1) then we can also do so for (3).

2.4 Max Weight Extendable k-Set 17





3

Combinatorial Structures

Starting from this chapter, we investigate the combinatorial structure of (coloured) perfect
matchings. We will borrow classical tools from matching theory and incorporate edge col-
ours. Then we can present a proof of the Continuity Theorem, as well as a characterisation
for complete graphs due to Karzanov [14]. Despite some success, we are still in short of a
general characterisation like the theorems of K®nig's, Hall's and Tutte's.

3.1 Symmetric Difference of Perfect Matchings

If there is one central notion in the matching theory, then it is the notion of symmetric
difference. The symmetric difference of two sets S; S 0 is defined as

S �S 0 := (S nS 0)[ (S 0nS):
In other words, it is the �exlusive or� that captures where S and S 0 differ. Clearly � is
commutative and associative, and S �S= ;.

Applied to matching theory, we usually have a preliminary matching M at hand and
would like to �improve� it to a matching M 0 with certain property. Conceptually M �M 0

tells us how to bridge the gap in one shot. What makes the notion immensely useful for
us is that M �M 0 takes rather regular form when M;M 0�E are perfect matchings.

Definition 3.1. Let F ;F 0�E. A path/cycle is fF ;F 0g-alternating if its edges alternate
between F and F 0. For convenience, fF ;E nF g-alternating is abbreviated as F-alternating .

Lemma 3.2. Let M be a perfect matching.

(i) If M 0 is a perfect matching, then C :=M �M 0 is a collection of disjoint fM;M 0g-
alternating cycles.

(ii) If C is a collection of disjoint M -alternating cycles, then M 0 :=M � C is a perfect
matching.

Proof. To see (i), consider any vertex v. It is incident to exactly one edge e2M and one
edge e02M 0 becauseM;M 0 are perfect. If e=e0 then they cancel out inM �M 0; otherwise
both remain. So v is incident to either zero or two edges inM �M 0, implying thatM �M 0

forms a collection of disjoint cycles. Clearly each cycle must be fM;M 0g-alternating.
To see (ii), first note that M �M 0= C, so M and M 0 differ on C only. Hence, to show

that M 0 is a perfect matching, it suffices to argue that each vertex v lying on C is incident
to exactly one edge from M 0.

To this end, v is incident to exactly two edges e; e02C due to disjointness of the cycles.
Recall that C is M -alternating, thus exactly one edge is M , say e 2M and e0 2/ M . So
e2/M 0 and e02M 0, and v is indeed incident to exactly one edge from M 0. �



The lemma basically says �to obtain another perfect matching is equivalent to finding
alternating cycles�. It opens up the possibility to move from M to a target M 0 increment-
ally. Since the difference M �M 0 consists of one or more disjoint alternating cycles, we
may search for and apply the cycles in discrete steps, patching one cycle on the current
perfect matching at a time. We will illustrate the idea when we prove Theorem 1.2 in the
next section.

3.2 Accounting the Change of Reds

So far we have only accounted the graphical structure by the term �alternating cycle�. But
we also care about the edge colours, in particular how the number of reds changes after a
modification. This motivates us to define a weight function E!f0;¡1;+1g with respect
to a matching M :

�(ejM) :=

8

<

:

0 e2B;
¡1 e2R\M;

+1 e2RnM:

We abuse the notation and write �(F jM) :=
P

e2F �(ejM) for any subset F �E. Then

�(F jM) captures the net growth of reds when we move fromM toM �F . In other words,
jR\ (M �F )j= jR\M j+ �(F jM).

With these tools, we are ready to prove the Continuity Theorem 1.2 via an interpolation
argument.

Proof of Theorem 1.2. Assume k1<k < k2; for otherwise the theorem is trivial. Let M1

and M2 be arbitrary k1- and k2-PM, respectively. Consider the symmetric difference C :=
M1�M2, which consists of alternating cycles C1; : : : ; Ct. Then

k2= k1+ �(CjM1)= k1+
X

i=1

t

�(CijM1):

Hence there exists a minimal i0 such that

k1+
X

i=1

i0

�(CijM1) < k 6 k1+
X

i=1

i0+1

�(CijM1);

in particular �(Ci0jM1)> 0. We apply C1[ � � � [Ci0 on matching M1, boosting its number
of reds near but below k. If we in addition apply Ci0+1, either we get to exactly k and
finish, or there is an overshoot.

To resolve such overshoot, we shall not apply Ci0+1 in its entirety. Instead, we extract
an alternating subpath from Ci0+1 that exactly fills the gap

∆ := k¡
 

k1+
X

i=0

i0

�(CijM1)

!

> 0:

To this end, observe that Ci0+1 must contain a red M2 edge followed by a blue M1 edge;
otherwise �(Ci0+1jM1)6 0, a contradiction. Hence we cut Ci0+1 at this blue M1 edge and
linearize it to an alternating path P = v1: : :v2`, where v1 v22M2 is red and v2`¡1 v2`2M2.
Note also that �(P )= �(Ci0+1)>∆.
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We gradually grow a subpath Q := v1: : :v2j+1 for j=1; : : : ; `¡ 1. This is an alternating
path that starts with M2 and ends with M1. Initially �(Q)6 1. Increasing j by one shall
change �(Q) by at most one. Eventually �(Q) > �(P ) ¡ 1 >∆. Hence there exists an
intermediate j with �(Q)=∆. Applying this alternating path Q (in addition to C1[ � � � [
Ci0) on M1 will boost the number of reds to exactly k. There is one final caveat: before
applying Q, we must drop the blue edge v1 v2` (the �cut�) from M1 to ensure that v1 is
unmatched; otherwise applying Q would not produce a valid matching. This is the only
loss in our argument, and the resulting matching is almost perfect. �

3.3 Characterisation for Complete Graphs

Conceivably, the discontinuous feasibility of k-PMs arises from sparsity of G. If the graph
is dense enough, we should be able to move from one perfect matching to another smoothly.
This direction was first pursued in the early work of Karzanov [14], where he characterised
the feasibility regimes for complete and complete bipartite graphs. Here we focus on G=
Kn;n and present a streamlined proof suggested by [9, 10]; the case G=K2n is quite similar.
Throughout we assume that G is not monochromatic�otherwise the problem is trivial.

Let us call a graph stiff if all its connected components are complete. We branch four
types on the structures of GR := (V ;R) and GB := (V ;B):

(1) GR and GB are both stiff.

(2) GR or GB is not stiff.

(2.1) GR is not stiff, whereas GB is stiff and admits a perfect matching;

(2.2) GB is not stiff, whereas GR is stiff and admits a perfect matching;

(2.3) otherwise.

For the main plot we only care about differentiating types (1) and (2). In the following,
an (r; b)-cycle refers to a cycle with r reds and b blues.

Lemma 3.3. Type (1) is characterised by any of the two conditions:

(i) Both GR and GB are disjoint unions of two complete bipartite graphs. That is, GR=
KX1;Y1[KX2;Y2 and GB=KX1;Y2[KX2;Y1.

(ii) Every cycle in G has an even number of reds and an even number of blues.

Proof. First let us assume (1). Then neither GR nor GB is connected; otherwise G would
be monochromatic. On the other hand, GR can have at most two components. To see this,
suppose it had at least three components KXi;Yi (i=1; 2;3; : : : ; t), then the edges bridging
Xi; Yj are blue for all i=/ j, which implies that GB is connected, a contradiction. Hence
GR has exactly two components. By symmetry GB has exactly two components, too. This
establishes (i).

Next we assume (i). Traverse any cycle in G. Every time we jump from one component
of GB to the other (necessarily along a red edge), we have to return along another red edge
later. During this excursion we encounter no other reds, thus the total number of traversed
reds is even. So is the number of traversed blues. This establishes (ii).

Finally we assume (ii). Suppose some component of GR is not complete; denote X0�X
and Y0� Y its two parts in the bipartition. Then there exists a blue edge xy 2X0� Y0.
Since x and y lie in the same red component, they are connected via some red path. It
together with xy form a cycle containing exactly one blue, which contradicts (ii). Therefore
GR is stiff; analogously GB is stiff as well. This establishes (1). �
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Lemma 3.4. Suppose G has type (1) and kmin6 k6 kmax. Then k-PM exists iff kmin�
k� kmax (mod 2).

Proof. Here is an important observation: The value �(C jM) is even for every matching M
and M -alternating cycle C. Indeed, from Lemma 3.3 we know that C contains an even
number of reds. Each such red contributes either +1 or ¡1 to �(C jM), whereas other edges
contribute nothing. So �(C jM) has to be even.

Let M1;M2 be perfect matchings with kmin and kmax reds, respectively. Suppose there
is a k-PM M . Every cycle C in C :=M1�M has an even �(C jM1), which implies k =
kmin+

P

C2C �(C jM1)� kmin (mod 2). Similarly k� kmax (mod 2).

For the reverse direction, if kmin= kmax then there is nothing to prove. Hence assume
kmin<kmax. We employ a very similar argument to that of Theorem 1.2. The symmetric
difference M1�M2 consists of alternating cycles. We iteratively apply the cycles on M1,
until the next cycle C :=(x1; y1;:::;x`; y`) overshoots the target k. Without loss of generality
we assume x1 y12M1. Denote by 0<∆<�(C jM1) the remaining gap to k, which must
be even by our observation. We shortcut the cycle C into an M1-alternating C 0 := (x1;
y1;:: :; xi; yi) for i=2;:: :; `. Initially �(C

0jM1)2f0;2g and eventually �(C 0jM1)= �(C jM1).
Increasing i by one changes � by either zero or two (again by our observation). So there
exists an intermediate i for which �(C 0jM1)=∆. Applying this cycle C 0 on the current M1

shall close up the gap exactly. �

Lemma 3.5. Suppose G has type (2), kmin6 k6 kmax and 26 k 6 n¡ 2. Then k-PM
always exists.

Proof. We prove by induction on n. The base cases n6 4 can be argued by enumeration.
Now assume n> 5. By symmetry of the two colours, we may also assume k> dn/2e> 3.
We apply Theorem 1.2 to find an almost perfect matching M with exactly k reds. If it
turns out to be perfect then we are done. Otherwise, let x0 and y0 be the two unmatched
vertices, where y0 is incident to the dropped blue edge x1 y0 (the v1 v2` in the proof of
Theorem 1.2). The vertex x1 is matched to some red edge x1 y1 (the v1v2 in previous proof).
Take two other red matching edges x2 y2 and x3 y3, which exist since k> 3. Apparently, if
x0 y0 is blue then M+ :=M +x0 y0 is a k-PM. So below we assume that x0 y0 is red, thus
M+ is a (k+1)-PM. Here is an illustration of the setup, where bold edges represent M+.

x0

x1

x2

x3

y0

y1

y2

y3

Consider the graph G0 :=G¡fx2; y2g with n0=n¡1 and k 0 :=k¡1. Note that 26k 06
n0¡ 2. If G0 admits a k 0-PM then we happily insert the edge x2 y2 and obtain a k-PM in
G. If not, then G0 has type (1) by induction. Via an analogous reasoning, we may assume
that G00 :=G¡fx3; y3g has type (1), too.

What do they tell us about the graph G? Applying Lemma 3.3 on G00, we deduce that

� x0 y1 needs to be blue;

� x1 y2 and x2 y1 have the same colour; and

� x0 y2 and x2 y0 have the same colour different from the previous pair.

Anyway (xi; y2; x2; yi) is a (4;0)-cycle for some i2f0;1g. We apply Lemma 3.3 on G00 again
to conclude two properties:

� xi y and x2 y have the same colour, for all y 2Y nfy3g; and
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� xyi and xy2 have the same colour, for all x2X nfx3g.
The properties might or might not hold for y3 and x3. (The argument certainly does not
because the concerned edges appear in neither G0 nor G00.) So let us make two cases:

(i) Suppose the two properties extend to y3 and x3. Decompose GR
0 :=KX1

0;Y1
0 [KX2

0;Y2
0

and GB
0 :=KX1

0;Y2
0[KX2

0;Y1
0 where X1

0[X2
0=X nfx2g and Y10[Y20=Y nfy2g. Without

loss of generality xi2X1
0 and thus yi2Y10. Applying the properties, we have

x2 y 2R () xi y 2R () y 2Y10
xy22R () xyi2R () x2X1

0

In other words, all edges between x2; Y1
0 (resp. X1

0; y2) are red, and all edges between
x2; Y2

0 (resp. X2
0; y2) are blue. So with X1 :=X1

0 [ fx2g and Y1 := Y1
0[ fy2g we have

KX1;Y1 and KX2
0;Y2

0 being red, and KX1;Y2
0 and KX2

0;Y1 being blue. Therefore G has type

(1) by Lemma 3.3, a contradiction.

(ii) So the properties do not always hold. With symmetry we may assume that y3 is the
violator, so xi y3 has colour c and x2 y3 has the opposite colour c. Hence x3 yi has
colour c by Lemma 3.3 on G0. Now observe that C := (xi; yi; x3; y3; x2; y2) is an M+-
alternating (5; 1)-cycle with �(C jM+) =¡1. Applying it on M+ would produce a k-
PM as desired. See the figure below for a visualisation.

x1−i

xi

x2

x3

y1−i

yi

y2

y3

�

What remains are the corner cases k 2f0; 1; n¡ 1; ng. The preparatory lemma below
allows us to shorten a cycle that contains one blue.

Lemma 3.6. If G contains a (2 t+1;1)-cycle for some t>0, then it contains a (3;1)-cycle.

Proof. Let (x0; y0; : : : ; xt; yt) be a (2 t+1; 1)-cycle where x0 y0 is the only blue edge. Take
the minimal i such that x0 yi 2R. It exists because x0 yt 2R. By minimality we know
x0 yi¡12B, thus (x0; yi¡1; xi; yi) is a (3; 1)-cycle.

x0

x1

x2

xt

y0

y1

y2

yt

x0

xi

yi−1

yi

.

.

.

.

.

.

�

Lemma 3.7.

GR is not stiff () G contains (3; 1)-cycle.
GB is not stiff () G contains (1; 3)-cycle.
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Proof. The two statements are symmetric, so we prove the first only. Fix a non-complete
component of GR and let X0�X and Y0�Y be its two parts. So there exists a blue edge
x0 y02X0�Y0. As x0 and y0 lie in the same red component, they are connected via some
red path y0x1 y1: : :xt ytx0. It together with x0 y0 gives a (2t+1; 1)-cycle. The claim then
follows from Lemma 3.6.

Conversely, if G contains a (3; 1)-cycle, then the four vertices on the cycle are in the
same red component H. This H is not complete as witnessed by the blue edge. �

The following lemma is our final missing piece.

Lemma 3.8. Suppose G has type (2).

� If kmax=n, then (n¡ 1)-PM exists iff G contains (3; 1)-cycle.

� If kmin=0, then 1-PM exists iff G contains (1; 3)-cycle.

Proof. The statements are symmetric and we prove the first only. LetM be an n-PM, that
is a perfect matching in GR. To show the forward implication, let M 0 be an (n¡ 1)-PM
and consider the symmetric difference M �M 0. Only one alternating cycle contains blue,
and it must be a (2t+1;1)-cycle for some t>0. Hence there is a (3;1)-cycle by Lemma 3.6.

For the reverse implication, let (x1; y1; x2; y2) be a (3; 1)-cycle where x1 y1 is blue.
Consider the vertices matched to these four inM . We argue that there is anM -alternating
cycle C on the at most eight vertices in consideration, with �(C jM)=¡1. Let us enumerate
all cases (modulo symmetry):

x1

y1 x2

y3

x3

x1

y1 x2

y2 x1

y1 x2

y2

y2x1

y1 x2

y2

y3

x3

x4

y4x3 y4

In the top-left case, we simply take C=(x1; y1; x2; y2). In the bottom-left case, if x3 y2 is
red then we take C=(x1; y1; x3; y2); similarly if x1 y4 is red then we take C=(x2; y2;x1; y4);
otherwise we take C =(x1; y2; x3; y1; x2; y4). The remaining two cases are similar. �

Theorem 3.9. (Karzanov) In the respective four types, G admits a k-PM for kmin6

k6 kmax iff
(1) kmin� k� kmax (mod 2).
(2.1) k=/ 1.
(2.2) k=/ n¡ 1.
(2.3) always.

Proof. If G has type (1) then the feasibility is captured by Lemma 3.4.
If G has type (2.1) then kmin= 0. When 26 k6 n¡ 2 the feasibility is captured by

Lemma 3.5. When k 2f0; kmaxg the feasibility is trivial. So the only uncovered cases are
(i) k=1 and (ii) k=n¡ 1<kmax. Note that G contains (3; 1)-cycle but no (1; 3)-cycle by
Lemma 3.7. Hence (i) is infeasible and (ii) is feasible by Lemma 3.8.

Types (2.2) and (2.3) are handled analogously. �
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4

The Sandwich Paradigm

As we saw in Karzanov's theorem, complete (bipartite) graphs enjoy continuity: they admit

k-PM for basically every k, except in the stiff case where the feasibility of k jumps by two.

A key insight by Karzanov is that we can shorten long cycles in a symmetric difference

down to 4-cycles; applying the latter on a perfect matching can change the number of reds

by at most two.

Of course, similar properties extend to �sufficiently structured� graphs. This line of

research was initiated by El Maalouly et al. [6, 7] where the authors studied graphs of

bounded (bipartite) independence number. In another extension, Haslebacher [11] defined

the doubly chordal property to frame some other graphs, such as unit interval graphs and

chain graphs. Both work follow a recipe that we summarise as the sandwich paradigm.

We will start with its basic version which can return us a (k�")-PM, where "2N is an

error term depending on G. Along the way we will analyse the error for a wealth of graph

classes, some of which not yet considered in the literature. Then we will refine the paradigm

and kill the error for some graphs. As an interlude we supply three �lifting theorems� that

generate even more graphs on which the sandwich paradigm is applicable.

4.1 The Basic Version

We maintain two perfect matchingsM1 andM2 such that jM1\Rj6k6 jM2\Rj. In each

iteration we try to close their �gap� in certain sense. Eventually the process terminates and

we catch our target in the middle.

There are many ways to measure the gap. The most obvious one is jM2\Rj¡ jM1\Rj;
another candidate is the cardinality jM1�M2j. But it need not be numeric. In general we

may use any function d(M1; M2) whose codomain is a totally ordered set of polynomial

size. The basic sandwich paradigm then goes as follows:

Algorithm Sandwich

assume kmin6 k6 kmax

let M1;M2 be perfect matchings with kmin and kmax reds, respectively

while jM2\Rj ¡ jM1\Rj> 2 " do

compute a perfect matching M such that d(M;M2); d(M1;M)<d(M1;M2)

if jM \Rj6 k then M1 :=M , else M2 :=M

return M1 or M2



To implement the paradigm, one must specify the function d, the tolerable error "2N,
and an efficient procedure that computes theM under the loop condition. Given all these,
the paradigm shall terminate in polynomial time since each iteration strictly decreases
the gap d(M1;M2). Note that the sandwich jM1\Rj6 k6 jM2\Rj is maintained by the
replacement rule, so upon termination we obtain a perfect matching with k� " reds. We
stress that the number of reds does not necessarily move towards k in every single iteration.

The output guarantee is of course weaker than our ultimate goal. Nevertheless, a (k�")-
PM is fairly good approximation, where the error " quantifies continuity of the feasibility
regime of G. For some graphs, we may actually use the approximate solution as a stepping
stone to jump to a k-PM. We will come back to this point later.

In the following we showcase the paradigm on a handful of input graphs. Here is a brief
summary:

Input graph Gap function d Error ε

independence number � jM1�M2j 4�+1

bipartite independence number � jM1�M2j �+1
modular width t jM1�M2j t/2
1-extendable bipartite, face complexity t

P

C�M1�M2
area(C) t/4

4.1.1 Graphs of small independence number

The independence number � of a graph G is the maximum cardinality of an independent
set in G. Note that �=1 iff G is complete. Generally, if � is small then G has dense local
structure:

Lemma 4.1. Let G= (V ;E) be a graph of independence number �. Then for every set
S �V of 4�+1 vertices, G[S] contains a clique of size �+1.

Proof. Denote H :=G[S]. From basic Ramsey theory we know that either H or H contains
a clique of size �+1. But the latter case is impossible because such a clique corresponds
to an independent set of size �+1 in H . �

Definition 4.2. An M1!M2 skip is an M1-alternating cycle vi vi+3! vj+3 vj! vi
where vi: : :vj+3 is a subpath in M1�M2, and vi vj, vi+3 vj+3 are two chords.

a skip after applying the skip

vi

vjvi+3

vj+3
vi

vjvi+3

vj+3

An M1!M2 skip D has length 8, thus ¡46 �(D jM1)6 4. It contains four edges from
M1, two edges fromM2, and two chords from neither. Applying it onM1 would reduce the
cardinality of M1�M2 by exactly 4+ 2¡ 2=4.

GivenM1�M2, we can list all skips in O(n2) time because fixing one chord that appears
in the skip would determine the other.

Lemma 4.3. Every fM1; M2g-alternating path P of length jP j> 4�+2 gives rise to an
M1!M2 skip.
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Proof. Orient P along one direction and cut it into jP j/4> 4�+1 disjoint subpaths, each
having length three and pattern �M1M2M1�. Collect the heads of these paths into a set S.
By Lemma 4.1 there is a subset S0�S of size �+1 such that G[S0] is a clique. Let T0 be
the tails corresponding to S0. As jT0j=�+1 is larger than the independence number, there
exist adjacent vertices t1; t22T0. Let s1; s22S0 be their corresponding heads, respectively.
Then the cycle s1 t1! t2 s2! s1 forms an M1!M2 skip. �

It is time to flesh out Sandwich. Choosing function d(M1;M2) := jM1�M2j and error
" := 4�+1, we describe a procedure that computes M . Under the loop condition we have
d(M1;M2)> 4 ". We pick an arbitrary cycle C from M1�M2.

� If jC j<d(M1;M2) then we simply take M :=M1�C. Both d(M;M2)= d(M1;M2)¡
jC j and d(M1;M)= jC j are strictly less than d(M1;M2).

� Otherwise jC j= d(M1; M2)> 4 ". Then Lemma 4.3 guarantees an M1!M2 skip D.
We take M :=M1�D, thus d(M;M2)= d(M1;M2)¡ 4<d(M1;M2) and d(M1;M)=
8� d(M1;M2).

4.1.2 Bipartite graphs of small bipartite independence number

For bipartite graph G we have �>n as each side of the bipartition is an independent set.
So the independence number is not a good parameterisation. This motivates the study of
bipartite independence number �. Call a set S �V balanced if jS \X j= jS \Y j. We define
2� to be the maximum cardinality of a balanced independent set.

With d(M1; M2) := jM1�M2j and " := � +1, we describe a procedure that computes
M . Again, under the loop condition we have d(M1;M2)> 4 ". Pick an arbitrary cycle C
from M1�M2.

� If jC j<d(M1;M2) then we take M :=M1�C as before.

� If jC j=d(M1;M2)>4 " then we walk along C :=(v1; v2;:::; vjC j), starting from an edge

v1v22M1. Without loss of generality we assume v12X. LetX0 :=fv1; v3;:::;v2�+1g�X
and Y0 :=fv2�+4; v2�+6;:::; v4�+4g�Y . Since X0[Y0 is a balanced set of size 2(�+1),
there exist vertices v2i¡12X0 and v2j2Y0 that are adjacent. Hence D :=(v2i¡1; v2i;:::;
v2j¡1; v2j) is an M1-alternating cycle of length at most 4 ". Take M :=M1�D and
note that d(M;M2)=d(M1;M2)¡jD j+2 and d(M1;M)= jD j are less than d(M1;M2).

You might see a pattern in this sort of argument. Before we move on to the next graph
class, let us abstract the key structure.

Definition 4.4. A graph is "-chordal if every even cycle C of length jC j> 4 " has a chord
that splits C into two odd-length paths.

Hence graphs of bipartite independence number � are (�+1)-chordal. We may prove
the following general theorem:

Theorem 4.5. Consider applying Sandwich on an "-chordal graph with gap function
d(M1;M2) := jM1�M2j and error ". Then under the loop condition we may always find a
desired M in quadratic time.

Proof. Pick an arbitrary cycle C from M1�M2.

� If jC j<d(M1;M2) then we take M :=M1�C.

� If jC j= d(M1;M2)> 4 " then there exists a chord e that splits C into two odd-length
paths. One of the paths P starts and ends with M1 edges. Hence D :=P +e is anM1-
alternating cycle. We take M :=M1�D. �
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4.1.3 Graphs of small neighbourhood diversity

A graph has neighbourhood diversity at most t if we can partition its vertices into t bags
such that

(i) the induced subgraph on every bag is either complete or empty; and

(ii) there is either no edge or full edges between every two bags.

We show that these graphs are t/2-chordal. Let C =(v1; v2; : : : ; vjC j) be a cycle of length

jC j> 2t. Consider the more than t vertices at even indices. By pigeon-hole principle, two
such vertices v2i and v2j must lie in the same bag b. Assume that v2i¡1 is in bag a (possibly
a= b). From v2i¡1 v2i2E and properties (i)(ii), we deduce that v2i¡1 v2j 2E as well. This
is exactly the chord we are looking for.

4.1.4 Graphs of small modular width

As a generalisation, we consider a �recursive version� of neighbourhood diversity. A graph
has modular width at most t if we can partition its vertices into t bags such that

(i) the induced subgraph of every bag is either complete, empty, or has modular width at
most t; and

(ii) there is either no edge or full edges between every two bags.

In other words, we allow each bag to contain sub-bags recursively. This accommodates
much richer graph structures. Unfortunately the previous argument breaks when a= b, as
we cannot guarantee v2i¡1 v2j 2E.

Here is the tweak. Let C =(v1; v2; : : : ; vjC j) be a cycle of length jC j> 2t. If all vertices

on C lie in the same top-level bag, then we �zoom in� and inspect its sub-bags. If still all
vertices on C lie in the same sub-bag then we recurse likewise. Eventually we either descend
to a level where vertices begin to differentiate, or we hit the bottom and could not descend
any more. In the latter case G[fv1; : : : ; vjC jg] must be complete because it is non-empty,

thus we may take for example v1 v4 as the desired chord.
It remains to consider the former case. Look at the vertices at even indices. By pigeon-

hole principle there are vertices v2i and v2j in the same bag b (at current level).

� If v2i¡1 is in a different bag, then we deduce from property (ii) that v2i¡1 vj 2E is a
desired chord.

� If v2i+1 is in a different bag, then we deduce from property (ii) that v2i+1 vj 2E is a
desired chord.

� Otherwise v2i¡1; v2i; v2i+1 are all in bag b. Continue walking along the cycle as long
as we are in bag b. Eventually we will get to some vertex v` in a different bag a=/ b.
Note that v` is adjacent to every vertex in bag b due to property (ii). In particular
v`¡3 v`2E is a desired chord.

In contrast to all graph classes mentioned before, the last case highlights a tricky structure:
we have no control over the parity of `. So the chord v`¡3 v` completes an M1-alternating
cycle with an unknown half of C. This will become a hurdle if we wish to jump to a k-PM
using the method in Section 4.4.

Of particular interest is a subclass called cographs. These are graphs that do not contain
P4 (path of length three) as an induced subgraph. Equivalently, they are graphs of modular
width at most two. The tricky structure manifests already in cographs, and we do not
know any efficient deterministic algorithm that finds k-PM in them.
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4.1.5 Planar 1-extendable bipartite graphs

Finally we investigate a graph class that needs special argument. A graph is 1-extendable
if it is connected and every edge appears in some perfect matching. Such graphs play a key
role in the structural decomposition of perfectly matchable graphs. We refer to Chapters
5 and 6 in Lovász and Plummer [18] for more information, although we do not use any
property beyond the definition.

We assume in addition that the graph is bipartite and planar, in which every face is
bounded by at most t vertices. These include the square and hexagonal tilings of finite
size; the former was mentioned in Haslebacher [11].

Take " := t/4 and define the gap function as

d(M1;M2) :=
X

C�M1�M2

area(C);

where area(C) is the area bounded by the Jordan curve C.

� If there are two or more cycles in M1�M2 then we take any of them, say C, and let
M :=M1�C. Since both M �M2 and M1�M are proper subsets of M1�M2, the
area sums are strictly smaller.

� So assume there is only one cycle C=M1�M2. Under the loop condition its length is
more than 4 "> t, so it does not bound a face. In particular, some vertex u2C has a
neighbour v in the interior of C. Consider a perfect matchingM33uv, which exists by
1-extendability. We observe that the symmetric difference M1�M3, when restricted
to the interior of C, is an fM1;M3g-alternating path P that starts and ends with M3

edges touching the cycle C. Therefore, this P together with one half of C forms an
M1-alternating cycle D. By letting M :=M1�D we are able to reduce the area in
both M �M2 and M1�M .

4.2 The Parity Variant

Is there a graph class where the error term " can be killed? Haslebacher [11] isolated an
important class called doubly chordal graphs. Note that property (i) in the definition below
means that they are 1-chordal (cf. Definition 4.4).

Definition 4.6. A graph is doubly chordal if

(i) every even cycle C = (v1; : : : ; v`) of length `> 6 has a chord vi vj where i and j have
different parity;

(ii) every even cycle C = (v1; : : : ; v`) of length `> 8 has two chords va vd and vb vc where
va; vb; vc; vd appear in circular order and a� c�/ b� d (mod 2).

Yet we cannot apply Sandwich directly with " := 0 on such graphs. Think about the
scenario where jM1\Rj= k¡ 1<k+1= jM2\Rj and M1�M2 is a 4-cycle. To get to a
k-PM, one must correct the parity via some external alternating cycles of total weight 1,
which are challenging to find. Hence it was devised to avoid the parity issue altogether by
approaching the target in even strides [11].

Algorithm Parity-Sandwich

assume kmin6 k6 kmax
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let M1 be a perfect matchings with 6k reds and jM1\Rj � k (mod 2)
let M2 be a perfect matchings with >k reds and jM2\Rj � k (mod 2)
while jM2\Rj ¡ jM1\Rj> 4 do

compute a perfect matching M such that

d(M;M2); d(M1;M)<d(M1;M2) and jM \Rj � k (mod 2)

if jM \Rj6 k then M1 :=M , else M2 :=M

return M1 or M2, depending on which has k reds

Note that jM1\Rj� jM2\Rj�k (mod2) during the loop, so upon termination we have
jM2\Rj ¡ jM1\Rj6 2, meaning at least one of M1;M2 has k reds.

To implement Parity-Sandwich, we define the gap function

d(M1;M2) := (jM1�M2j; #cycles in M1�M2)2N2

and order the codomain lexicographically: we prefer smaller symmetric difference and, if
there is a tie, we prefer more cycles. Next we specify how we compute M in the loop.

� If M1�M2 contains more than two cycles, then let C1; C2 be two of them and define
C3 := C1�C2. Observe that �(CijM1) is even for some i, hence M :=M1�Ci has the
correct parity. Regardless of the i that we used, jM �M2j; jM1�M j< jM1�M2j, so
the gap strictly decreases.

� If M1�M2 contains exactly two cycles C;D, then we need to be careful.

¡ If both cycles have length 4, then �(C jM1); �(D jM1)6 2. But the loop condition
says �(C jM1)+ �(D jM1)= �(M2jM1)> 4, so both have weight exactly 2. Thus we
may simply take M :=M1�C.

¡ Otherwise, say C has length at least 6, then from property (i) we can shorten it
to an M1-alternating cycle C1 by a chord. Let C2 :=D and C3 := C1�C2. Again,
�(CijM1) is even for some i, so we may take M :=M1�Ci. The shortening ensures
that gap decreases in all scenarios.

� If M1�M2 is a single cycle C then it has length at least 8, so we may find two chords
va vd and vb vc by property (ii). They make two disjoint cycles C1 := va! vd va and
C2 := vb vc! vb where � � travels along the cycle C. Define C3 := C1�C2. Due to
the parity requirements in (ii), these are all M1-alternating or all M2-alternating; we
may assume the former case by symmetry. Since �(CijM1) is even for some i, we may
take M :=M1�Ci.

For the gap, jM �M2j; jM1�M j6 jM1�M2j always holds. In fact, when i2f1;2g
the inequalities are strict. The only troublesome case is when i=3 and the two chords
sit �back-to-back�, i.e. b=a+1 and d=c+1. In this scenario, jM �M2j=4< jM1�M2j
but jM1�M j= jC3j= jM1�M2j. Fortunately, M1�M = C3 has two cycles whereas
M1�M2=C has only one. So we indeed have d(M1;M); d(M;M2)<d(M1;M2).

At this point we are still missing a crucial piece: how do we initialise the M1;M2 before
the loop? This is a highly non-trivial problem. For bipartite graphs, one can use a kmin-
PM (resp. kmax-PM) and correct its parity via a dynamic program [7]. For unit-interval
graphs there is a polynomial time algorithm, too [11]. However, for general graphs the
problem is widely open.

Haslebacher [11] proceeded to show that chain graphs (which are bipartite) and unit-
interval graphs are doubly chordal, hence yielding efficient Parity-Sandwich on these
inputs. We will later add another graph class to the list.
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4.3 Lifting Theorems

Having seen many graphs on which the sandwich paradigm works fairly well, we might
wonder if we can use them as building blocks to generate more such graphs. This section
develops two �lifting� theorems of this kind. The core operation for building new graphs is
defined below.

Definition 4.7. A blow-up of graph H is constructed as follows. Each node a in H is
duplicated as a set of vertices Sa. If ab is an edge in H then we fully connect all pairs
between Sa and Sb.

blow up colour

Theorem 4.8. Let "2N. A blow-up of a bipartite "-chordal graph is again bipartite "-
chordal.

Proof. Let G be a blow-up of a bipartite "-chordal graph H. Note that G is bipartite: all
vertices in Sa lie in the same part of a, for every node a2H . It remains to show that G
is "-chordal.

Take an even cycle C =(v1; v2; : : : ; v`) in G of length ` > 4 ". We project it back to H
and obtain a closed walk (a1; a2; : : : ; a`) in H. Note that vi2Sai for all i.
� If the closed walk is a cycle, then it has a chord ai aj because H is "-chordal. This

chord naturally gives rise to a chord vi vj of C.

� Otherwise, some node is visited twice in the walk, say ai= aj. Consider the vertices
vi¡1 and vi+1 adjacent to vi. By definition of a blow-up, both are adjacent to vj as well
since ai= aj. But it cannot happen that vi¡1 vj 2C and vi+1 vj 2C simultaneously,
for otherwise `=46 4 ". Hence at least one of these edges is a chord of C.

In both cases we found a chord of C, which must split C into two odd-length paths due
to bipartiteness. �

The theorem is trivial when applied to graphs of modular width t because blow-ups
preserve the parameter. On the other hand, it teaches us something valuable when applied
to graphs of bipartite independence number �, because the parameter can become arbit-
rarily large in a blow-up.

Theorem 4.9. A blow-up of a tree is bipartite doubly chordal.

Proof. Let T be a tree. Assume that each node a is blown up to Sa. The resulting graph
G is clearly bipartite, so there is no need to check parity when we verify Definition 4.6.

Fix an arbitrary cycle C =(v1; v2; : : : ; v`). We project it back to T and obtain a closed
walk on the tree, which spans a subtree T 0�T on at least two nodes.

(i) Assuming length `=6, we will find a chord in C. Take a leaf b2T 0 and a neighbouring
node a2T 0. Apparently there exists i such that vi2Sa, vi+12Sb and vi+22Sa. Now
consider the next vertex vi+3. It must be adjacent to all vertices in Sa, in particular
to vi. But the edge vi vi+3 is not in C because `> 4, so it is a chord.
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(ii) Assuming length `> 8, we will find two chords in C that satisfy the definition. Let
a2T 0 be a node with maximum jC \Saj.
� If jC \Saj> 4 then we assume that vp; vq; vr; vs are four consecutive visits to Sa.

Hence the four successors vp+1; vq+1; vr+1; vs+1, though not necessarily project to
the same node in T 0, are adjacent to all the four vertices. In particular vpvq+1 and
vr vs+1 are two desired chords.

vp vq vr vs

vp+1 vq+1 vr+1 vs+1

� If jC \Saj=3 then we assume that vp; vq; vr are the three visits to Sa. They split C
into three subpaths: (vp; vp+1; : : : ; vq), (vq; vq+1; : : : ; vr) and (vr; vr+1; : : : ; vp), each
of even length. Some of them must have length more than 2 because `> 8. Say
(vp; vp+1; : : : ; vq) is the path, thus vq¡1=/ vp+1. Then the edge vp vq¡1 is a chord.
For the other chord, we may take vq vr+1.

vp

vq

vr

vr+1

vq−1

� If jC \Saj=2 then T 0 must be a path and C has the following form:

There are at least three intermediate layers because `> 8. So we may take the
two chords shown in brown in the figure. �

The previous two theorems deal with blow-ups of bipartite graphs. In contrast, the
blow-up of a non-bipartite "-chordal graph can be much more complicated. Consider the
pathological example below. The graph on the left is trivially doubly chordal, but its blow-
up on the right is not "-chordal for any constant " because it contains a long outer cycle
whose chords all have wrong parity.

Nevertheless, we are able to prove a lifting theorem for graphs of small independence
number. Of special interest is that the argument blends two different types of properties.

Theorem 4.10. Suppose H is a graph of independence number �, and let " := 10� �4�+1.
Then Sandwich is capable of finding a (k� ")-PM in any blow-up G of H .
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Proof. Take d(M1;M2) := jM1�M2j as usual. We describe a procedure that computes M
in Sandwich.

Under the loop condition we have d(M1;M2)> 4 ". We pick a cycle C =(v1; v2; : : : ; v`)
from M1�M2. If ` < d(M1; M2) then we take M :=M1� C. Else `= d(M1; M2)> 4 ".
Project the cycle to a closed walk (a1; a2; : : : ; a`) on H , which spans a subgraph H 0�H .

Observation: If ai = aj for some distinct indices i � j (mod 2) then we
consider vi¡1 and vi+1, both adjacent to vi and thus to vj as well. Note that
at least one of the edges vi¡1 vj and vi+1 vj is a chord of C because ` > 4.
The chord splits C into two odd-length paths, and together with one of the
paths gives an M1-alternating cycle D. So we may set M :=M1�D.

We can now assemble our main argument.

� First assume that some node is visited three times, say ap= aq= ar. Then two of the
three indices have the same parity, thus we may apply the observation.

� Next assume that every node is visited at most twice, thus H 0 has maximum degree
∆6 4. Let A be the nodes visited exactly twice. By the observation, we only need to
deal with the case where every a2A appears in the walk at both even and odd indices.

cycle C graph H ′ of the projected cycle

¡ If jAj>5� then we find a maximal independent set A0�A in H 0[A] (hence also in

H 0). Note that jA0j> jAj

∆+1
>�, so there exist two nodes a; b2A0 that are adjacent

in H (but not in H 0). Take even indices i; j such that ai= a and aj= b. Then the
two vertices vi; vj are adjacent in G but not in C. That is, vi vj is a chord of C.
From here our usual argument applies: The chord and one half of C completes an
M1-alternating cycle that we may use to modify M1.

¡ If jAj65� then we remove the corresponding vertices from C. This breaks it into
at most 10� paths, one of which has length at least

`

10�
> 4�+2. So we may apply

Lemma 4.3 to find an M1!M2 skip D. We then take M :=M1�D. �

4.4 Educated Jump

Although Parity-Sandwich can eliminate the error for doubly chordal graphs, the trick
is too specific. For most other instances we have to live with error in the output. The
problem then becomes: Can we jump from a (k� ")-PM M to some k-PM M� directly?

In the rest of the section, let us write C :=M �M�. Note that ¡"6 �(CjM�)6 ", but
it does not necessarily imply a small jC j.

Suppose we managed to show jC j6 c(") for some function c. Then we can jump to M�

by trying every possible C of size at most c(") and applying it to M . The running time is

nO(c(")), which lands in the complexity class XP.

Alternatively, suppose we managed the weaker claim that jC \Rj6c(") or jC \B j6c(").
Still we can jump to M� in nO(c(")) time:
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Guess a set R0�R of size 6c("). Pretend that R0=C \R. RecoverM�\R=
(M \R)�R0. Verify (i) jM�\Rj=k, and (ii) there exist n¡k disjoint blues
that do not touch M�\R. If not then we guess again.

If none of the guesses work, then we switch the roles of red and blue, replace
k with n¡ k, and restart the game.

For graphs of independence number �, the �closeness claims� were found in [6, 7]. Here
we will sketch the proof qualitatively and skip detailed calculations. We loosely say that
a quantity is �small� if its absolute value is bounded by a function of �.

Definition 4.11. An M�!M kit is a collection D of disjoint cycles with �(DjM�) = 0.
Each cycle needs to be an M�!M skip or come from M �M�.

Theorem 4.12. If there is no M�!M kit then

(i) every cycle C in C has small weight �(C jM�);

(ii) the number of cycles in C is small;

(iii) jC \Rj or jC \B j is small.

From here a closeness claim follows: Whenever jC \Rj and jC \B j are large, there is
an M�!M kit D by Theorem 4.12. Conceptually applying D on M� shall preserve the
number of reds while reducing jM �M�j= jC \Rj+ jC \B j. So eventually one of jC \Rj
and jC \B j has to be small.

Let us now overview the proof of Theorem 4.12. Suppose the conclusion does not hold,
then we seek many M�-alternating cycles of small positive weights, and also many of small
negative weights. One can choose a subset of these cycles to balance the sign. This gives
an M�!M kit that contradicts the assumption.

The main device in finding the positive/negative cycles is Lemma 4.3. But now we care
about the sign of the weight, so some refinement is needed. For an fM;M�g-alternating
path, we always group two consecutive edges as a whole. Four configurations are possible:

+1 0 0 −1

+1 −1

0 0

type + type - type 0

The type string of a path is naturally the sequence of types when we walk through the
path in stride of two; see the figure below for illustration. We will use regular expressions
such as +0*+ to denote a string that starts with +, continues with an indefinite number of
0's, and ends with +.

+1 0 0 −1 0 −1

type + type 0

+1 −1

type - type - (type string +0--)

Lemma 4.13. Every 4� disjoint fM;M�g-alternating paths with type string listed in the
first column, give rise to an M�!M skip with weight stated in the second column:

disjoint paths of type. . . yield a skip of weight. . .
+0*+ 26 �6 4
-0*- ¡46 �6¡2

00 led by blue / +0*- 06 �6 2
00 led by red / -0*+ ¡26 �6 0
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We omit the proof as it mirrors the argument of Lemma 4.3. Two corollaries are in order.

Corollary 4.14. An M�-alternating cycle C of large weight �(C jM�) leads to plenty of
disjoint M�!M skips, all in the same sign of �(C jM�).

Proof. Assume for example �(C jM�)� 0. Scan the type string of C in one direction.
Whenever we see the pattern +0*+, we mark it and continue with the remaining string.
Observe that the path between neighbouring marks has weight 60, and every mark con-
tributes weight 2. So there must be a large number of marks. Applying Lemma 4.13 (first
row) finishes the proof. �

Corollary 4.15. An M�-alternating cycle C of small weight �(C jM�) but plenty of reds
(resp. blues) leads to plenty of disjoint skips of negative (resp. positive) weights.

Proof. We split the type string of C in two passes. In the first pass we split by +0*+ (called
positive marks). In the second pass we further split by -0*- (called negative marks). Every
resulting fragment has form (+0*-0*)* or (-0*+0*)*; that is, has alternating signs. In
particular, it has weight in f¡1; 0; 1g which is smaller in amplitude than a mark.

� The number of marks is large. Then both positive and negative marks are abundant,
since otherwise �(C jM�) cannot be small. Applying Lemma 4.3 (first and second rows)
gives us plenty of positive and negative skips.

� The number of marks is small. Let us consider all the fragments as well as the 0*

sections in the marks. Say C contains plenty of reds. Note that all but a small number
of reds appear in these paths, so at least one path P contains many reds. Let c count
the total number of + and - in P .

¡ If c is large then P contains a large number of -0*+ subpaths.

¡ If c is small then P contains a small number of maximal 0* subpaths. One of them
contains many reds; every other red leads a 00 path.

Either way, Lemma 4.13 (last row) gives us many negative skips. �

Proof of Theorem 4.12. Suppose some cycle in C has large positive weight, say. It produces
many M�!M skips of positive weights by Corollary 4.14. On the other hand, recall that
¡"6 �(CjM�)6 " is small, so either there is a cycle in C of large negative weight (which
produces many M�!M skips of negative weights again by Corollary 4.14), or there are
many cycles in C of small negative weights. Anyway, we may choose a subset of these
positive and negative cycles to balance the sign, contradicting that an M�!M kit does
not exist. We have proven property (i).

Next suppose the number of cycles in C is large. Then there are many positive and many
negative cycles because of property (i) and that �(C jM�) is small. So there is a subset of
cycles that balance the sign, contradicting that an M�!M kit does not exist. We have
established property (ii).

Finally, suppose both jC \Rj and jC \B j are large. Then property (ii) implies that C
contains a cycle C with many reds, and a cycle C 0 with many blues. Note that C and C 0

could be the same; in that case we simply cut it into two paths without compromising the
properties, and our remaining argument gets through. By Corollary 4.15, C implies many
negative M�!M skips, and C 0 implies many positive M�!M skips. They together
contain an M�!M kit, a contradiction. Hence we have shown property (iii). �
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The analyses above treated M and M� as blackboxes: we only used the fact that they
have k � " and k reds, respectively. But in reality we have more control over M . By
tweaking Sandwich one can actually generate an M so that jC j= jM �M�j is provably
small, which strengthens Theorem 4.12. Combined with a trick called colour coding, we
can turn it into an algorithm that finds M� in FPT time c(�)O(c(�)) � poly(n) when the
input graph is bipartite [7].

So what is the tweak of Sandwich? Here is a sketch. We define the gap function as

d(M1;M2) := (jM2\Rj ¡ jM1\Rj; jM1�M2j)2N
2;

ordered lexicographically. In each iteration we try one of the four modifications:

(1) add two disjoint reds toM1\R, so that all vertices unmatched by reds can be matched
up by blues;

(2) remove two reds from M2\R, so that all vertices unmatched by reds can be matched
up by blues;

(3) find and apply an M1!M2 kit;

(4) find and apply an M2!M1 kit.

If none would work then we give up and exit the loop.

Theorem 4.16. jM1�M2j is small upon exit.

Proof. The proof of Theorem 4.12 can be used to show

(i) every cycle C in M1�M2 has small weight �(C jM1);

(ii) the number of cycles in M1�M2 is small;

(iii) j(M1�M2)\Rj or j(M1�M2)\B j is small.

Assume that j(M1�M2)\Rj is small while j(M1�M2)\B j is large. Then by (ii) we know
that there is a cycle C in M1�M2 with many blues (and few reds). The reds split C into
blue paths, one of which (denoted P ) is long. We apply Lemma 4.13 on two disjoint sections
of P , which yields anM1!M2 skip Ci for i=1;2. Note that �i :=�(CijM1)2f0;1;2g since
all but possibly the two chords are blue. If �i= 0 then trial (3) should have succeeded;
and if �1; �2 2 f1; 2g then trial (1) should have succeeded. So we reach a contradiction.
The case that j(M1�M2) \Rj is large while j(M1�M2) \B j is small can be treated
symmetrically. �

Now denote C := jM1�M�j. With a more involved application of Ramsey theory, one
can show that jC j is small for someM�. Basically, if jC \B j is large then we can find a local
structure that contains either an M�!M1 kit or two M1!M� skips of positive weights.
In the former case we reduce jC j. In the latter case trial (1) should have succeeded, which
is impossible. Symmetrically, if jC \Rj is large then we can find a local structure that
contains either an M�!M2 kit or two M2!M� skips of negative weights. In the former
case we reduce jC j. In the latter case trial (2) should have succeeded, which is impossible.
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5

Algebraic Algorithms

The only successful attack of Exact Perfect Matching to date uses algebraic encoding and
randomisation [20]. Beneath the algebra, however, runs an elegant combinatorial argument
where alternating cycles re-enter at a new level. Inspecting the argument, one can deran-
domise it for planar graphs and more generally K3;3-free graphs [15, 25]. This chapter will
cover the techniques in detail. Denote by Sn the set of all permutations of f1; : : : ; ng.

5.1 Algebraic Encoding for Bipartite Matching

Every permutation � 2Sn can be interpreted as a perfect matching f1�(1); : : : ; n�(n)g in
the complete bipartite graph Kn;n, and vice versa:
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⇐⇒

Assume G is bipartite. Let us represent it by an n�n matrix A,

Auv :=

8

<

:

xuv y uv 2R
xuv uv 2B
0 otherwise

where x := (xe)e2E and y are variables. Recall that the determinant of A is defined as

detA :=
X

�2Sn

sign(�)
Y

u=1

n

Au;�(u):

Here sign(�)2f¡1;+1g is the parity of �, but its precise definition is inconsequential until
very late. The trailing product reflects how � fits in G. If the product is zero, then some
edge u�(u) is absent and thus � is not a perfect matching in G. If the product contributes

some non-zero monomial (
Q

u=1
n

xu�(u)) � yd, then � is a d-PM in G. Because the monomials

contributed from different �'s are distinct, they cannot cancel each other however the sign
is defined.

Overall detA is a giant polynomial in x and y. We may group it as
P

d=0
n

cd(x) y
d where

each cd(x) is a multilinear polynomial in x and tracks information of all d-PMs. It follows
that a k-PM exists iff ck(x)�/ 0.



The only obstacle is the computation of ck(x). One might suggest computing detA
symbolically and then deriving ck(x), but this is too costly. A Gaussian elimination on
symbolic matrices, for example, will produce intermediate quotients of exponentially high
degrees. More to the point, the ck(x) itself might contain exponentially many monomials,
which makes it difficult to represent in the first place! So can we decide ck(x)�/ 0 without
computing the polynomial? From here the story unfolds . . .

5.2 Detection of Non-Zero Polynomials

Consider what happens if we evaluate ck(x) at a random point. If ck(x)�0 then the result
is zero, of course. If ck(x)�/ 0 then the result ought to be non-zero with positive probability.
In fact quite significant a probability, as the lemma below shows.

The Schwartz-Zippel Lemma. Let f �/ 0 be a polynomial in x=(x1; : : : ; xt) over finite

field F. Assume its degree is at most n. If we sample r = (r1; : : : ; rt) 2F
t uniformly at

random, then P(f(r)= 0)6n/ jFj.

Proof. By induction on the number of variables t. The base case t= 1 follows from the
fact that any univariate polynomial f �/ 0 of degree n has up to n roots. Next we proceed

from t to t+ 1. Decompose f(x) :=
P

i=0
`

fi(x1; : : : ; xt) � xt+1i where f`�/ 0. Note that
deg(f`)+ `6n. We write

P(f(r)=0)6P(f`(r1; : : : ; rt)=0)+P(f(r)= 0 j f`(r1; : : : ; rt)=/ 0):
The first term is at most deg(f`)/jFj by induction hypothesis. The second term is at most
`/ jFj because under any additional condition r1; : : : ; rt compatible with f`(r1; : : : ; rt)=/ 0,
the univariate polynomial g(xt+1) := f(r1; : : : ; rt; xt+1)�/ 0 has at most ` roots. Summing
the two terms up, we conclude

P(f(r)=0)6
deg(f`)+ `

jFj 6
n

jFj : �

The probability dichotomy suggests a randomised algorithm that decides whether a k-
PM exists.

Algorithm Random-Probe

� Fix a finite field F that is large enough, say jFj> 2n.
� Instantiate each variable xuv by a uniform random ruv 2F. It reduces detA to an

implicit univariate polynomial g(y) :=
P

d=0
n

cd(r) y
d. Our goal is to extract ck(r).

� Take any n+1 distinct elements a1; : : : ; an+12F. For each i=1: : :n+1, instantiate
variable y by ai and then evaluate detA numerically, which gives us g(ai).

� Use Lagrange interpolation to recover the coefficients c0(r); : : : ; cn(r) of the poly-
nomial g(y) from its evaluations g(a1); : : : ; g(an+1). If ck(r)=/ 0 then answer �yes�;
otherwise answer �no�.

We remark in passing that the computation can be parallelised via a shallow circuit that
evaluates the determinant [2].

As discussed earlier, if there is no k-PM then the algorithm always says �no�. On the
other hand, if there is a k-PM then with probability at least 1¡n/jFj> /1 2 we have ck(r)=/ 0
and hence the algorithm says �yes�. By independent repetitions, the error probability can
be made arbitrarily small.
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Using Random-Probe as a blackbox, we may recover a solution by processing the
red edges sequentially. For each e2R, we ask the algorithm if G¡ e admits a k-PM. If
yes, then e is not necessary for a solution and we purge it from G. Else we add e to our
solution, remove its two vertices and their incident edges from G, and decrease k by one.
We stop when k drops to 0. Find a blue perfect matching in the remaining graph and piece
it together with the reds that we collected so far. They would complete a k-PM.

5.3 The Struggle Against Cancellation

Before moving on, we reflect on the role of randomness. Assume ck(x)�/ 0 is over a large
field. All we need is a point�be it random or not�that avoids all the roots. The Schwartz-
Zippel lemma assures us that the majority of the space will do. Randomly picking a point
is a lazy yet effective strategy. But can we hunt for the point deterministically? To this
end we must work beyond Schwartz-Zippel and understand the root distribution of ck(x).

Here is a first attempt. Recall that ck(x) is multilinear. It is not hard to show that the

evaluations on a box fa; bgE (for any distinct a; b2F) uniquely determine a multilinear
polynomial. So the evaluations cannot be all zero, for otherwise we would have ck(x)� 0.
Therefore, we are guaranteed to find the point within fa; bgE.

Can we narrow the search space even further? Let us concretely assume charF>n! and
take a closer look at ck(x). It is a summation of all the (signed) products corresponding
to k-PMs. Ideally, if all signs are positive, then the point 1 := (1; : : : ; 1) is certainly
not a root. More generally, provided unequal occurrences of positive and negative signs
in the summands, the point 1 remains valid. The worst scenario is when positive and
negative occurrences are balanced, so any point without fluctuation (e.g. 1) suffers from
cancellation.

What if we perturb the point 1 at coordinate uv? This will bias the contribution of
every k-PM that contains edge uv, thus seemingly unbalance the sum. However, it might
happen that half of these k-PMs occur positively whereas the other half occur negatively,
so that cancellation remains a problem.

It turns out that we cannot handle the issue if we treat sign(�)2f¡1;+1g as a blackbox.
At the end of this chapter, we will explain how to leverage the definition of sign(�) to our
advantage and battle against cancellation for planar graphs G. It is open, however, whether
the same can be done for denser graphs.

Our struggle sharply contrasts the simplicity and elegance of a random point where
cancellation �just doesn't happen� even without knowing sign(�). The next section show-
cases the power of randomness once more.

5.4 A Fully-Parallel Version

We first present a powerful probabilistic lemma. Let F � 2E be a non-empty family of
edge subsets. For each edge e2E, we assign a weight w(e)2f1; : : : ; 2jE jg uniformly and
independently. The weight extends to every subset F �E naturally: w(F ) :=

P

e2Fw(e).

The Isolation Lemma [20]. In this random experiment, the subset F 2F attaining the
minimum weight is unique with probability at least /1 2.

Proof. Condition on the weights of all edges but a particular e2E. Partition F into two
subfamilies

F1 := fF 2F : e2F g; F0 := fF 2F : e2/ F g
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and define two thresholds

t1 := min
F2F1

w(F ¡ e); t0 := min
F2F0

w(F ):

Now we sample the weight w(e). It will �complete� the weights in family F1, but shall not
affect the weights in family F0. Therefore,
� if w(e)+ t1<t0 then every min-weight subset F 2F comes from F1, i.e. contains e;
� if w(e)+ t1>t0 then every min-weight subset F 2F comes from F0, i.e. excludes e;
� if w(e)+ t1= t0 then there could be ambiguity.

But the third event happens with probability at most 1/(2jE j). Since this holds under any
condition, we may safely remove the conditioning. Then we apply a union bound over all
e2E to conclude that, with probability at least /1 2, every single edge is either included in
all min-weight subset F 2F or excluded from all of them. In that case, the min-weight
subset must be unique. �

In our context, imagine F to be the collection of all k-PMs. Assign each edge e2E a
uniform and independent weight w(e)2f1; : : : ; 2 jE jg. Then by the isolation lemma, with
decent chance there is a unique k-PM M� of minimum weight w(M�) :=w�. It will help

us avoid cancellation once we instantiate the variables x judiciously. We take xe := 2w(e),
so each k-PM M shall contribute

 

Y

e2M

xe

!

yk=
¡

2
P

e2M
w(e)�

yk=2w(M) yk

in the determinant. Hence ck=
P

M2F �2w(M). Since |2w(M)/2w
�

| is some multiple of 2 for

all M 2F nfM�g, we must have ck= (2 t+1) 2w
�

for some t2Z. In particular it is non-
zero. Essentially, the uniqueness �isolates� one term and protects it from cancellation. The
algorithm is summarised below.

Algorithm Random-Isolate

� Instantiate each variable xe by 2
w(e) where w :E!f1;:::;2 jE jg is sampled uniformly.

� Recover ck by the �evaluation and interpolation� trick as before. If ck=/ 0 then answer
�yes�; otherwise answer �no�.

Not only can we parallelise it as before, we may also recover the M� in parallel. Recall

ck=(2 t+1)2
w� contains only one odd factor. So by repeated division of 2 until irreducible,

we may recover w�. Now for each edge e 2E in parallel, we ask if the minimum weight
among all k-PMs in G¡ e remains w�. If yes then e2/M�; otherwise e2M�.

5.5 Algebraic Encoding for General Matching

In general graphs there is no bipartition, so we need a new way that relates permutations
and perfect matchings. Here is the idea. Every permutation � 2S2n can be interpreted as
a perfect matching

f�(1)�(2); �(3)�(4); : : : ; �(2n¡ 1)�(2n)g
in the complete graphKn. So the slots 2i¡1 and 2i form a �box�; the elements in which are
paired. Conversely, however, every perfect matching is encoded by multiple permutations.
The multiplicity is 2nn!, since there are n! ways to permute the boxes, and then (2!)n=2n

ways to shuffle elements inside each box.
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For convenience we need yet another interpretation of �2S2n. This time, it is identified
with a directed cycle cover

f1!�(1); : : : ; 2n!�(2n)g

of the bidirectional complete graph K2n with self loops. Unlike above, this interpretation
is bijective.

So far we have collected three interpretations, namely the bipartite, pairing , and cyclic
interpretations. They are compared in the illustration below:
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Now let us represent G by a 2n� 2n skew-symmetric matrix A known as the Tutte
matrix . The entries above diagonal are familiar:

8u6 v; Auv :=

8

<

:

xuv y uv 2R
xuv uv 2B
0 otherwise

where x := (xe)e2E and y are variables. The entries below diagonal are the negated mirror:
Auv :=¡Avu for all u > v. The reason will manifest itself soon. Alongside we invent a
counterpart of the determinant, called the Pfaffian of A:

pf A :=
1

2nn!

X

�2S2n

sign(�)
Y

i=1

n

A�(2i¡1);�(2i):

Again, the product reveals how � (as in the pairing interpretation) fits in G. If the product
is zero, then some edge �(2i¡1)�(2i) is absent and thus � is not a perfect matching in G.
On the other hand, if the product contributes non-zero monomial (

Q

i=1
n

x�(2i¡1);�(2i)) � yd,
then � is a d-PM in G. Different �'s contribute distinct monomials, hence they cannot
cancel each other.

From here everything follows our old recipe. The only difficulty is the evaluation of pfA
at a chosen point. Thankfully there is a clean connection between pf A and detA, so the
evaluation can be delegated to Gaussian elimination.

To establish the connection, we (finally!) recall the definition of sign(�).

Definition 5.1. The sign of a permutation � is (¡1)b, where b (mod 2) is determined in
two equivalent ways:

(1) the number of crossings in the bipartite interpretation of �;

(2) the number of even cycles in the cyclic interpretation of �.

We leave the verification to the reader.

Lemma 5.2. Suppose we obtain � 0 by swapping two adjacent slots in permutation �.
Then sign(� 0)=¡sign(�).
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Proof. In the bipartite interpretation, rearranging two neighbouring nodes on the left shall
change the number of crossings by exactly one. �

Lemma 5.3. Let A be any screw-symmetric matrix (including but not limiting to the
one that we defined). Then all 2nn! permutations �2S2n that represent the same perfect
matching M must contribute equally in pf A. So we may define

'(M) := sign(�)
Y

i=1

n

A�(2i¡1);�(2i)

without ambiguity, and write

pf A=
X

M

'(M):

Proof. Take � 2S2n. Observe that its contribution sign(�)
Q

i=1
n

A�(2i¡1);�(2i) is invariant

under (i) exchange of two adjacent boxes or (ii) swap of elements inside a box. For (i),
sign(�) does not change by applying Lemma 5.2 four times; nor does the product. For (ii),
sign(�) changes by Lemma 5.2, but some A�(2i¡1);�(2i) turns into A�(2i);�(2i¡1) and flips
back the sign due to skew-symmetry.

Since all permutations � 2S2n that represent M can be converted into one another by
a sequence of (i) and (ii), they must contribute equally to pf A. �

Theorem 5.4. (Cayley) For any screw-symmetric matrix A, detA=(pf A)2.

Proof. By Lemma 5.3, we may expand

(pf A)2=
X

M;M 0

'(M) '(M 0):

Since M and M 0 are perfect matchings, M [M 0 (where we allow multi-edges) is a cycle
cover in which every cycle is fM;M 0g-alternating (and in particular has even length). We
orient each cycle by starting from its smallest vertex and go in the direction of the incident
M edge. Hence, we have mapped (M;M 0) to a directed even cycle cover C. Conversely,
given a directed even cycle cover C, we can recover the pair (M;M 0) by an apparent reverse
procedure. With this bijection,

(pf A)2=
X

C

sign(C)
Y

e2C

Ae

where sign(C)2f¡1;+1g is defined so that sign(C)Q
e2CAe= '(M) '(M 0).

What exactly is sign(C)? Recall the definitions of '(M) and '(M 0) allow us to use any
convenient �; � 0 that represent M;M 0. For our purpose, let us traverse C and fill � and
� 0 top-down. The picture below gives an example where we traverse in order 1! 2! 1,
3! 6! 7! 4! 3 and then 5! 8! 5.
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This way, the products
Q

e2CAe and (
Q

i=1
n

A�(2i¡1);�(2i)) (
Q

i=1
n

A� 0(2i¡1);� 0(2i)) will

perfectly agree, hence sign(C)= sign(�) sign(� 0). Denote by m the number of (even) cycles
in C. By repeated application of Lemma 5.2 (or just by comparing the number of crossings
in the bipartite representations), we see sign(� 0) = sign(�) (¡1)m. Therefore sign(C) =
(¡1)m. So if we reinterpret C as a permutation � 2 S2n, then sign(�) = sign(C) coincide,
and we may write

(pf A)2=
X

�2S2n without odd cycle

sign(�)
Y

i=1

2n

Ai;�(i):

It is essentially detA, excluding those � 2S2n with odd cycles. Fortunately, for any such
� 2 S2n, reversing an odd cycle that contains the smallest vertex gives us another such

� 02S2n where sign(� 0)= sign(�) by definition, and
Q

i=1
2n

Ai;�(i)=¡
Q

i=1
2n

Ai;� 0(i) by skew-

symmetry. The contributions of � and � 0 hence cancel each other, so we could safely ignore
them altogether. Therefore (pf A)2= detA indeed. �

In our context, we stress that the coefficient of yk in detA does not track the k-PMs.
It is rather a mixture of all: contributions come from pairs of d-PMs and (k¡ d)-PMs, for
every d. To correctly track the k-PMs, the algorithm should instead compute the coefficient

ck(x) of y
k in pf A=� detA

p
.

5.6 Derandomisation for Planar Graphs

To conclude the chapter, we present a derandomisation of the approach when G is planar.
Remember the discussion in Section 5.3: Our goal is to instantiate x=(xe)e2E concretely
so that the polynomial ck(x) does not evaluate to nil, as long as k-PM exists.

In a classical result, Kasteleyn [15] showed how to instantiate each xe by either ¡1 or
+1, so that the '(M)'s have identical sign across all perfect matchings M . This together
with Lemma 5.3 would imply that the evaluation cd(x) counts d-PMs for every d�far
stronger than our goal!

We start by inspecting the proof of Theorem 5.4. The following are equivalent:

� '(M)'s have identical sign across all perfect matchings M �E;

� '(M) '(M 0) is positive for all perfect matchings M;M 0�E;

� sign(C)Qe2CAe is positive for all directed even cycle cover C of G.

� for every even cycle C=(v1; : : : ; v`) in G such that the graph G[V nC] admits an even

cycle cover, the product
Q

i=1
`

Avi;vi+1 is negative.

Theorem 5.5. (Kasteleyn) Suppose G is planar. Then we can compute in linear time
a f¡1;+1g-assignment to each xe that satisfies the last condition.

We will present a new proof of this result. As background knowledge, every maximal
plane graph can be constructed �inside out� by inserting one vertex u in the outer face at
a time. This is referred to a canonical ordering and can be computed in linear time [3].

Proof. Because the last condition is closed under edge removal, we may consider max-
imal planar graphs only. Draw G in a canonical ordering. When we insert vertex u, its
neighbours u1; : : : ; ut must form a path on the outer cycle. We orient the first edge uu1
arbitrarily. Then for each i=2; : : : ; t, we orient uui so that the face uui¡1ui has an odd
number of clockwise edges. Upon finish, all edges are oriented so that every face has an
odd number of clockwise edges.
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We claim that the property not only holds for faces: In fact, every cycle that encloses
an even number of vertices has an odd number of clockwise edges.

Suppose C has length ` and encloses � 2 2N vertices. Then by easy application of
Euler's formula, the interior of C contains exactly f := `+2�¡2 faces and m := `+3�¡3
edges. Suppose the faces have m1; : : : ; mf clockwise edges, respectively. Then C shall

have
P

i=1
f

mi¡m clockwise edges because each interior edge was counted by exactly one
of its incident faces. Now that all mi's are odd, the parity of this number agrees with
f ¡m=1¡ �, which is odd.

Now we are almost done: For each edge uv 2E that was oriented u! v, we assign
xuv :=+1 and xvu :=¡1. For every even cycle C =(v1; : : : ; v`) such that G[V nC] admits
an even cycle cover, C must enclose an even number of vertices by planarity, so it has an
odd number of clockwise edges. As the product

Q

i=1
`

Avi;vi+1 �traverses� C either clockwise
or counterclockwise, it shall encounter an odd number of ¡1's, giving a negative result. �

The orientation idea extends to K3;3-free graphs as well. These graphs can be decom-
posed into almost independent pieces of planar graphs and K5. It was pointed out by
Little [17] and Vazirani [25] that we may orient the pieces individually and then glue them
together to form a Pfaffian orientation. Yuster [26] gave an alternative, more efficient
method that employs a different decomposition.

However, when we look at general graphs, the condition �'(M)'s have identical sign
across all perfect matchingsM� is too strong to ask for. The reason is that this would allow
us to count perfect matchings, which is known to be #P-complete [24]. What we need is
a refined version such as �the majority of ''s have the same sign across all d-PMs�, but
the realisation of such condition remains widely open.
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6

Polytope Descriptions

A perfect matching M �E can be encoded as a binary vector x2f0; 1gE where

xe :=

�

1 e2M
0 e2/M

and
P

e3vxe=1 for all v 2V . Conversely, any such vector can be interpreted as a perfect

matching. Henceforth we will not differentiate the two representations.
These (exponentially many) vectors are not organised systematically. It is desirable to

deal with a structural and continuous object, namely their convex hull, which is a polytope
inRE. Edmonds [4] found a description of the polytope in terms of linear inequalities. This
yields many combinatorial and algorithmic consequences, framed in the theory of linear
programming.

Given such success, we are tempted to formulate Exact Perfect Matching in polytope
language, too. We reveal the disappointing fact that the �exact k� constraint shatters every
nice property that we know for the perfect matching polytope.

6.1 Polytopes and Linear Programs

Let us review some basic material from polytope theory; see [27] for a thorough treatment.

A polytope is the convex hull of a finite point set P �R
d, formally

conv(P ) :=

(

X

i=1

t

�ipi : t2N; p1; : : : ; pt2P ; �1; : : : ; �t> 0 and
X

i=1

t

�i=1

)

:

A hyperplane h in R
d contains all points x2R

d satisfying some linear equation aTx= b.

Geometrically it divides Rd into two halfspaces. For a point set X �R
d we denote X 6h

if aTx6 b for all x 2X, namely it lies entirely in the negative halfspace. The notation
X <h is defined likewise.

If P 6h then we call P \h a face of P and say it is supported by h. The dimension of
a face is the dimension of the smallest affine space containing it. Faces of dimension 0 (a
point) are termed vertices and denoted V (P). Faces of dimension 1 (a segment) are called
edges and denoted E(P). It is not hard to show P = conv(V (P)); see for example [27].

Lemma 6.1. Let P = conv(P ) be a polytope and h be a hyperplane. Then P 6h if and
only if P 6h. When it does, the supported face is P \ h= conv(P \h).
Proof. The �only if� is trivial, and the �if� follows from convexity of halfspaces. For the
second part of the lemma, we have conv(P \h)�P \h by convexity, so it remains to show
the reverse inclusion.



Consider an arbitrary point x 2 P \ h. It is generated by a convex combination x=
P

i=1
t

�ipi for some p1; : : : ; pt2P . Recall that P 6h means pi6h for all i. But all these
points must be on h. Otherwise, say pj < h then we derive x< h, contradicting x 2 h.
Therefore, x is a convex combination of points from P \h. �

A fundamental theorem says that every polytope can be realised as an intersection of
halfspaces; vice versa, any bounded finite intersection of halfspaces gives a polytope. See
Theorem 1.1 in [27]. This draws connection between polytopes and linear programs which
concern with a linear system Ax6b. Note that each row i in the system, aix6 bi, encodes
a halfspace. So the feasible points form a polytope�as long as it is bounded.

6.2 The Perfect Matching Polytope

As we discussed in the chapter introduction, we are interested in PG := conv(PG) where

PG= fperfect matchings in Gg=
(

x2f0; 1gE :
X

e3v

xe=1; 8v 2V
)

:

This is called the perfect matching polytope of G. It is not hard to see that V (PG)=PG,
meaning every perfect matching is a polytope vertex and vice versa.

When G is bipartite, its perfect matching polytope can be described by a very concise
linear system. The proof employs an alternating cycle argument under the hood.

Theorem 6.2. The perfect matching polytope of a bipartite graph is precisely described
by the linear system

X

e3v

xe = 1 (8v 2V )

x > 0

Proof. Let PG0 be the polytope defined by the linear system. Clearly PG�PG0 and thus
PG�PG0 by convexity. To show the converse inclusion, it suffices to argue that all vertices
of PG0 are perfect matchings in G.

Suppose to the contrary that some vertex x 2PG0 is not a perfect matching. Then it
contains a fractional entry 0< xuv < 1 for some edge uv. By the first constraint in the
system, there is an adjacent edge uv 0 such that 0< xuv 0< 1. Repeating the argument,
these fractional edges propogate until closing a cycle C. Note that C is even since the
graph is bipartite, so we can decompose C :=M1�M2 for perfect matchings M1 and M2.
We adjust x by adding " on each M1 edge and subtracting " on each M2 edge; this gives
us x" := x+ " � (M1¡M2). Note that the first constraint is always preserved, and with
sufficiently small j"j the second constraint is also satisfied. This means x"2PG0 for small

j"j. But then x= 1

2
(x"+x¡") is a convex combination of two points in PG0 , so it cannot

be a vertex. �

For general graphs, this linear system is no longer sufficient. Think about the triangle
graph K3. One can put /1 2 on every edge to satisfy the system, yet in reality there is no
perfect matching at all! Similar cheating is possible as long as the graph contains an odd
cycle. In a celebrated result, Edmonds [4] found a complete linear system which we quote
without proof. See also [18] for more background.
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Theorem 6.3. (Edmonds) The perfect matching polytope of a graph is precisely described
by the linear system

X

e3v

xe = 1 (8v 2V )
X

e2E[S]

xe =
jS j ¡ 1
2

(8S �V : jS j odd)

x > 0

6.3 Slicing the Polytope

Next we try to incorporate the �exact k� constraint. We are interested in QG := conv(QG)
where

QG= fk-PMs in Gg=
(

x2PG :
X

e2R

xe= k

)

:

One may think of QG as the intersection of PG with the hyperplane h� :
P

e2R xe= k. Is

QG=PG\h� as well? If this were true then we would automatically obtain a linear system
for QG from Theorem 6.2 or 6.3.

Unfortunately the relation is very much false, even when the graph is bipartite! A crude
explanation is that our proofs of Theorems 6.2 and 6.3 do not work any more, as applying
an alternating cycle does not preserve the number of reds.

To gain a foothold, let us characterise the vertices of PG\ h�. Our first lemma below
is geometric and does not use specific knowledge of the polytope. It says that �slicing� a
polytope with a hyperplane shall turn its edges into vertices.

Lemma 6.4. Let P = conv(P ) be a polytope and h be a hyperplane. Then V (P \ h) =
(P \h)[ff \h : f 2E(P) and f \ h is a pointg.

Proof. To show the � inclusion, assume that P is described by a linear system Ax6 b.
Observe that every vertex x of P \ h must lie on some face of P . Suppose not, then we
have Ax< b, so P contains a sufficiently small ball B around x. Thus P \h contains the
low dimensional ball B\ h, which contradicts with x being a vertex.

With the observation, x= f \h for some face f of P. But dim(f)¡ 16 dim(f \h)6
dim(f), so dim(f)2f0; 1g. Therefore, f is either a vertex or an edge of P.

For the � inclusion, we distinguish two cases:

� Let x2P \ h. In particular it is a vertex of P, hence supported by some hyperplane
h0. The same h0 supports x as a vertex in P \h as well.

� Let f 2E(P) such that f \h is a point. Assume that the edge f is supported by h0.
Then (P \ h)\ h0= (P \ h0)\ h= f \ h, so the latter is a vertex of P \ h supported
by h0. �

Corollary 6.5. V (PG\h�)=QG[ff \h� : f 2E(PG) and f \ h� is a pointg. �

Our second lemma characterises E(PG).

Lemma 6.6. LetM andM 0 be perfect matchings in G. Then convfM;M 0g, the segment
connecting M and M 0, is an edge of PG if and only if M �M 0 contains a single cycle.
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Proof. First assume that M �M 0 contains a single cycle C. Consider the hyperplane
h :
P

e2M[M 0 xe = n. Observe that
P

e2M[M 0 xe 6 n for all perfect matchings x 2 PG,
namely PG6 h. To attain the equality, x must pick all edges in M \M 0 and exactly
half of the edges from C. Therefore PG\ h= fM;M 0g. By Lemma 6.1 we conclude that
PG\h= convfM;M 0g is a 1-dimensional face, that is an edge.

Next assume that M �M 0 contains at least two cycles C and D. Let us construct two
perfect matchings N :=M �C and N 0 :=M 0�C. Observe thatM;M 0;N ;N 0 are distinct.
Moreover,

1
2
M +

1
2
M 0=

1
2
N +

1
2
N 0 ;

meaning convfM;M 0g \ convfN;N 0g=/ ;. So convfM;M 0g cannot be an edge. The last
point can be argued more formally: Suppose to contrary that PG\ h= convfM;M 0g for
some supporting hyperplane h. Then N <h and N 0<h, so is convfN;N 0g. This implies
convfM;M 0g\ convfN;N 0g= ;, a contradiction. �

Remark. The lemma reveals the interesting fact that walking along an edge of the polytope
PG corresponds to applying an alternating cycle. This somehow unifies the difficulties we
are facing in both polyhedral and combinatorial approaches.

Using Corollary 6.5 and Lemma 6.6, we can generate all the vertices of PG \ h� as
follows. First, every k-PM is a vertex. Second, for every k1-PM M1 and k2-PM M2 such
that k1<k<k2 and M1�M2 is a single cycle, their mixture

k2¡ k
k2¡ k1

M1+
k¡ k1
k2¡ k1

M2

gives a vertex.

The second case generates plenty of fractional vertices. The figure below draws a con-
crete example. There are three perfect matchings (1; 0; 1; 0; 1; 0; 0), (0; 1; 0; 1; 0; 1; 0) and
(1; 0; 0; 1; 0; 0; 1) with 1, 0 and 2 reds, respectively. For k=1, the sliced polytope PG\h�
has one integral vertex (1; 0; 1; 0; 1; 0; 0) and one fractional vertex ( /1 2; /1 2; 0; 1; 0; /1 2; /1 2).

e2

e3e5

e6

e1

e7

e4

For most graphs�including bipartite graphs�PG\h� may contain far more fractional
vertices than integral ones. Therefore, the linear system

X

e3v

xe = 1 (8v 2V )
X

e2E[S]

xe =
jS j ¡ 1
2

(8S �V : jS j odd)
X

e2R

xe = k

x > 0

is far from complete to describe QG.
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6.4 Exponential Extension Complexity

We have had an impression that QG is tricky to describe in terms of linear systems. It was
actually formalised in [13] that QG has exponential extension complexity. Here �extension�

means a higher-dimensional polytope whose projection ontoRE equals QG. The result says
that every possible extension (in particular, QG itself) requires exponentially large linear
system to describe.

But we should not be too demoralised. After all, the perfect matching polytope PG (for
general G) has exponential extension complexity, too [23]. The important thing is that
the linear system given by Theorem 6.3 is �good enough� to yield efficient algorithms via
primal-dual methods [4]. Speaking from high level, we transform the linear program (with
exponentially many constraints) to its dual program (with exponentially many variables).
The algorithm improves a dual solution gradually, while maintaining that all but poly-
nomially many variables are zero so that we could store them in memory. Eventually we
reach an optimal dual solution. Via the duality theorem of linear programming [19], this
corresponds to an optimal primal solution.

There is yet another way to circumvent the exponential extension complexity. It utilises
an optimisation procedure called the ellipsoid method . The idea is pretty simple. Initially
we encircle the polytope by a large enough ellipsoid�an affinely transformed ball�centred
at p. Assume that an oracle can report whether p is in the polytope and, if not, return
a hyperplane h through p such that the polytope is strictly on one side. In the former
case we are done. In the latter case, h divides the ellipsoid in two halves. We shrink the
ellipsoid (in volume) to encircle the half that contains the polytope. Repeating like this,
the ellipsoid eventually becomes so small that its centre p must be inside the polytope,
unless the polytope is empty. The efficiency of the ellipsoid method solely depends on the
assumed oracle. For the perfect matching polytope PG, it is possible to design an efficient
oracle based on Theorem 6.3 and other ideas; see Lovász and Plummer [18].

In that regard, deriving a good (though exponentially large) family of inequalities for
QG is an important and educational step towards an algorithm. What does �good� mean?
This is just a vague term, but let us give an example that surely does not qualify: For each
perfect matching M of i <k reds, we explicitly add a constraint

P

e2Mxe6n¡ 1.
It is somewhat disappointing that we do not even know a partial family of inequalities

that can exlude fractional vertices in PG\h� from QG. So in the next section we go on a
different route, which turns out to reveal information about QG indirectly.

6.5 Polytope for Extendable Sets

Let us switch to the Max Weight Extendable k-Set problem (see Section 2.4) and model it
in polytope language. This time we are interested in SG := conv(SG) where

SG :=
n

(F ;M) : F 2
�

M

k

�

and M is a perfect matching in G
o

=

(

(y ;x)2f0; 1gE�PG : y6x and
X

e2E

ye= k

)

:

The goal is to maximise the linear objective w(y) :=
P

e2Ew(e) ye over SG, or equivalently

over the polytope SG. Let wint
� be the maximum objective value.
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Throughout we assume that the underlying graph G is bipartite. Our starting point of
study is a natural linear system satisfied by SG:

X

e3v

xe = 1 (8v 2V )
X

e2E

ye = k

0 6 y 6 x

Definition 6.7. We call (y ;x) a solution if it satisfies the system above. It is an optimum
if it maximises w(y) among all solutions; denote its objective value as w�.

Note that a solution might well be outside SG, thus w�>wint
� . But it turns out that

w�6 2wint
� . That is, a solution can take advantage of no more than a factor of two! In the

literature, the exact ratio is called the integrality gap of the system.

We will do some preparations before presenting a proof. For F �E, let wi(F ) be the

weight of its ith heaviest edge, and let Wk(F ) :=
P

i=1
k

wi(F ).

Lemma 6.8.

� Wa(F )6Wb(F )6
b

a
Wa(F ) for all F �E and 16 a6 b.

� Wb(F ]F 0)=max06a6b [Wa(F )+Wb¡a(F
0)].

Proof. For a6b, we haveWb(F )=Wa(F )+
P

i=a+1
b

wi(F )>Wa(F ), hence the first inequality.

The average weight of the top b edges is at most the average weight of the top a edges, that

is
Wb(F )

b
6

Wa(F )

a
, hence the second inequality. To see the final claim, observe that Wb(F ]

F 0)>Wa(F ) +Wb¡a(F
0) for all 06 a6 b since the right hand side accumulates exactly

b edges in F ]F 0. On the other hand, the top b edges in F ]F 0 must be contributed by the
top edges in F and F 0, so the equality is attained when a is the number contributed by F . �

Lemma 6.9. With x fixed, a solution (y ;x) is optimum iff y prioritises filling heavier
edges e up to their upper limits xe. �

Definition 6.10. A solution (y ;x) is confined if there is a cycle C such that xe2f0; 1g
for all e2/ C, and xe+ xe0=1 for all consecutive edges e; e02C.

Lemma 6.11. There exists a confined optimum.

Proof. Take an arbitrary optimum (y ;x) and suppose it is not confined. So there exists
a fractional edge e (namely 0<xe< 1) and such imperfection must propagate along some
path until enclosing an even cycle C. There is also a fractional edge outside C, and by a
similar reasoning we can enclose another fractional even cycle C 0=/ C. Note that C and C 0

may intersect. We will slightly perturb the solution on each of the two cycles.

Let " 2R be a small number. Decompose C :=F0 [ F1 as a union of two matchings.
We add an " to every xe : e2F0 and subtract an " from every xe : e2F1. Moreover, each
ye moves with xe if they were equal initially; and stays unchanged otherwise. Clearly the
first and the third constraints in the system are preserved for small j"j. However,P

e2Eye
might change linearly in ", say by 
 " and thus breaks the second constraint.
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The idea is to use the other cycle C 0 to balance the effect. We apply an "0 modification
on C 0 similarly. Suppose that

P

e2Eye changes by 

0"0. Choose "; "0 so that 
"+ 
 0"0=0,

which ensures that the second constraint holds. Note that at least one of "; "0 remains a
free variable, say ". For different signs of ", the objective value w(y) shall move in different
directions (or stay the same). However, by the optimality of (y ;x) it has to stay the same
for all ". Therefore, by picking " appropriately we can either eliminate a fractional entry
in x, or extend the region where x and y agree. So we are guaranteed to get a confined
solution by repeating the argument. �

Theorem 6.12. w�6 2wint
� .

Proof. Take an optimum (y ;x) confined in C via Lemma 6.11. Decompose C into a union
of two matchings F0[F1. Let F2 := fe2/ C :xe=1g be the matching outside C. Note that

xe=

8

>>

>>

>>

<

>>

>>

>>

:

� e2F0
1¡� e2F1
1 e2F2
0 otherwise

for some constant �2 [0; 1].
For i=0;1;2 we denote ki :=

P

e2Fi
ye, thus k0+k1+k2=k. By Lemma 6.9, the y must

fill heavier edges up to their limits, hence

w� =
X

e2F0

w(e) ye+
X

e2F1

w(e) ye+
X

e2F2

w(e) ye

= � �Wk0/�(F0)+ (1¡�) �Wk1/(1¡�)(F1)+Wk2(F2)

6 Wk0(F0)+Wk1(F1)+Wk2(F2)

where the last line follows from Lemma 6.8. Without loss of generality we assumeWk0(F0)6
Wk1(F1), so

w�6 2Wk1(F1)+Wk2(F2):

Consider the perfect matching F1]F2. Using Lemma 6.8, we see

wint
� > Wk(F1]F2)

> Wk1(F1)+Wk0+k2(F2)

> Wk1(F1)+Wk2(F2):

Therefore w�6 2wint
� as desired. �

Getting back to the study of polytope SG, our next result establishes a close connection
between SG and QG.

Theorem 6.13. Let G0 be obtained from G by reduction (3))(1) in Section 2.4. Then
some face of SG0 is an extension of QG.

Proof. Let w be the weight function produced by the reduction. Recall that every i-PM
M in G maps to a pair (F 0;M 0)2SG0 such that

w(F 0)=

�

3 r+ i i6 k;

3 r¡ i+2 k i> k:
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Consider the hyperplane h :
P

e2Ew(e)= 3 r+ k. Note that SG06h, and (F
0;M 0) is on h

iff the preimage M is a k-PM. It remains to realise that

� M 0 is a projection of (F 0;M 0) onto the second half of coordinates; and

� M is a projection of M 0 onto the edges that appear in G.

So QG=proj(SG0\h) and, consequently,
QG= conv(QG)=proj(conv(SG0\h))= proj(SG0\h)

is the projection of the face SG0\ h. �

Corollary 6.14. SG has exponential extension complexity. �

So our best bet is finding a good though exponential family of linear inequalities for SG.
We managed to find a partial family. For every cycle C of length 2 `> 2 k, we decompose
it as a union of two matchings F [F 0 and write @C for the edges with exactly one end in
C. We constrain

`

 

X

e2F

ye+
X

e2@C

ye

!

6 k

 

X

e2F

xe+(`¡ 1)
X

e2@C

xe

!

:

Note that for all vertices (y ;x)2SG:
� If x\F = ; then

P

e2F ye=
P

e2Fxe=0, so the inequality holds.

� If x\F =/ ; then we distinguish two cases. If x\C =F then
P

e2F xe= `; otherwise
P

e2@Cxe>1. In either case the right hand side is at least k `, which is larger than the

left hand side.

The rationale is to prevent the y �mixing� F and F 0, which is the main contributor of the
factor 2 in Theorem 6.12. Our constraint is capable to rule out some, but not all, fractional
vertices. It is an interesting problem to find a complete linear system that describes SG.
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7

Exact Perfect f-Matching

Here is a direct generalisation of perfect matchings. Given graph G=(V ;E) and function
f :V !N, a perfect f-matching is an assignment x :E!N such that

P

u2N(v)
xuv= f(v)

for all v 2V . One may understand xuv as the times that we pick the edge uv. Note that
the notion degenerates to perfect matchings when f � 1. It is known that we can tell the
existence of perfect f -matching in strongly polynomial time [1]; that is, the number of
arithmetic operations depends on n but not on the amplitude of f .

With some edges being red and the other being blue, the Exact Perfect f -Matching

problem asks if there is a perfect f -matching that uses exactly k reds (i.e.
P

e2Rxe= k).

When f is polynomially bounded we show its equivalence to Exact Perfect Matching. In this
case, we also provide an efficient dynamic program if G has small tree-width. However,
little is known when f takes exponential values, which marks an intriguing complexity
status of the problem.

7.1 The Complexity Status

Theorem 7.1. Exact Perfect f -Matching reduces to Exact Perfect Matching when the f -
values are polynomially bounded in n.

Proof. Given G=(V ;R]B) and f , we explode each vertex v into a set Sv of f(v) copies;
and for each edge uv, we add full connection between Su and Sv using the colour of uv.
The reader might have noticed that the resulting G0 is a blow-up of G; see Definition 4.7.

3 1

2 2

1

0

1

0

2 ⇐⇒

Any perfect matching M 0 in G0 naturally induces an assignment x on the edges of G:

xuv :=number of M 0-edges between Su and Sv:

Since every copy in Sv is matched byM 0 to some copy in Su, u2N(v), we have
P

u2N(v)
xuv=

jSv j= f(v). Therefore, x is a perfect f -matching in G; moreover, it uses the same number

of reds as M 0.



Conversely, any perfect f -matching x in G maps to a perfect matching in G0. To see
this, recall jSv j= f(v)=

P

u2N(v)
xuv. So for each v2V we can partition Sv :=

U

u2N(v)
Sv
u

where jSvuj :=xuv. Then we perfectly and arbitrarily match the copies in Sv
u with the copies

in Su
v. This is feasible because Sv

u and Su
v have identical size and are fully connected. The

result is a perfect matching in G0 that uses the same number of reds as f . �

Interestingly, if we allow exponential f -values then it is unclear whether a randomised
polynomial-time algorithm exists. For one thing, determinants and Pfaffians enumerate
permutations, which do not incorporate multiplicities. For another, although the isolation
lemma extends to multisets, the weight of a multiset can become exponential and thus
hinders algorithmic usage. Is the problem efficiently solvable? Or is it NP-complete? We
leave them as open questions to the reader.

7.2 Tree Decompositions

Solving Exact Perfect f -Matching on trees is easy: The quota of the leaves must fully pass
to their parents, and the leftover of parents must fully pass to the grandparents, and so on
until we reach the root.

How about tree-like graphs? The solution becomes less trivial, but we will present a
standard dynamic program that does the trick. When specialised to f � 1 we recover a
dynamic program for Exact Perfect Matching. A catch is that its running time depends
exponentially on �tree-likeness�, so for dense graphs it is prohibitively slow.

How do we quantify the closeness of a graph to a tree? A gauge can be derived from a
notion called tree decompositions. It was popularised by Robertson and Seymour in their
renowned work on graph minors [22].

Definition 7.2. A tree decomposition of graph G=(V ;E) is a rooted tree T where every
node a2T claims a territory Va�V . We require two properties:

(i) Every fu; vg2E lies in the territory of some node a2T , meaning that fu; vg�Va.
(ii) Vb\Vc�Va for all nodes a2T on the path between b; c2T .

The second property says that if a vertex is in the territories of both b and c, then it
should also be found in all territories �between� b and c. In other words, fa2 T : v 2 Vag
forms a subtree for every v 2V .

A trivial tree decomposition is to create a single node a that encompasses everything;
namely Va= V . But what if we limit the sizes of territories? When G is a tree then we
may do the following:

� for each vertex v 2V create a node a with Va := fvg;
� for each edge fu; vg2E create a node a with Va := fu; vg, and connect it to the nodes

corresponding to u and v.

This clearly defines a tree decomposition where territories have sizes at most 2. When G

contains a cycle, such construction fails and, in fact, territories of larger sizes are necessary.
It motivates us to call maxa2T jVaj ¡ 1 the complexity of tree decomposition T . The tree-
width of G is the smallest possible complexity over all tree decompositions of G.

We will not explain how one can determine the tree-width or even an optimal tree

decomposition. It suffices to know that if G has tree-width t, then we can compute in 2O(t)n
time a tree decomposition T of G with O(n) nodes and complexity at most 2 t+1 [16].

Henceforth we will focus on how T helps solving Exact Perfect f -Matching. Let Ta be the
subtree of T rooted at a. It covers territories Za :=

S

a02Ta
Va0.
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Lemma 7.3. If node a 2 T has child b2 T , then VanVb�ZanZb. In words, the vertices
forsaken by b will never show up again in the territory of subtree Tb.

Proof. Let v2VanVb. Obviously v2Va�Za, so it remains to argue v2/Zb. Suppose otherwise
that v 2Vc for some c2Tb. By property (ii) of tree decomposition, we have v 2Vb as well
because b is on the path between a and c. This gives a contradiction. �

Lemma 7.4. If node a2T has children b; c2T , then there is no edge between ZbnVa and
ZcnVa.

Proof. Suppose there is an edge fu; vg between u2ZbnVa and v 2ZcnVa. So by property
(i) we may find a node d2T with fu; vg�Vd. Observe that node a is between nodes b; d
or nodes c; d (or both). The former case implies u2Va by property (ii), and the latter case
implies v 2Va. Both reach a contradiction. �

The lemma essentially means that any two children of a can only interact within Va.
Hence, if we freeze the state inside Va, the problem can be solved independently on the
children.

To make a streamlined algorithm, though, we need to regulate the form of the tree. We
require each node a2T to take one of the following four types:

leaf: a has no child and jVaj=1;
introduce: a has one child b and Vb=Va[fvg for some v 2/ Va;
remove: a has one child b and Vb=Vanfvg for some v 2Va;
split: a has two children b and c and Vb=Vc=Va.

It is rather easy to transform an arbitrary tree decomposition to one that fits such form
via telescoping:

{1, 2, 3}

{1, 3, 4} {2} {3, 4, 5}

{1, 2, 3}

{1, 3}

{1, 2, 3} {1, 2, 3} {1, 2, 3}

{1, 2, 3}

{1, 3, 4}

.

.

.
.
.
.

.

.

.

.

.

.

{2, 3}

{2}
.
.
.

{2, 3}

{3}

.

.

.

{3, 4}

{3, 4, 5}

Using the same idea, we may also assume that the root � satisfies jV�j=1. Note that the
complexity of the tree decomposition is preserved, and the number of nodes grows by a
factor of 2 t at most. Furthermore, the transformation runs in O(t2n) time.

7.3 A Dynamic Program

Now we are ready to describe the dynamic program for Exact Perfect f -Matching. Consider
the following problem:
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Input: node a2T , function g :Va!N, and integer r 2N.
Output: a boolean value out(a; g; r), indicating whether G[Za]¡E[Va] admits a perfect

f̃ -matching that uses r reds where

f̃ (v) :=

�

f(v) v 2ZanVa;
g(v) v 2Va:

We have the following recursive relations.

� Suppose a is a leaf. Then out(a; g; r)= (g� 0)^ (r=0).

� Suppose a is an �introduce� node whose child b satisfies Vb= Va[fvg. Our goal is to
reduce to subproblems on (b; �; �). Since Zb=Za, the graph G[Za]¡E[Va] is simply
G[Zb]¡E[Vb] plus the edges between v and Va. So to bridge the gap it suffices to
specify how we pick each of these edges. To this end, we iterate over all functions
h :Va\N(v)!N such that h6 g and

P

u2Va\N(v)
h(u)6 f(v). It encodes the number

of times that v matches to its neighbours in Va. Define the residual g 0 :Vb!N by

g 0(u) :=

8

>>

<

>>

:

g(u) u2VanN(v);
g(u)¡h(u) u2Va\N(v);
f(v)¡P

u2Va\N(v)
h(u) u= v;

and let r 0 := r ¡P
u2Va\N(v):uv2R

h(u). Compute out(b; g 0; r 0) and take �_� over all
these outputs.

� Suppose a is a �remove� node whose child b satisfies Vb=Vanfvg. Note that Zb=Zanfvg
by Lemma 7.3, so v does not have neighbours outside Va in graph G[Za]. It is not hard
to see that out(a; g; r)= [g(v)=0]^ out(b; g jVb; r).

� Finally, suppose a is a �split� node whose children b; c satisfy Vb= Vc= Va. Due to
Lemma 7.4, we have out(a; g; r)=

W

r 0+r 00=r [out(b; g; r
0)^ out(c; g; r 00)].

The dynamic program can be implemented in a bottom-up manner, filling the leaf entries
at first and the root entry at last. Recall that the root � satisfies jV�j=1 and Z�=V . Then
out(�; f jV�; k) exactly recovers the answer to Exact Perfect f -Matching.

7.4 Time Analysis

Observe that each entry out(a; g; r) is accessed twice: when it was filled and when it is
queried by parent. So the running time is proportional to the number of entries. We have
O(tn) choices for node a, at most [maxv2Vf(v)]

2t+1 choices for function g, and k6n choices
for integer r. Therefore, the running time is upper bounded by O(tn2) � [maxv2Vf(v)]

2t+1.
In the special case of Exact Perfect Matching, we have f �1 and thus the running time is

O(tn) �22t+1. It is interesting to contrast the case where f is exponential in n: the dynamic
program is no longer efficient in any sense, yet we are not aware of any faster algorithm.

As a final remark, the algorithm can easily be extended to find a perfect f -matching
if one exists. It adds essentially no overhead to the running time.
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