Theory Examples.Sorting_Setup

theory Sorting_Setup
imports "Isabelle_LLVM.IICF" "Isabelle_LLVM.Proto_IICF_EOArray" IICF_DS_Array_Idxs Sorting_Misc 
begin
  hide_const (open) Word.slice LLVM_DS_Array.array_assn LLVM_DS_NArray.array_slice_assn

  
(* TODO: This is even cited at count-list definition, and should be somewhere in HOL! *)
lemma count_list_eq_count_mset: "count_list = count o mset"
proof (clarsimp simp: fun_eq_iff)
  fix xs :: "'a list" and x
  show "count_list xs x = count (mset xs) x"
    by (induction xs) auto
qed  


lemma permut_alt: "mset xs = mset xs'  (x. count_list xs x = count_list xs' x)"
  by (auto simp: count_list_eq_count_mset multi_count_eq)


  
(* TODO: Move *)  
  
(* General copy setup *)

definition "is_copy A cp  (cp,RETURN o COPY)  Ak a A"

lemma is_copy_rule[sepref_fr_rules]:
  "GEN_ALGO cp (is_copy A)  (cp,RETURN o COPY)  Ak a A"
  unfolding is_copy_def GEN_ALGO_def by auto

(* Note: this is not in sepref's gen-algos, as currently the rule hnr_pure_copy is in, and tried first *)  
lemma is_copy_pure_gen_algo: "CONSTRAINT is_pure A  GEN_ALGO (Mreturn) (is_copy A)"  
  unfolding is_copy_def GEN_ALGO_def
  by (rule hnr_pure_COPY)
  
(* TODO: Move. Make inline? This is meant for instantiating locales that require a free operation. *)
definition [llvm_code]: "free_pure x  Mreturn ()"
  
  
  

definition "le_by_lt lt a b  ¬lt b a"  
definition "lt_by_le le a b  le a b  ¬le b a"

locale weak_ordering_le =
  fixes less_eq :: "'a  'a  bool" (infix "" 50)
  assumes trans: "a  b  b  c  a  c"
  assumes connex: "ab  ba"

locale weak_ordering_lt =
  fixes less :: "'a  'a  bool" (infix "<" 50)
  assumes asym: "a<b  ¬b<a"
  assumes itrans: "a<c  a<b  b<c"
      
locale weak_ordering = 
  fixes less_eq :: "'a  'a  bool" (infix "" 50)
  fixes less :: "'a  'a  bool" (infix "<" 50)
  assumes trans[trans]: "a  b  b  c  a  c"
  assumes connex: "ab  ba"
  assumes asym: "a<b  ¬b<a"
  assumes itrans: "a<c  a<b  b<c"
  assumes lt_by_le: "lt_by_le () = (<)"
  assumes le_by_lt: "le_by_lt (<) = ()"
begin


  lemma unfold_lt_to_le: "a < b  ab  ¬ba" unfolding lt_by_le[symmetric] lt_by_le_def by simp
  lemma unfold_le_to_lt: "a  b  ¬b<a" unfolding le_by_lt[symmetric] le_by_lt_def by simp

  abbreviation (input) greater_eq (infix "" 50) where "ba  ab"
  abbreviation (input) greater (infix ">" 50) where "b>a  a<b"

  lemma wo_refl[iff]: "a  a" using connex by auto
  lemma wo_irrefl[iff]: "¬a<a" using asym by blast
  lemma wo_less_trans[trans]: "a<b  b<c  a<c" using asym itrans by blast

  lemma [iff]:
    shows transp_le: "transp ()"
      and reflp_le: "reflp ()"
      and transp_lt: "transp (<)"
      and irreflp_lt: "irreflp (<)"
    unfolding transp_def reflp_def irreflp_def
    using trans wo_less_trans   
    by blast+
    
  
  
  definition eq (infix "=" 50) where "a = b  ¬a<b  ¬b<a"
    
  lemma eq_refl[iff]: "a = a"
    unfolding eq_def by blast
        
  lemma eq_sym: "a = b  b = a"  
    unfolding eq_def by blast
    
  lemma eq_trans: "a = b  b = c  a = c"
    unfolding eq_def using itrans by blast
  
  lemma eq_equiv: "equivp (=)"
    apply (intro equivpI reflpI sympI transpI)
    using eq_sym eq_trans by blast+

  text Compatibility lemmas, similar names as for order  
    
  lemma wo_leI: "¬ x < y  y  x" by (simp add: unfold_le_to_lt)
  
  lemma wo_leD: "y  x  ¬ x < y" by (simp add: unfold_le_to_lt)
  
  lemma wo_not_le_imp_less: "¬ y  x  x < y" by (simp add: unfold_le_to_lt)
    
  lemma wo_le_less_trans[trans]: "x  y  y < z  x < z"
    using itrans wo_leD by blast
  
  lemma wo_less_le_trans[trans]: "x < y  y  z  x < z"
    using itrans wo_leD by blast
    
  lemma wo_less_not_sym: "x < y  ¬ (y < x)"
    using asym by blast
  
  lemma wo_less_asym: "x < y  (¬ P  y < x)  P"
    using asym by blast
    
    
    

end  

sublocale weak_ordering_lt < weak_ordering "le_by_lt (<)"
  apply (unfold_locales)
  unfolding le_by_lt_def lt_by_le_def using asym itrans by blast+

sublocale weak_ordering_le < weak_ordering "()" "lt_by_le ()"
  apply (unfold_locales)
  unfolding le_by_lt_def lt_by_le_def using trans connex by blast+

  
  
lemma linwo: "weak_ordering (≤) ((<)::_::linorder  _)"
  apply unfold_locales
  unfolding le_by_lt_def lt_by_le_def
  by (auto simp: fun_eq_iff)

lemma funwo: "weak_ordering (λa b. f a  f b) (λa b. f a < f b)" for f :: "'a  'b::linorder"
  apply unfold_locales
  unfolding le_by_lt_def lt_by_le_def
  by (auto simp: fun_eq_iff)
  
lemma le_by_linorder[simp]: "le_by_lt ((<)::_::linorder  _) = (≤)"  
  unfolding le_by_lt_def less_le_not_le by (intro ext) auto
  
lemma lt_by_linorder[simp]: "lt_by_le ((≤)::_::linorder  _) = (<)"  
  unfolding lt_by_le_def less_le_not_le by (intro ext) auto
    
  
lemma bex_intv_shift_aux: "(x{0..<Suc n}. P x)  (P 0  (x{0..<n}. P (Suc x)))"
  apply auto
  using less_Suc_eq_0_disj by auto

lemma sorted_wrt_adjacent: "transp R  sorted_wrt R xs  (i{0..<length xs-1}. R (xs!i) (xs!Suc i))"
  supply [simp del] = sorted_wrt.simps(2) and [simp] = sorted_wrt2_simps
  apply (induction xs rule: induct_list012)
  apply (auto simp: bex_intv_shift_aux)
  done

abbreviation "sorted_wrt_lt lt  sorted_wrt (le_by_lt lt)"

lemma sorted_wrt_lt_adjacent: 
  assumes "weak_ordering_lt lt" 
  shows "sorted_wrt_lt lt xs  (i{0..<length xs-1}. ¬lt (xs!Suc i) (xs!i))"
proof -
  interpret weak_ordering_lt lt by fact
  
  show ?thesis
    apply (subst sorted_wrt_adjacent)
    apply (simp_all add: le_by_lt_def)
    done
    
qed

lemma sorted_sorted_wrt_lt: "sorted = sorted_wrt_lt ((<)::_::linorder _)"
  apply (intro ext) by simp



definition "sort_spec lt xs xs'  mset xs'=mset xs  sorted_wrt_lt lt xs'" 

lemma (in weak_ordering) "sort_spec (<) xs xs' 
  (x. count_list xs' x = count_list xs x)
 (i j. i<j  j<length xs'  ¬ xs'!j < xs'!i)"
  unfolding sort_spec_def permut_alt
  by (auto simp: sorted_wrt_iff_nth_less le_by_lt_def) 


  
definition "slice_sort_spec lt xs0 l h  doN {
    ASSERT (lh  hlength xs0);
    SPEC (λxs. length xs = length xs0  take l xs = take l xs0  drop h xs = drop h xs0  sort_spec lt (Misc.slice l h xs0) (Misc.slice l h xs))
  }"
  
lemma slice_sort_spec_refine_sort: "(xsi,xs)  slice_rel xs0 l h; l'=l; h'=h  slice_sort_spec lt xsi l h (slice_rel xs0 l' h') (SPEC (sort_spec lt xs))"
  unfolding slice_sort_spec_def sort_spec_def
  apply (refine_vcg RES_refine)
  by (auto simp: slice_rel_def in_br_conv)

lemma slice_sort_spec_eq_sort': "(xsi,xs)  slicep_rel l h; xsi'=xsi; l'=l; h'=h  (slice_rel xsi' l' h') (SPEC (sort_spec lt xs)) = slice_sort_spec lt xsi l h"
  unfolding slice_sort_spec_def sort_spec_def
  apply (auto simp: slice_rel_def slicep_rel_def in_br_conv build_rel_SPEC_conv)
  done
  
corollary slice_sort_spec_refine_sort': "(xsi,xs)  slicep_rel l h; xsi'=xsi; l'=l; h'=h  slice_sort_spec lt xsi l h (slice_rel xsi' l' h') (SPEC (sort_spec lt xs))"
  by (simp add: slice_sort_spec_eq_sort')
  
corollary slice_sort_spec_refine_sort'_sym: "(xsi,xs)  slicep_rel l h; xsi'=xsi; l'=l; h'=h  (slice_rel xsi' l' h') (SPEC (sort_spec lt xs))  slice_sort_spec lt xsi l h"
  by (simp add: slice_sort_spec_eq_sort')
  
lemma slice_sort_spec_alt: "slice_sort_spec lt xs l h = doN {
    ASSERT (lh  hlength xs);
    SPEC (λxs'. eq_outside_range xs' xs l h
       mset (slice l h xs') = mset (slice l h xs)
       sorted_wrt_lt lt (slice l h xs')
    )
  }"
  unfolding slice_sort_spec_def sort_spec_def eq_outside_range_def
  by (auto simp: pw_eq_iff refine_pw_simps)
      
  
  lemma slice_sort_spec_sem_alt: "slice_sort_spec lt xs l h = doN {
      ASSERT (l  h  h  length xs);
      SPEC (λxs'. slice_eq_mset l h xs xs'  sorted_wrt_lt lt (slice l h xs'))
    }"
    unfolding slice_sort_spec_alt
    by (auto simp: pw_eq_iff refine_pw_simps slice_eq_mset_alt slice_eq_mset_eq_length eq_outside_rane_lenD dest: eq_outside_range_sym)
  
  
  
text  Sorting a permutation of a list amounts to sorting the list! 
lemma sort_spec_permute: "mset xs' = mset xs; sort_spec lt xs' ys  sort_spec lt xs ys"
  unfolding sort_spec_def by auto


(* TODO: Move! *)    
sepref_decl_op idx_v_swap: "λxs i v. (xs!i,xs[i:=v])" :: "[λ((xs,i),v). i<length xs]f (Alist_rel ×r nat_rel) ×r A  A ×r Alist_rel" .

definition "idx_v_swap2 xs0 i v  do {
  xs  mop_to_eo_conv xs0;
  (v',xs)  mop_eo_extract xs i;
  xs  mop_eo_set xs i v;
  xs  mop_to_wo_conv xs;
  RETURN (v',xs)
}"

lemma idx_v_swap2_refine: "(idx_v_swap2,mop_idx_v_swap)  Id  Id  Id  Idnres_rel"
  unfolding idx_v_swap2_def
  apply clarsimp
  apply refine_vcg
  apply (auto simp: map_update)
  by (metis None_notin_image_Some list.set_map map_update)

sepref_def idx_v_swap_impl_woarray [llvm_code] is "uncurry2 idx_v_swap2" 
  :: "[λ_. True]c (woarray_assn A)d *a snat_assnk *a Ad  A ×a woarray_assn A [λ((ai,_),_) (_,r). r=ai]c"
  unfolding idx_v_swap2_def
  by sepref
  
sepref_def idx_v_swap_impl_woarray_slice [llvm_code] is "uncurry2 idx_v_swap2" 
  :: "[λ_. True]c (woarray_slice_assn A)d *a snat_assnk *a Ad  A ×a woarray_slice_assn A [λ((ai,_),_) (_,r). r=ai]c"
  unfolding idx_v_swap2_def
  by sepref

context notes [fcomp_norm_unfold] = list_rel_id_simp option_rel_id_simp begin
  sepref_decl_impl (ismop) idx_v_swap_impl_woarray.refine[FCOMP idx_v_swap2_refine] uses mop_idx_v_swap.fref[where A=Id] .
  sepref_decl_impl (ismop) idx_v_swap_impl_woarray_slice.refine[FCOMP idx_v_swap2_refine] uses mop_idx_v_swap.fref[where A=Id] .
end
      
find_theorems swap_eo  
  
thm gen_mop_list_swap  
find_theorems mop_list_swap array_slice_assn
  

context weak_ordering begin  
  sepref_decl_op cmpo_idxs: "λxs i j. the (xs!i) < the (xs!j)" 
    :: "[λ((xs,i),j). i<length xs  j<length xs  xs!iNone  xs!jNone]f 
      (Id::'a reloption_rellist_rel ×r nat_rel) ×r nat_rel  bool_rel"
    by simp
    
  sepref_decl_op cmp_idxs: "λxs i j. xs!i < xs!j" 
    :: "[λ((xs,i),j). i<length xs  j<length xs]f 
      (Id::'a rellist_rel ×r nat_rel) ×r nat_rel  bool_rel"
    by simp

  sepref_decl_op cmpo_v_idx: "λxs v j. v < the (xs!j)" :: "[λ((xs,v),j). j<length xs  xs!j  None]f (Id::'a reloption_rellist_rel ×r (Id::'a rel)) ×r nat_rel  bool_rel"
    by simp

  sepref_decl_op cmpo_idx_v: "λxs i v. the (xs!i) < v" :: "[λ((xs,i),v). i<length xs  xs!iNone]f (Id::'a reloption_rellist_rel ×r nat_rel) ×r (Id::'a rel)  bool_rel"
    by simp

    
  sepref_decl_op cmp_v_idx: "λxs v j. v < xs!j" :: "[λ((xs,v),j). j<length xs]f (Id::'a rellist_rel ×r (Id::'a rel)) ×r nat_rel  bool_rel"
    by simp

  sepref_decl_op cmp_idx_v: "λxs i v. xs!i < v" :: "[λ((xs,i),v). i<length xs]f (Id::'a rellist_rel ×r nat_rel) ×r (Id::'a rel)  bool_rel"
    by simp
    
    
            
(*
  definition refines_cmp_idxs :: "('a list ⇒ _ ⇒ assn) ⇒ (_ ⇒ 'l::len2 word ⇒ 'l word ⇒ 1 word llM) ⇒ bool" 
    where "refines_cmp_idxs A ci_impl ≡ (uncurry2 ci_impl, uncurry2 (PR_CONST mop_cmp_idxs)) ∈ Ak *a snat_assnk *a snat_assnka bool1_assn"
                                
  lemma gen_refines_cmp_idxsD: 
      "GEN_ALGO ci_impl (refines_cmp_idxs A) 
        ⟹ (uncurry2 ci_impl, uncurry2 (PR_CONST mop_cmp_idxs)) ∈ Ak *a snat_assnk *a snat_assnka bool1_assn"        
    and gen_refines_cmp_idxsI[intro?]: 
      "(uncurry2 ci_impl, uncurry2 (PR_CONST mop_cmp_idxs)) ∈ Ak *a snat_assnk *a snat_assnka bool1_assn
        ⟹ GEN_ALGO ci_impl (refines_cmp_idxs A)"
    unfolding refines_cmp_idxs_def GEN_ALGO_def by auto    
*)    
    
end  
  
     
definition "refines_relp A R Rimpl  (uncurry Rimpl,uncurry (RETURN oo R))  Ak*aAkabool1_assn"

term "GEN_ALGO Rimpl (refines_relp A R)"

lemma gen_refines_relpD: "GEN_ALGO Rimpl (refines_relp A R)  (uncurry Rimpl,uncurry (RETURN oo R))  Ak*aAkabool1_assn"
  by (simp add: GEN_ALGO_def refines_relp_def)

lemma gen_refines_relpI[intro?]: "(uncurry Rimpl,uncurry (RETURN oo R))  Ak*aAkabool1_assn  GEN_ALGO Rimpl (refines_relp A R)"
  by (simp add: GEN_ALGO_def refines_relp_def)
  
(*  
locale sort_impl_context = weak_ordering +
  fixes cmp_idxs_impl :: "'ai::llvm_rep ⇒ 'l::len2 word ⇒ 'l word ⇒ 1 word llM"
    and arr_assn :: "'a list ⇒ 'ai ⇒ assn"
  assumes cmp_idxs_impl: "GEN_ALGO cmp_idxs_impl (refines_cmp_idxs arr_assn)"
  
begin

  lemmas lt_hnr[sepref_fr_rules] = gen_refines_cmp_idxsD[OF cmp_idxs_impl]
  
  declare [[sepref_register_adhoc "(<)"]]
  

end  
*)  

(* TODO: Move *)

locale sort_impl_context = weak_ordering +  
  fixes lt_impl :: "'ai::llvm_rep  'ai  1 word llM"
    and elem_assn :: "'a  'ai  assn"
  assumes lt_impl: "GEN_ALGO lt_impl (refines_relp elem_assn (<))"
  notes lt_hnr[sepref_fr_rules] = gen_refines_relpD[OF lt_impl]
  
  notes [[sepref_register_adhoc "(<)"]]
begin

  abbreviation "arr_assn  woarray_slice_assn elem_assn"
  
  
  definition "cmpo_idxs2 xs0 i j  doN {
    ASSERT (i  j);
    (vi,xs)  mop_eo_extract xs0 i;
    (vj,xs)  mop_eo_extract xs j;
    let r = vi < vj;
    xs  mop_eo_set xs i vi; ― ‹TODO: Let's hope the optimizer eliminates these assignments. In mid-term, eliminate them during sepref phase!
    xs  mop_eo_set xs j vj;
    unborrow xs xs0;
    RETURN r
  }"
  
  definition "cmpo_v_idx2 xs0 v j  doN {
    (vj,xs)  mop_eo_extract xs0 j;
    let r = v < vj;
    xs  mop_eo_set xs j vj;
    unborrow xs xs0;
    RETURN r
  }"
  
  definition "cmpo_idx_v2 xs0 i v  doN {
    (vi,xs)  mop_eo_extract xs0 i;
    let r = vi < v;
    xs  mop_eo_set xs i vi;
    unborrow xs xs0;
    RETURN r
  }"

  definition "cmp_idxs2 xs0 i j  doN {
    xs  mop_to_eo_conv xs0;
    b  cmpo_idxs2 xs i j;
    xs  mop_to_wo_conv xs;
    unborrow xs xs0;
    RETURN b
  }"  

  definition "cmp_idx_v2 xs0 i v  doN {
    xs  mop_to_eo_conv xs0;
    b  cmpo_idx_v2 xs i v;
    xs  mop_to_wo_conv xs;
    unborrow xs xs0;
    RETURN b
  }"  
  
  definition "cmp_v_idx2 xs0 v j  doN {
    xs  mop_to_eo_conv xs0;
    b  cmpo_v_idx2 xs v j;
    xs  mop_to_wo_conv xs;
    unborrow xs xs0;
    RETURN b
  }"  
  
    
  lemma cmpo_idxs2_refine: "(uncurry2 cmpo_idxs2, uncurry2 (PR_CONST mop_cmpo_idxs))  [λ((xs,i),j). ij]f (Id×rId)×rId  Idnres_rel"
    unfolding cmpo_idxs2_def
    apply (intro frefI nres_relI)
    apply clarsimp
    subgoal for xs i j
      apply refine_vcg
      apply (simp_all add: list_update_swap[of i j] map_update[symmetric])
      done
    done

  lemma cmpo_v_idx2_refine: "(cmpo_v_idx2, PR_CONST mop_cmpo_v_idx)  Id  Id  Id  Idnres_rel"
    unfolding cmpo_v_idx2_def
    apply clarsimp
    apply refine_vcg
    apply auto
    done

    
  lemma cmpo_idx_v2_refine: "(cmpo_idx_v2, PR_CONST mop_cmpo_idx_v)  Id  Id  Id  Idnres_rel"
    unfolding cmpo_idx_v2_def
    apply clarsimp
    apply refine_vcg
    apply auto
    done

  lemma cmp_idxs2_refine: "(uncurry2 cmp_idxs2,uncurry2 (PR_CONST mop_cmp_idxs))[λ((xs,i),j). ij]f (Id×rId)×rId  Idnres_rel"
    unfolding cmp_idxs2_def mop_cmp_idxs_def PR_CONST_def
    apply (intro frefI nres_relI)
    apply clarsimp
    apply refine_vcg
    apply (rule order_trans)
    apply (rule cmpo_idxs2_refine[param_fo, THEN nres_relD], assumption, (rule IdI)+)
    by (auto simp: pw_le_iff refine_pw_simps)

  lemma cmp_idx_v2_refine: "(uncurry2 cmp_idx_v2,uncurry2 (PR_CONST mop_cmp_idx_v))(Id×rId)×rId  Idnres_rel"
    unfolding cmp_idx_v2_def mop_cmp_idx_v_def PR_CONST_def
    apply (intro fun_relI nres_relI)
    apply clarsimp
    apply refine_vcg
    apply (rule order_trans)
    apply (rule cmpo_idx_v2_refine[param_fo, THEN nres_relD, OF IdI IdI IdI])
    by (auto simp: pw_le_iff refine_pw_simps)
    
  lemma cmp_v_idx2_refine: "(uncurry2 cmp_v_idx2,uncurry2 (PR_CONST mop_cmp_v_idx))(Id×rId)×rId  Idnres_rel"
    unfolding cmp_v_idx2_def mop_cmp_v_idx_def PR_CONST_def
    apply (intro fun_relI nres_relI)
    apply clarsimp
    apply refine_vcg
    apply (rule order_trans)
    apply (rule cmpo_v_idx2_refine[param_fo, THEN nres_relD, OF IdI IdI IdI])
    by (auto simp: pw_le_iff refine_pw_simps)
    
        
        
  sepref_definition cmp_idxs_impl [llvm_inline] is "uncurry2 cmp_idxs2" :: "(woarray_slice_assn elem_assn)k *a snat_assnk *a snat_assnk a bool1_assn"
    unfolding cmp_idxs2_def cmpo_idxs2_def PR_CONST_def
    supply [sepref_fr_rules] = eo_hnr_dep
    by sepref
    
  sepref_definition cmpo_idxs_impl [llvm_inline] is "uncurry2 cmpo_idxs2" :: "(eoarray_slice_assn elem_assn)k *a snat_assnk *a snat_assnk a bool1_assn"
    unfolding cmpo_idxs2_def PR_CONST_def
    supply [sepref_fr_rules] = eo_hnr_dep
    by sepref

  sepref_definition cmpo_v_idx_impl [llvm_inline] is "uncurry2 cmpo_v_idx2" :: "(eoarray_slice_assn elem_assn)k *a elem_assnk *a snat_assnk a bool1_assn"
    unfolding cmpo_v_idx2_def PR_CONST_def
    supply [sepref_fr_rules] = eo_hnr_dep
    by sepref
  
  
  sepref_definition cmpo_idx_v_impl [llvm_inline] is "uncurry2 cmpo_idx_v2" :: "(eoarray_slice_assn elem_assn)k *a snat_assnk *a elem_assnk a bool1_assn"
    unfolding cmpo_idx_v2_def PR_CONST_def
    supply [sepref_fr_rules] = eo_hnr_dep
    by sepref

    
  sepref_definition cmp_idx_v_impl [llvm_inline] is "uncurry2 cmp_idx_v2" :: "(woarray_slice_assn elem_assn)k *a snat_assnk *a elem_assnk a bool1_assn"
    unfolding cmp_idx_v2_def cmpo_idx_v2_def PR_CONST_def
    supply [sepref_fr_rules] = eo_hnr_dep
    by sepref
    
  sepref_definition cmp_v_idx_impl [llvm_inline] is "uncurry2 cmp_v_idx2" :: "(woarray_slice_assn elem_assn)k *a elem_assnk *a snat_assnk a bool1_assn"
    unfolding cmp_v_idx2_def cmpo_v_idx2_def PR_CONST_def
    supply [sepref_fr_rules] = eo_hnr_dep
    by sepref
    
        
  context notes [fcomp_norm_unfold] = list_rel_id_simp option_rel_id_simp begin
    sepref_decl_impl (ismop) cmp_idxs_impl.refine[FCOMP cmp_idxs2_refine] .
    sepref_decl_impl (ismop) cmpo_idxs_impl.refine[FCOMP cmpo_idxs2_refine] .
    sepref_decl_impl (ismop) cmpo_v_idx_impl.refine[FCOMP cmpo_v_idx2_refine] .
    sepref_decl_impl (ismop) cmpo_idx_v_impl.refine[FCOMP cmpo_idx_v2_refine] .
    
    sepref_decl_impl (ismop) cmp_v_idx_impl.refine[FCOMP cmp_v_idx2_refine] .
    sepref_decl_impl (ismop) cmp_idx_v_impl.refine[FCOMP cmp_idx_v2_refine] .
    
  end  
    
end

(*
  Sort-impl context that allows copying and freeing of elements
*)
locale sort_impl_copy_context = sort_impl_context + 
  fixes copy_elem_impl free_elem_impl
  assumes elem_assn_copy[sepref_gen_algo_rules]: "GEN_ALGO copy_elem_impl (is_copy elem_assn)"
  assumes elem_assn_free[sepref_frame_free_rules]: "MK_FREE elem_assn free_elem_impl"
begin
  (* Prevent default pure copy rule *)
  lemmas [safe_constraint_rules] = CN_FALSEI[of is_pure elem_assn]
end  


locale pure_sort_impl_context = sort_impl_context +
  assumes pureA[safe_constraint_rules]: "CONSTRAINT is_pure elem_assn"
  notes [sepref_frame_free_rules] = mk_free_is_pure[OF CONSTRAINT_D[OF pureA]]
begin


  definition "cmp_idxs2' xs i j  doN {
    ASSERT (i<length xs  j<length xs);
    RETURN (xs!i < xs!j)
  }"  

  definition "cmp_idx_v2' xs i v  doN {
    ASSERT (i<length xs);
    RETURN (xs!i < v)
  }"  

  definition "cmp_v_idx2' xs v j  doN {
    ASSERT (j<length xs);
    RETURN (v < xs!j)
  }"  
  
  lemma cmp_idxs2'_refine: "(cmp_idxs2',PR_CONST mop_cmp_idxs)IdIdIdIdnres_rel"  
    unfolding cmp_idxs2'_def mop_cmp_idxs_def
    apply clarsimp
    apply refine_vcg
    by auto

  
  lemma cmp_idx_v2'_refine: "(cmp_idx_v2',PR_CONST mop_cmp_idx_v)IdIdIdIdnres_rel"  
    unfolding cmp_idx_v2'_def mop_cmp_idx_v_def
    apply clarsimp
    by refine_vcg

  lemma cmp_v_idx2'_refine: "(cmp_v_idx2',PR_CONST mop_cmp_v_idx)IdIdIdIdnres_rel"  
    unfolding cmp_v_idx2'_def
    apply clarsimp
    by refine_vcg
    
        
            
  sepref_definition cmp_idxs'_impl [llvm_inline] is "uncurry2 cmp_idxs2'" :: "(woarray_slice_assn elem_assn)k *a snat_assnk *a snat_assnk a bool1_assn"
    unfolding cmp_idxs2'_def PR_CONST_def
    by sepref
    
  sepref_definition cmp_idx_v'_impl [llvm_inline] is "uncurry2 cmp_idx_v2'" :: "(woarray_slice_assn elem_assn)k *a snat_assnk *a elem_assnk a bool1_assn"
    unfolding cmp_idx_v2'_def PR_CONST_def
    by sepref

  sepref_definition cmp_v_idx'_impl [llvm_inline] is "uncurry2 cmp_v_idx2'" :: "(woarray_slice_assn elem_assn)k *a elem_assnk *a snat_assnk a bool1_assn"
    unfolding cmp_v_idx2'_def PR_CONST_def
    by sepref
  
    
        
    
  context notes [fcomp_norm_unfold] = list_rel_id_simp option_rel_id_simp begin
    sepref_decl_impl (ismop) cmp_idxs'_impl.refine[FCOMP cmp_idxs2'_refine] .
    sepref_decl_impl (ismop) cmp_v_idx'_impl.refine[FCOMP cmp_v_idx2'_refine] .
    sepref_decl_impl (ismop) cmp_idx_v'_impl.refine[FCOMP cmp_idx_v2'_refine] .
  end  
    
  
  sublocale sort_impl_copy_context "()" "(<)" lt_impl elem_assn Mreturn free_pure
    apply unfold_locales
    subgoal
      apply (rule is_copy_pure_gen_algo)
      by solve_constraint
    subgoal using mk_free_is_pure[OF CONSTRAINT_D[OF pureA]] unfolding free_pure_def by auto
    done
  
end  


(*
  TODO: Explicit ownership collection data structures!
  
    Idea: Make ownership abstractly visible by sum type as abstract element type
      Inl x - element x, but no ownership (free to overwrite or return)
      Inr x - element x with ownership
  
    operation get: transfers ownership, leaves Inl
    operation set: overwrites Inl, Inr must be freed (by user!?)
    operation ret: returns ownership, also concrete value must not have changed. 
      *** Hard to implement, as abstractly not visible! BUT not needed for sorting, 
          and optimizer may eliminate redundant writes in many cases!
      



*)

(*  
locale sort_impl_context = weak_ordering +
  fixes lt_impl :: "'ai::llvm_rep ⇒ 'ai ⇒ 1 word llM"
    and elem_assn :: "'a ⇒ 'ai ⇒ assn"
  assumes lt_impl: "GEN_ALGO lt_impl (refines_relp elem_assn (<))"
  assumes pureA[safe_constraint_rules]: "CONSTRAINT is_pure elem_assn"
  notes [sepref_frame_free_rules] = mk_free_is_pure[OF CONSTRAINT_D[OF pureA]]
  
  notes lt_hnr[sepref_fr_rules] = gen_refines_relpD[OF lt_impl]
  
  notes [[sepref_register_adhoc "(<)"]]
  
begin
  abbreviation "arr_assn ≡ array_assn elem_assn"
end  
*)
(* TODO: Refine lemmas to support more general size datatypes! *)
  
type_synonym size_t = "64"
abbreviation "size_assn  snat_assn' TYPE(size_t)"
  
lemma unat_sort_impl_context: "pure_sort_impl_context (≤) (<) ll_icmp_ult unat_assn"
  apply intro_locales
  apply (rule linwo)
  apply unfold_locales
  apply rule
  apply (rule hn_unat_ops)
  apply (solve_constraint)
  done
  
  
subsection Parameterized Sorting  

text Extension of a weak ordering with explicit carrier set is always possible, 
  e.g., by putting all elements not in the carrier set into one equivalence class,
  which is smaller than any other class.  
locale weak_ordering_on_lt =
  fixes C :: "'a set"
    and less :: "'a  'a  bool" (infix "<" 50)
  assumes asym: " aC; bC   a<b  ¬b<a"
  assumes itrans: " aC; bC; cC   a<c  a<b  b<c"

definition "ext_lt C lt a b  lt a b  aC  bC  aC  bC"  
  
lemma weak_ordering_on_lt_extend: "weak_ordering_lt (ext_lt C lt)  weak_ordering_on_lt C lt"
  unfolding weak_ordering_on_lt_def weak_ordering_lt_def ext_lt_def
  by blast
  
  
(* TODO: Restrict cdom constraint to slice! *)
definition "pslice_sort_spec cdom pless cparam xs l h  doN {
  ⌦‹ASSERT (set (slice l h xs) ⊆ cdom cparam);›
  ASSERT (set xs  cdom cparam);
  slice_sort_spec (pless cparam) xs l h
}"  
  

locale parameterized_weak_ordering =
  fixes cdom :: "'cparam  'a set"
    and pless :: "'cparam  'a  'a  bool"
    and pcmp :: "'cparam  'a  'a  bool nres"
  assumes weak_ordering_on_lt: "weak_ordering_on_lt (cdom cparam) (pless cparam)"
  assumes pcmp_correct[refine_vcg]: " acdom cparam; bcdom cparam 
     pcmp cparam a b  SPEC (λr. r  pless cparam a b)"
begin    

  definition "cdom_rel cparam  br id (λx. xcdom cparam)"
  definition "cdom_list_rel cparam  cdom_rel cparamlist_rel"
  definition "cdom_olist_rel cparam  cdom_rel cparamoption_rellist_rel"
  
  lemma br_id_list_rel_conv: "(xs,xs')br id Ilist_rel  xs=xs'  set xs'  Collect I"
    apply (induction xs arbitrary: xs')
    subgoal for xs' by (auto)
    subgoal for x xs xs' by (cases xs') (auto simp: in_br_conv)
    done  
  
  lemma br_id_olist_rel_conv: "(xs,xs')br id Ioption_rellist_rel  xs=xs'  (x. Some xset xs'  I x)"
    apply (induction xs arbitrary: xs')
    subgoal for xs' by (auto)
    subgoal for x xs xs' by (cases xs') (auto simp: in_br_conv option_rel_def)
    done  
  
  lemma cdom_list_rel_alt: "cdom_list_rel cparam = br id (λxs. set xs  cdom cparam)"
    unfolding cdom_list_rel_def cdom_rel_def
    by (auto simp: in_br_conv br_id_list_rel_conv)
  
  lemma cdom_olist_rel_alt: "cdom_olist_rel cparam = br id (λxs. x. Some x  set xs  xcdom cparam)"
    unfolding cdom_olist_rel_def cdom_rel_def
    by (auto simp: in_br_conv br_id_olist_rel_conv)

  definition "less' cparam  (ext_lt (cdom cparam) (pless cparam))"

  lemma weak_ordering_lt: "weak_ordering_lt (less' cparam)" 
    using weak_ordering_on_lt less'_def by (simp add: weak_ordering_on_lt_extend) 

  lemma weak_ordering: "weak_ordering (le_by_lt (less' cparam)) (less' cparam)"
  proof -
    interpret weak_ordering_lt "less' cparam" by (rule weak_ordering_lt)
    show ?thesis by unfold_locales
  qed      

  sublocale WO: weak_ordering "le_by_lt (less' cparam)" "less' cparam"
    by (rule weak_ordering)
  
  
  lemma sorted_wrt_ext: "set xs  cdom cparam  sorted_wrt (less' cparam) xs = sorted_wrt (pless cparam) xs"
    apply (intro iffI; erule sorted_wrt_mono_rel[rotated])
    apply (auto simp: less'_def ext_lt_def)
    done
  
  (* TODO: Move *)  
  lemma set_slice_ss: "set (slice l h xs)  set xs"  
    by (metis Misc.slice_def dual_order.trans set_drop_subset set_take_subset)
    
  lemma slice_sort_spec_xfer: " (cdom_list_rel cparam) (slice_sort_spec (less' cparam) xs l h)  pslice_sort_spec cdom pless cparam xs l h"
    unfolding pslice_sort_spec_def cdom_list_rel_alt 
    apply (auto simp: pw_le_iff refine_pw_simps in_br_conv)
    unfolding slice_sort_spec_alt
    apply (auto simp: refine_pw_simps)
    using sorted_wrt_ext
    by (smt ext_lt_def le_by_lt_def less'_def set_slice_ss sorted_wrt_mono_rel subsetD)
    
(*
  lemma pslice_sort_spec_xfer:
    assumes "m ≤ slice_sort_spec (less' cparam) xs l h"
    assumes "mm ≤ ⇓(cdom_list_rel cparam) m"
    assumes "(xs',xs)∈cdom_list_rel cparam"
    shows "mm ≤ pslice_sort_spec cdom pless cparam xs l h"
    using assms unfolding pslice_sort_spec_def cdom_list_rel_alt 
    apply (auto simp: pw_le_iff refine_pw_simps in_br_conv)
    unfolding slice_sort_spec_alt
    apply (auto simp: refine_pw_simps)
    using sorted_wrt_ext
    by (smt ext_lt_def le_by_lt_def less'_def set_slice_ss sorted_wrt_mono_rel subset_code(1))
*)  

    
    
    
  lemma olist_to_eo_conv_refine[refine]: 
    "(xs',xs)cdom_list_rel cparam  mop_to_eo_conv xs'  (cdom_olist_rel cparam) (mop_to_eo_conv xs)"
    apply (rule nres_relD)
    unfolding mop_to_eo_conv_def cdom_olist_rel_def cdom_list_rel_def
    by (parametricity)
    
  lemma olist_to_wo_conv_refine[refine]: 
    "(xs',xs)cdom_olist_rel cparam  mop_to_wo_conv xs'  (cdom_list_rel cparam) (mop_to_wo_conv xs)"
    apply simp
    apply refine_rcg
    apply (auto simp: cdom_olist_rel_alt cdom_list_rel_alt in_br_conv)
    by (metis option.collapse)

    
  lemma olist_extract_refine[refine]: " (xs',xs)cdom_olist_rel cparam; (i',i)Id  
     mop_eo_extract xs' i'   ((br id (λx. xcdom cparam)) ×r cdom_olist_rel cparam) (mop_eo_extract xs i)"
    unfolding mop_eo_extract_alt
    apply refine_vcg
    apply (auto simp: cdom_olist_rel_alt in_br_conv)
    by (metis in_set_upd_cases option.distinct(1))
    
  lemma listo_eo_set_refine[refine]: "
    (xs',xs)cdom_olist_rel cparam;
    (i',i)Id;
    (v',v)Id; vcdom cparam
    mop_eo_set xs' i' v'   (cdom_olist_rel cparam) (mop_eo_set xs i v)"  
    apply simp
    apply refine_vcg
    apply (auto simp: cdom_olist_rel_alt in_br_conv)
    by (metis in_set_upd_cases option.sel)

    
  definition "pcmpo_idxs2 cparam xs0 i j  doN {
    ASSERT (i  j);
    (vi,xs)  mop_eo_extract xs0 i;
    (vj,xs)  mop_eo_extract xs j;
    r  pcmp cparam vi vj;
    xs  mop_eo_set xs i vi; ― ‹TODO: Let's hope the optimizer eliminates these assignments. In mid-term, eliminate them during sepref phase!
    xs  mop_eo_set xs j vj;
    unborrow xs xs0;
    RETURN r
  }"
    
  definition "pcmpo_v_idx2 cparam xs0 v j  doN {
    (vj,xs)  mop_eo_extract xs0 j;
    r  pcmp cparam v vj;
    xs  mop_eo_set xs j vj;
    unborrow xs xs0;
    RETURN r
  }"

  definition "pcmpo_idx_v2 cparam xs0 i v  doN {
    (vi,xs)  mop_eo_extract xs0 i;
    r  pcmp cparam vi v;
    xs  mop_eo_set xs i vi;
    unborrow xs xs0;
    RETURN r
  }"

  definition "pcmp_idxs2 cparam xs0 i j  doN {
    xs  mop_to_eo_conv xs0;
    b  pcmpo_idxs2 cparam xs i j;
    xs  mop_to_wo_conv xs;
    unborrow xs xs0;
    RETURN b
  }"  

  definition "pcmp_idx_v2 cparam xs0 i v  doN {
    xs  mop_to_eo_conv xs0;
    b  pcmpo_idx_v2 cparam xs i v;
    xs  mop_to_wo_conv xs;
    unborrow xs xs0;
    RETURN b
  }"  
  
  definition "pcmp_v_idx2 cparam xs0 v j  doN {
    xs  mop_to_eo_conv xs0;
    b  pcmpo_v_idx2 cparam xs v j;
    xs  mop_to_wo_conv xs;
    unborrow xs xs0;
    RETURN b
  }"  
    
  lemma pcmpo_idxs_refine[refine]: "
    (xs',xs) cdom_olist_rel cparam;
    ij;
    (i',i)Id;
    (j',j)Id
    pcmpo_idxs2 cparam xs' i' j'   bool_rel (WO.mop_cmpo_idxs cparam xs i j)"  
    unfolding pcmpo_idxs2_def
    apply simp
    apply refine_vcg
    apply (auto simp: cdom_olist_rel_alt in_br_conv less'_def ext_lt_def
           list_update_swap[of i j] map_update[symmetric])
    done
  
  
  lemma pcmpo_v_idx_refine[refine]: "
    (xs',xs) cdom_olist_rel cparam;
    (v',v)Id; vcdom cparam;
    (i',i)Id
    pcmpo_v_idx2 cparam xs' v' i'   bool_rel (WO.mop_cmpo_v_idx cparam xs v i)"  
    unfolding pcmpo_v_idx2_def
    apply simp
    apply refine_vcg
    apply (auto simp: cdom_olist_rel_alt in_br_conv less'_def ext_lt_def)
    done
    
  lemma pcmpo_idx_v_refine[refine]: "
    (xs',xs) cdom_olist_rel cparam;
    (v',v)Id; vcdom cparam;
    (i',i)Id
    pcmpo_idx_v2 cparam xs' i' v'   bool_rel (WO.mop_cmpo_idx_v cparam xs i v)"  
    unfolding pcmpo_idx_v2_def
    apply simp
    apply refine_vcg
    apply (auto simp: cdom_olist_rel_alt in_br_conv less'_def ext_lt_def)
    done
  
  lemma pcmp_idxs_refine[refine]: "
    (xs',xs) cdom_list_rel cparam;
    ij;
    (i',i)Id;
    (j',j)Id
    pcmp_idxs2 cparam xs' i' j'   bool_rel (WO.mop_cmp_idxs cparam xs i j)"  
    unfolding pcmp_idxs2_def pcmpo_idxs2_def
    apply simp
    apply refine_vcg
    apply (auto 0 3 simp: cdom_list_rel_alt in_br_conv less'_def ext_lt_def 
           list_update_swap[of i j] map_update[symmetric])
    using nth_mem by blast
    
  lemma pcmp_idx_v_refine[refine]: "
    (xs',xs) cdom_list_rel cparam;
    (i',i)Id;
    (v',v)Id; vcdom cparam
    pcmp_idx_v2 cparam xs' i' v'   bool_rel (WO.mop_cmp_idx_v cparam xs i v)"  
    unfolding pcmp_idx_v2_def pcmpo_idx_v2_def
    apply simp
    apply refine_vcg
    by (auto 0 3 simp: cdom_list_rel_alt in_br_conv map_update[symmetric] less'_def ext_lt_def)
    
  lemma pcmp_v_idx_refine[refine]: "
    (xs',xs) cdom_list_rel cparam;
    (v',v)Id; vcdom cparam;
    (j',j)Id
    pcmp_v_idx2 cparam xs' v' j'   bool_rel (WO.mop_cmp_v_idx cparam xs v j)"  
    unfolding pcmp_v_idx2_def pcmpo_v_idx2_def
    apply simp
    apply refine_vcg
    by (auto 0 3 simp: cdom_list_rel_alt in_br_conv map_update[symmetric] less'_def ext_lt_def intro: nth_mem)
    
end

(*
locale parameterized_weak_ordering = weak_ordering +
  fixes (*cparam :: 'cparam*)
        cdom :: "'cparam ⇒ 'a set"
    and pcmp :: "'cparam ⇒ 'a ⇒ 'a ⇒ bool nres"
  assumes pcmp_correct[refine_vcg]: "⟦ a∈cdom cparam; b∈cdom cparam⟧ 
    ⟹ pcmp cparam a b ≤ SPEC (λr. r ⟷ a<b)"
    
    
    
begin
  (* TODO: The refinements established here are just a special case of list-element refinement.
    We should use list-rel here! And generic parametricity lemmas from the operations!
  *)
  definition "cdom_list_rel cparam ≡ br id (λxs. set xs ⊆ cdom cparam)"
  definition "cdom_olist_rel cparam ≡ br id (λxs. ∀x. Some x ∈ set xs ⟶ x∈cdom cparam)"

  lemma olist_to_eo_conv_refine[refine]: 
    "(xs',xs)∈cdom_list_rel cparam ⟹ mop_to_eo_conv xs' ≤ ⇓(cdom_olist_rel cparam) (mop_to_eo_conv xs)"
    unfolding mop_to_eo_conv_def cdom_list_rel_def cdom_olist_rel_def
    by (auto simp: in_br_conv)
    
  lemma olist_to_wo_conv_refine[refine]: 
    "⟦(xs',xs)∈cdom_olist_rel cparam⟧ ⟹ mop_to_wo_conv xs' ≤ ⇓(cdom_list_rel cparam) (mop_to_wo_conv xs)"
    apply simp
    apply refine_rcg
    apply (auto simp: cdom_olist_rel_def cdom_list_rel_def in_br_conv)
    by (metis option.collapse)

    
  lemma olist_extract_refine[refine]: "⟦ (xs',xs)∈cdom_olist_rel cparam; (i',i)∈Id ⟧ 
    ⟹ mop_eo_extract xs' i' ≤ ⇓ ((br id (λx. x∈cdom cparam)) ×r cdom_olist_rel cparam) (mop_eo_extract xs i)"
    unfolding mop_eo_extract_alt
    apply refine_vcg
    apply (auto simp: cdom_olist_rel_def in_br_conv)
    by (metis in_set_upd_cases option.distinct(1))
    
  lemma listo_eo_set_refine[refine]: "⟦
    (xs',xs)∈cdom_olist_rel cparam;
    (i',i)∈Id;
    (v',v)∈Id; v∈cdom cparam
  ⟧ ⟹ mop_eo_set xs' i' v' ≤ ⇓ (cdom_olist_rel cparam) (mop_eo_set xs i v)"  
    apply simp
    apply refine_vcg
    apply (auto simp: cdom_olist_rel_def in_br_conv)
    by (metis in_set_upd_cases option.sel)

    
  definition "pcmpo_idxs2 cparam xs0 i j ≡ doN {
    ASSERT (i ≠ j);
    (vi,xs) ← mop_eo_extract xs0 i;
    (vj,xs) ← mop_eo_extract xs j;
    r ← pcmp cparam vi vj;
    xs ← mop_eo_set xs i vi; ― ‹TODO: Let's hope the optimizer eliminates these assignments. In mid-term, eliminate them during sepref phase!›
    xs ← mop_eo_set xs j vj;
    unborrow xs xs0;
    RETURN r
  }"
    
  definition "pcmpo_v_idx2 cparam xs0 v j ≡ doN {
    (vj,xs) ← mop_eo_extract xs0 j;
    r ← pcmp cparam v vj;
    xs ← mop_eo_set xs j vj;
    unborrow xs xs0;
    RETURN r
  }"

  definition "pcmpo_idx_v2 cparam xs0 i v ≡ doN {
    (vi,xs) ← mop_eo_extract xs0 i;
    r ← pcmp cparam vi v;
    xs ← mop_eo_set xs i vi;
    unborrow xs xs0;
    RETURN r
  }"

  definition "pcmp_idxs2 cparam xs0 i j ≡ doN {
    xs ← mop_to_eo_conv xs0;
    b ← pcmpo_idxs2 cparam xs i j;
    xs ← mop_to_wo_conv xs;
    unborrow xs xs0;
    RETURN b
  }"  
  
  lemma pcmpo_idxs_refine[refine]: "⟦
    (xs',xs)∈ cdom_olist_rel cparam;
    i≠j;
    (i',i)∈Id;
    (j',j)∈Id
  ⟧ ⟹ pcmpo_idxs2 cparam xs' i' j' ≤ ⇓ bool_rel (mop_cmpo_idxs xs i j)"  
    unfolding pcmpo_idxs2_def
    apply simp
    apply refine_vcg
    apply (auto simp: cdom_olist_rel_def in_br_conv 
           list_update_swap[of i j] map_update[symmetric])
    done
  
  
  lemma pcmpo_v_idx_refine[refine]: "⟦
    (xs',xs)∈ cdom_olist_rel cparam;
    (v',v)∈Id; v∈cdom cparam;
    (i',i)∈Id
  ⟧ ⟹ pcmpo_v_idx2 cparam xs' v' i' ≤ ⇓ bool_rel (mop_cmpo_v_idx xs v i)"  
    unfolding pcmpo_v_idx2_def
    apply simp
    apply refine_vcg
    apply (auto simp: cdom_olist_rel_def in_br_conv)
    done
    
  lemma pcmpo_idx_v_refine[refine]: "⟦
    (xs',xs)∈ cdom_olist_rel cparam;
    (v',v)∈Id; v∈cdom cparam;
    (i',i)∈Id
  ⟧ ⟹ pcmpo_idx_v2 cparam xs' i' v' ≤ ⇓ bool_rel (mop_cmpo_idx_v xs i v)"  
    unfolding pcmpo_idx_v2_def
    apply simp
    apply refine_vcg
    apply (auto simp: cdom_olist_rel_def in_br_conv)
    done
  
  lemma pcmp_idxs_refine[refine]: "⟦
    (xs',xs)∈ cdom_list_rel cparam;
    i≠j;
    (i',i)∈Id;
    (j',j)∈Id
  ⟧ ⟹ pcmp_idxs2 cparam xs' i' j' ≤ ⇓ bool_rel (mop_cmp_idxs xs i j)"  
    unfolding pcmp_idxs2_def pcmpo_idxs2_def
    apply simp
    apply refine_vcg
    apply (auto 0 3 simp: cdom_list_rel_def in_br_conv
           list_update_swap[of i j] map_update[symmetric])
    done
    
    
end
*)

text The compare function takes an external parameter.  

term mop_eo_set

locale random_access_iterator =
  fixes wo_assn :: "'a list  'oi::llvm_rep  assn"
    and eo_assn :: "'a option list  'oi  assn"
    and elem_assn :: "'a  'ai::llvm_rep  assn"
    and to_eo_impl :: "'oi  'oi llM"
    and to_wo_impl :: "'oi  'oi llM"
    and extract_impl :: "'oi  'size::len2 word  ('ai × 'oi) llM"
    and set_impl :: "'oi  'size word  'ai  'oi llM"
  assumes
          to_eo_hnr: "(to_eo_impl, mop_to_eo_conv)  [λ_. True]c wo_assnd  (eo_assn) [λai x. x=ai]c" 
      and to_wo_hnr: "(to_wo_impl, mop_to_wo_conv)  [λ_. True]c eo_assnd  (wo_assn) [λai x. x=ai]c"
      and eo_extract_hnr_aux: "(uncurry extract_impl, uncurry mop_eo_extract)  [λ_. True]c eo_assnd *a snat_assnk  (elem_assn ×a eo_assn) [λ(ai,_) (_,x). x=ai]c"
      and eo_set_hnr_aux: "(uncurry2 set_impl, uncurry2 mop_eo_set)  [λ_. True]c eo_assnd *a snat_assnk *a elem_assnd  eo_assn [λ((ai,_),_) x. x=ai]c"
      
  notes [[sepref_register_adhoc to_eo_impl to_wo_impl extract_impl set_impl]]
begin

context
  notes [fcomp_norm_simps] = option_rel_id_simp list_rel_id prod_rel_id_simp hrr_comp_id_conv
begin  

  private method rl_mono = 
    (rule hfref_cons; 
      clarsimp_all; 
      clarsimp_all simp: sep_algebra_simps entails_lift_extract_simps)

  lemma eo_extract_nodep_hnr_aux: 
    "(uncurry extract_impl, uncurry mop_eo_extract)  eo_assnd *a snat_assnk a elem_assn ×a eo_assn"
    using eo_extract_hnr_aux 
    by rl_mono

  lemma eo_set_nodep_hnr_aux: 
    "(uncurry2 set_impl, uncurry2 mop_eo_set)  eo_assnd *a snat_assnk *a elem_assnd a eo_assn"
    using eo_set_hnr_aux
    by rl_mono
    
  lemmas [sepref_fr_rules] = to_eo_hnr to_wo_hnr
    
  lemma to_eo_nodep_hnr: "(to_eo_impl, mop_to_eo_conv)  wo_assnd a eo_assn"
    using to_eo_hnr
    by rl_mono

  lemma to_wo_nodep_hnr: "(to_wo_impl, mop_to_wo_conv)  eo_assnd a wo_assn"
    using to_wo_hnr
    by rl_mono
  
        
    
  sepref_decl_impl (ismop) eo_extract: eo_extract_hnr_aux .
  sepref_decl_impl (ismop,no_register) eo_extract_nodep: eo_extract_nodep_hnr_aux .
  
  sepref_decl_impl (ismop) eo_set: eo_set_hnr_aux .
  sepref_decl_impl (ismop,no_register) eo_set_nodep: eo_set_nodep_hnr_aux .
        
    
  lemmas eo_hnr_dep = eo_extract_dep_hnr eo_extract_hnr_mop eo_set_hnr eo_set_hnr_mop 
    to_eo_hnr to_wo_hnr
  lemmas eo_hnr_nodep = eo_extract_nodep_hnr eo_extract_nodep_hnr_mop eo_set_nodep_hnr eo_set_nodep_hnr_mop
    to_eo_nodep_hnr to_wo_nodep_hnr
    
    
  sepref_definition swap_eo_impl_aux is "uncurry2 swap_eo" 
    :: "[λ_. True]c wo_assnd *a (snat_assn' TYPE('size))k *a (snat_assn' TYPE('size))k  wo_assn [λ((xsi,_),_) r. r=xsi]c"
    unfolding swap_eo_def
    by sepref
    
end    
    
concrete_definition (in -) swap_eo_impl[llvm_inline] is random_access_iterator.swap_eo_impl_aux_def
  
context
  notes [fcomp_norm_simps] = option_rel_id_simp list_rel_id prod_rel_id_simp hrr_comp_id_conv
begin  
  sepref_decl_impl (ismop) swap_eo_impl_aux.refine[FCOMP swap_eo_refine, unfolded swap_eo_impl.refine[OF random_access_iterator_axioms]]
     uses mop_list_swap.fref[where A=Id] .

end     
       
(*  sepref_decl_impl (ismop) swap_eo_impl.refine[FCOMP swap_eo_refine] uses mop_list_swap.fref[where A=Id] .*)
    
    
end


definition "refines_param_relp P A R Rimpl  (uncurry2 Rimpl,uncurry2 R)  Pk*aAk*aAkabool1_assn"

lemma gen_refines_param_relpD: "GEN_ALGO Rimpl (refines_param_relp P A R) 
   (uncurry2 Rimpl,uncurry2 R)  Pk*aAk*aAkabool1_assn"
  by (simp add: GEN_ALGO_def refines_param_relp_def)


locale parameterized_sort_impl_context = random_access_iterator + parameterized_weak_ordering + 
  constrains "cdom" :: "'cparam  _" and pless :: _ and pcmp :: "'cparam  'a  'a  bool nres"
    and elem_assn :: "'a  'ai::llvm_rep  assn"
    and wo_assn :: "'a list  'oi::llvm_rep  assn"
    and eo_assn :: "'a option list  'oi  assn"
    and elem_assn :: "'a  'ai::llvm_rep  assn"
    and to_eo_impl :: "'oi  'oi llM"
    and to_wo_impl :: "'oi  'oi llM"
    and extract_impl :: "'oi  size_t word  ('ai × 'oi) llM"
    and set_impl :: "'oi  size_t word  'ai  'oi llM"
    
  fixes pcmp_impl :: "'cparami  'ai  'ai  1 word llM"
    and cparam_assn :: "'cparam  'cparami  assn"
    
  assumes lt_impl: "GEN_ALGO pcmp_impl (refines_param_relp cparam_assn elem_assn pcmp)"
  notes pcmp_aux_hnr[sepref_fr_rules] = gen_refines_param_relpD[OF lt_impl]
  
  notes [[sepref_register_adhoc "pcmp"]]
  
begin

  thm pcmp_aux_hnr
  
  term pcmpo_v_idx2
  
  sepref_register pcmpo_idxs2 pcmpo_v_idx2 pcmpo_idx_v2 pcmp_idxs2

  sepref_def pcmpo_idxs_impl [llvm_inline] is "uncurry3 (PR_CONST pcmpo_idxs2)" :: 
    "cparam_assnk *a eo_assnk *a size_assnk *a size_assnk a bool1_assn"
    unfolding pcmpo_idxs2_def PR_CONST_def
    supply [sepref_fr_rules] = eo_hnr_dep
    by sepref
    
    
  sepref_def pcmpo_v_idx_impl [llvm_inline] is "uncurry3 (PR_CONST pcmpo_v_idx2)" :: 
    "cparam_assnk *a eo_assnk *a elem_assnk *a size_assnk a bool1_assn"
    unfolding pcmpo_v_idx2_def PR_CONST_def
    supply [sepref_fr_rules] = eo_hnr_dep
    by sepref

  sepref_def pcmpo_idx_v_impl [llvm_inline] is "uncurry3 (PR_CONST pcmpo_idx_v2)" :: 
    "cparam_assnk *a eo_assnk *a size_assnk *a elem_assnk a bool1_assn"
    unfolding pcmpo_idx_v2_def PR_CONST_def
    supply [sepref_fr_rules] = eo_hnr_dep
    by sepref

  sepref_def pcmp_idxs_impl [llvm_inline] is "uncurry3 (PR_CONST pcmp_idxs2)" :: 
    "cparam_assnk *a wo_assnk *a size_assnk *a size_assnk a bool1_assn"
    unfolding pcmp_idxs2_def PR_CONST_def
    supply [sepref_fr_rules] = eo_hnr_dep
    by sepref


  sepref_def pcmp_v_idx_impl [llvm_inline] is "uncurry3 (PR_CONST pcmp_v_idx2)" :: 
    "cparam_assnk *a wo_assnk *a elem_assnk *a size_assnk a bool1_assn"
    unfolding pcmp_v_idx2_def PR_CONST_def
    supply [sepref_fr_rules] = eo_hnr_dep
    by sepref

  sepref_def pcmp_idx_v_impl [llvm_inline] is "uncurry3 (PR_CONST pcmp_idx_v2)" :: 
    "cparam_assnk *a wo_assnk *a size_assnk *a elem_assnk a bool1_assn"
    unfolding pcmp_idx_v2_def PR_CONST_def
    supply [sepref_fr_rules] = eo_hnr_dep
    by sepref
    
    
end  

subsection Additional Setup for Code Generation

(*
  The LLVM code generator cannot handle unit-valued variables (they do not exist in LLVM).
  However, they occur for some higher-order constructs, like with-split or with-idxs, when
  only the lists are modified, but the returned result is unit.
  
  The following setup is an ad-hoc solution to set up sepref to optimize those away.
  
  TODO: Ultimately, we could do that in Isabelle-LLVMs preprocessor!
*)


(* TODO: Move *)
definition "map_res f m  doM { xm; Mreturn (f x) }"

lemma map_res_return[sepref_opt_simps2]: "map_res φ (Mreturn x) = Mreturn (φ x)"
  unfolding map_res_def by auto

lemma map_res_bind[sepref_opt_simps2]: "map_res φ (doM {xm; f x}) = doM {xm; map_res φ (f x)}"  
  unfolding map_res_def by auto

lemma map_res_prod_case[sepref_opt_simps2]: "map_res φ (case p of (a,b)  f a b) = (case p of (a,b)  map_res φ (f a b))" 
  by (rule prod.case_distrib)

lemmas [sepref_opt_simps2] = prod.sel  
  
  
definition [llvm_inline]: "ars_with_split_nores i a m  doM {
  (a1,a2)  ars_split i a;
  (_,_)  m a1 a2;
  ars_join a1 a2;
  Mreturn a
}"


lemma ars_with_split_bind_unit[sepref_opt_simps2]: "doM {
  (uu::unit,xs)  ars_with_split i a m;
  mm uu xs
} = doM {
  xsars_with_split_nores i a (λxs1 xs2. map_res snd (m xs1 xs2));
  mm () xs
}"
  unfolding ars_with_split_def ars_with_split_nores_def map_res_def 
  apply pw
  done
  
definition [llvm_inline]: "oidxs_with_idxs'_nores p m  doM { (_,_)  m p p; Mreturn p }"

lemma oidxs_with_idxs'_bind_unit[sepref_opt_simps2]: 
  " doM { (uu::unit,xs)  oidxs_with_idxs' p m; mm uu xs }
  = doM { xs  oidxs_with_idxs'_nores p (λxs1 xs2. map_res snd (m xs1 xs2)); mm () xs }"
  unfolding oidxs_with_idxs'_def oidxs_with_idxs'_nores_def map_res_def
  by simp
    
    
  
    
  
lemma sepref_adhoc_opt_case_add_const[sepref_opt_simps]:
  "(case case x of (a1c, a2c)  (c, a1c, a2c) of (uu, a, b)  m uu a b) = (case x of (a,b)  m c a b)" by simp

  
  
end