Theory WB_More_Sepref_LLVM

theory WB_More_Sepref_LLVM
  imports
    Isabelle_LLVM.IICF
    WB_More_Refinement
begin


lemma refine_ASSERT_move_to_pre:
  assumes (uncurry g, uncurry h)  [uncurry P]a A *a B  x_assn
  shows
  (uncurry g, uncurry (λN C. do {ASSERT (P N C); h N C}))
     A *a B a x_assn
  apply sepref_to_hoare
  apply vcg
  apply (subst POSTCOND_def hn_ctxt_def sep_conj_empty' pure_true_conv EXTRACT_def)+
  apply (auto simp: nofail_ASSERT_bind)
  apply (rule assms[to_hnr, simplified, unfolded hn_ctxt_def hn_refine_def htriple_def
    sep_conj_empty' pure_true_conv sep.add_assoc, rule_format])
  apply auto
  done

lemma refine_ASSERT_move_to_pre0:
  assumes (g, h)  [P]a A   x_assn
  shows
  (g, (λN. do {ASSERT (P N); h N}))
     A a x_assn
  apply sepref_to_hoare
  apply vcg
  apply (subst POSTCOND_def hn_ctxt_def sep_conj_empty' pure_true_conv EXTRACT_def)+
  apply (auto simp: nofail_ASSERT_bind)
  apply (rule assms[to_hnr, simplified, unfolded hn_ctxt_def hn_refine_def htriple_def
    sep_conj_empty' pure_true_conv sep.add_assoc, rule_format])
  apply auto
  done

lemma refine_ASSERT_move_to_pre2:
  assumes (uncurry2 g, uncurry2 h)  [uncurry2 P]a A *a B *a C  x_assn
  shows
  (uncurry2 g, uncurry2 (λN C D. do {ASSERT (P N C D); h N C D}))
     A *a B *a C a x_assn
  apply sepref_to_hoare
  apply vcg
  apply (subst POSTCOND_def hn_ctxt_def sep_conj_empty' pure_true_conv EXTRACT_def)+
  apply (auto simp: nofail_ASSERT_bind)
  apply (rule assms[to_hnr, simplified, unfolded hn_ctxt_def hn_refine_def htriple_def
    sep_conj_empty' pure_true_conv sep.add_assoc, rule_format])
  apply auto
  done
end