Theory Ordered_Pairing_Heap_List2

(* Original Author: Tobias Nipkow
   Modified in order to parametrize over the order
*)

section Pairing Heap According to Oksaki (Modified)

theory Ordered_Pairing_Heap_List2
imports
  "HOL-Library.Multiset"
  "HOL-Data_Structures.Priority_Queue_Specs"
begin

chapter Pairing heaps


text 
  To make it useful we simply parametrized the formalization by the order. We ruse the formalization
  of Tobias Nipkow, but make it useful for refinement by separating node and score. We also need
  to add way to increase the score.

subsection Definitions

text This version of pairing heaps is a modified version
of the one by Okasaki \cite{Okasaki} that avoids structural invariants.

datatype ('b, 'a) hp = Hp (node: 'b) (score: 'a) (hps: "('b, 'a) hp list")

type_synonym ('a, 'b) heap = "('a, 'b) hp option"

hide_const (open) insert

fun get_min  :: "('b, 'a) heap  'a" where
"get_min (Some(Hp _ x _)) = x"

text This is basically the useful version:
fun get_min2  :: "('b, 'a) heap  'b" where
"get_min2 (Some(Hp n x _)) = n"


locale pairing_heap_assms =
  fixes lt :: 'a  'a  bool and
    le :: 'a  'a  bool
begin

fun link :: "('b, 'a) hp  ('b, 'a) hp  ('b, 'a) hp" where
"link (Hp m x lx) (Hp n y ly) = 
    (if lt x y then Hp m x (Hp n y ly # lx) else Hp n y (Hp m x lx # ly))"

fun merge :: "('b, 'a) heap  ('b, 'a) heap  ('b, 'a) heap" where
"merge h None = h" |
"merge None h = h" |
"merge (Some h1) (Some h2) = Some(link h1 h2)"

lemma merge_None[simp]: "merge None h = h"
by(cases h)auto

fun insert :: "'b  ('a)  ('b, 'a) heap  ('b, 'a) heap" where
"insert n x None = Some(Hp n x [])" |
"insert n x (Some h) = Some(link (Hp n x []) h)"

fun pass1 :: "('b, 'a) hp list  ('b, 'a) hp list" where
  "pass1 [] = []"
| "pass1 [h] = [h]" 
| "pass1 (h1#h2#hs) = link h1 h2 # pass1 hs"

fun pass2 :: "('b, 'a) hp list  ('b, 'a) heap" where
  "pass2 [] = None"
| "pass2 (h#hs) = Some(case pass2 hs of None  h | Some h'  link h h')"

fun merge_pairs :: "('b, 'a) hp list  ('b, 'a) heap" where
  "merge_pairs [] = None"
| "merge_pairs [h] = Some h" 
| "merge_pairs (h1 # h2 # hs) =
  Some(let h12 = link h1 h2 in case merge_pairs hs of None  h12 | Some h  link h12 h)"

fun del_min :: "('b, 'a) heap  ('b, 'a) heap" where
  "del_min None = None"
| "del_min (Some(Hp _ x hs)) = pass2 (pass1 hs)"

fun (in -)remove_key_children :: 'b  ('b, 'a) hp list  ('b, 'a) hp list where
  remove_key_children k [] = [] |
  remove_key_children k ((Hp x n c) # xs) =
  (if k = x then remove_key_children k xs else ((Hp x n (remove_key_children k c)) # remove_key_children k xs))

fun (in -)remove_key :: 'b  ('b, 'a) hp  ('b, 'a) heap where
  remove_key k (Hp x n c) = (if x = k then None else Some (Hp x n (remove_key_children k c)))

fun (in -)find_key_children :: 'b  ('b, 'a) hp list  ('b, 'a) heap where
  find_key_children k [] = None |
  find_key_children k ((Hp x n c) # xs) =
  (if k = x then Some (Hp x n c) else
  (case find_key_children k c of Some a  Some a | _  find_key_children k xs))


fun (in -)find_key :: 'b  ('b, 'a) hp  ('b, 'a) heap where
  find_key k (Hp x n c) =
  (if k = x then Some (Hp x n c) else find_key_children k c)

definition decrease_key :: 'b  'a  ('b, 'a) hp  ('b, 'a) heap where
  decrease_key k s hp = (case find_key k hp of None  Some hp 
    | (Some (Hp _ _ c)) 
      (case remove_key k hp of
          None  Some (Hp k s c)
        | Some x   merge_pairs [Hp k s c, x]))


subsection Correctness Proofs

text An optimization:

lemma pass12_merge_pairs: "pass2 (pass1 hs) = merge_pairs hs"
by (induction hs rule: merge_pairs.induct) (auto split: option.split)

declare pass12_merge_pairs[code_unfold]


subsubsection Invariants

fun (in -) set_hp :: ('b, 'a) hp  'a set where
  set_hp (Hp _ x hs) = ({x}  (set_hp ` set hs))


fun php :: "('b, 'a) hp  bool" where
"php (Hp _ x hs) = (h  set hs. (y  set_hp h. le x y)  php h)"

definition invar :: "('b, 'a) heap  bool" where
"invar ho = (case ho of None  True | Some h  php h)"
end

locale pairing_heap = pairing_heap_assms lt le
  for lt :: 'a  'a  bool and
    le :: 'a  'a  bool +
  assumes le: a b. le a b  a = b  lt a b and
    trans: transp le and
    transt: transp lt and
    totalt: totalp lt
begin

lemma php_link: "php h1  php h2  php (link h1 h2)"
  apply (induction h1 h2 rule: link.induct)
  apply (auto 4 3 simp: le transt dest: transpD[OF transt] totalpD[OF totalt])
  by (metis totalpD totalt transpD transt)

lemma invar_None[simp]: invar None
  by (auto simp: invar_def)

lemma invar_merge:
  " invar h1; invar h2   invar (merge h1 h2)"
by (auto simp: php_link invar_def split: option.splits)

lemma invar_insert: "invar h  invar (insert n x h)"
by (auto simp: php_link invar_def split: option.splits)

lemma invar_pass1: "h  set hs. php h  h  set (pass1 hs). php h"
by(induction hs rule: pass1.induct) (auto simp: php_link)

lemma invar_pass2: "h  set hs. php h  invar (pass2 hs)"
by (induction hs)(auto simp: php_link invar_def split: option.splits)

lemma invar_Some: "invar(Some h) = php h"
by(simp add: invar_def)

lemma invar_del_min: "invar h  invar (del_min h)"
by(induction h rule: del_min.induct)
  (auto simp: invar_Some intro!: invar_pass1 invar_pass2)

lemma (in -)in_remove_key_children_in_childrenD: h  set (remove_key_children k c)  xa  set_hp h  xa  (set_hp ` set c)
  by (induction k c arbitrary: h rule: remove_key_children.induct)
   (auto split: if_splits)

lemma php_remove_key_children: hset h1. php h   h  set (remove_key_children k h1)  php h
  by (induction k h1 arbitrary: h rule: remove_key_children.induct; simp)
   (force simp: decrease_key_def invar_def split: option.splits hp.splits if_splits
    dest: in_remove_key_children_in_childrenD)

lemma php_remove_key: php h1   invar (remove_key k h1)
  by (induction k h1 rule: remove_key.induct)
   (auto simp: decrease_key_def invar_def split: option.splits hp.splits
    dest: in_remove_key_children_in_childrenD
    intro: php_remove_key_children)

lemma invar_find_key_children: hset c. php h   invar (find_key_children k c)
  by (induction k c rule: find_key_children.induct)
   (auto simp: invar_def split: option.splits)

lemma invar_find_key: php h1  invar (find_key k h1)
  by (induction k h1 rule: find_key.induct)
   (use invar_find_key_children[of _ ] in force simp: invar_def)

lemma (in -)remove_key_None_iff: remove_key k h1 = None  node h1 = k
  by (cases (k,h1) rule: remove_key.cases) auto

lemma php_decrease_key:
  php h1   (case (find_key k h1) of None  True | Some a  le s (score a))  invar (decrease_key k s h1)
  using invar_find_key[of h1 k, simplified] remove_key_None_iff[of k h1] php_remove_key[of h1 k]
  apply (auto simp: decrease_key_def invar_def php_remove_key php_link
    dest: transpD[OF transt, of _ score (the (find_key k h1))] totalpD[OF totalt]
    split: option.splits hp.splits)
  apply (meson le local.trans transpE)
  apply (rule php_link)
  apply (auto simp: decrease_key_def invar_def php_remove_key php_link
    split: option.splits hp.splits
    dest: transpD[OF transt, of _ score (the (find_key k h1))] totalpD[OF totalt])
  apply (meson le local.trans transpE)
  done


subsubsection Functional Correctness

fun (in -) mset_hp :: "('b, 'a) hp 'a multiset" where
"mset_hp (Hp _ x hs) = {#x#} + sum_mset(mset(map mset_hp hs))"

definition (in -) mset_heap :: "('b, 'a) heap 'a multiset" where
"mset_heap ho = (case ho of None  {#} | Some h  mset_hp h)"

lemma (in -) set_mset_mset_hp: "set_mset (mset_hp h) = set_hp h"
by(induction h) auto

lemma (in -) mset_hp_empty[simp]: "mset_hp hp  {#}"
by (cases hp) auto

lemma (in -) mset_heap_Some: "mset_heap(Some hp) = mset_hp hp"
by(simp add: mset_heap_def)

lemma (in -) mset_heap_empty: "mset_heap h = {#}  h = None"
by (cases h) (auto simp add: mset_heap_def)

lemma (in -)get_min_in:
  "h  None  get_min h  set_hp(the h)"
by(induction rule: get_min.induct)(auto)

lemma get_min_min: " h  None; invar h; x  set_hp(the h)   le (get_min h) x"
  by (induction h rule: get_min.induct) (auto simp: invar_def le)


lemma (in pairing_heap_assms) mset_link: "mset_hp (link h1 h2) = mset_hp h1 + mset_hp h2"
by(induction h1 h2 rule: link.induct)(auto simp: add_ac)

lemma (in pairing_heap_assms) mset_merge: "mset_heap (merge h1 h2) = mset_heap h1 + mset_heap h2"
by (induction h1 h2 rule: merge.induct)
   (auto simp add: mset_heap_def mset_link ac_simps)

lemma (in pairing_heap_assms) mset_insert: "mset_heap (insert n a h) = {#a#} + mset_heap h"
by(cases h) (auto simp add: mset_link mset_heap_def insert_def)

lemma (in pairing_heap_assms) mset_merge_pairs: "mset_heap (merge_pairs hs) = sum_mset(image_mset mset_hp (mset hs))"
by(induction hs rule: merge_pairs.induct)
  (auto simp: mset_merge mset_link mset_heap_def Let_def split: option.split)

lemma (in pairing_heap_assms) mset_del_min: "h  None 
  mset_heap (del_min h) = mset_heap h - {#get_min h#}"
by(induction h rule: del_min.induct)
  (auto simp: mset_heap_Some pass12_merge_pairs mset_merge_pairs)

text Some more lemmas to make the heaps easier to use:
lemma invar_merge_pairs:
  "hset h1. invar (Some h)  invar (merge_pairs h1)"
  by (metis invar_Some invar_pass1 invar_pass2 pass12_merge_pairs)

end

context pairing_heap_assms
begin

lemma merge_pairs_None_iff [iff]: "merge_pairs hs = None  hs = []"
  by (cases hs rule: merge_pairs.cases) auto


end



text Last step: prove all axioms of the priority queue specification with the right sort:


locale pairing_heap2 =
  fixes ltype :: 'a::linorder itself
begin

sublocale pairing_heap where
    lt =(<) :: 'a  'a  bool and le = (≤)
  by unfold_locales
     (auto simp: antisymp_def totalp_on_def)

interpretation pairing: Priority_Queue_Merge
where empty = None and is_empty = "λh. h = None"
and merge = merge and insert = insert default
and del_min = del_min and get_min = get_min
and invar = invar and mset = mset_heap
proof(standard, goal_cases)
  case 1 show ?case by(simp add: mset_heap_def)
next
  case (2 q) thus ?case by(auto simp add: mset_heap_def split: option.split)
next
  case 3 show ?case by(simp add: mset_insert mset_merge)
next
  case 4 thus ?case by(simp add: mset_del_min mset_heap_empty)
next
  case (5 q) thus ?case using get_min_in[of q]
    by(auto simp add: eq_Min_iff get_min_min mset_heap_empty mset_heap_Some set_mset_mset_hp)
next
  case 6 thus ?case by (simp add: invar_def)
next
  case 7 thus ?case by(rule invar_insert)
next
  case 8 thus ?case by (simp add: invar_del_min)
next
  case 9 thus ?case by (simp add: mset_merge)
next
  case 10 thus ?case by (simp add: invar_merge)
qed

end

end