Theory CDCL.CDCL_W_Level
theory CDCL_W_Level
imports
Entailment_Definition.Partial_Annotated_Herbrand_Interpretation
begin
subsubsection ‹Level of literals and clauses›
text ‹Getting the level of a variable, implies that the list has to be reversed. Here is the
function ∗‹after› reversing.›
definition count_decided :: "('v, 'b, 'm) annotated_lit list ⇒ nat" where
"count_decided l = length (filter is_decided l)"
definition get_level :: "('v, 'm) ann_lits ⇒ 'v literal ⇒ nat" where
"get_level S L = length (filter is_decided (dropWhile (λS. atm_of (lit_of S) ≠ atm_of L) S))"
lemma get_level_uminus[simp]: ‹get_level M (-L) = get_level M L›
by (auto simp: get_level_def)
lemma get_level_Neg_Pos: ‹get_level M (Neg L) = get_level M (Pos L)›
unfolding get_level_def by auto
lemma count_decided_0_iff:
‹count_decided M = 0 ⟷ (∀L ∈ set M. ¬is_decided L)›
by (auto simp: count_decided_def filter_empty_conv)
lemma
shows
count_decided_nil[simp]: ‹count_decided [] = 0› and
count_decided_cons[simp]:
‹count_decided (a # M) = (if is_decided a then Suc (count_decided M) else count_decided M)› and
count_decided_append[simp]:
‹count_decided (M @ M') = count_decided M + count_decided M'›
by (auto simp: count_decided_def)
lemma atm_of_notin_get_level_eq_0[simp]:
assumes "undefined_lit M L"
shows "get_level M L = 0"
using assms by (induct M rule: ann_lit_list_induct) (auto simp: get_level_def defined_lit_map)
lemma get_level_ge_0_atm_of_in:
assumes "get_level M L > n"
shows "atm_of L ∈ atm_of ` lits_of_l M"
using atm_of_notin_get_level_eq_0[of M L] assms unfolding defined_lit_map
by (auto simp: lits_of_def simp del: atm_of_notin_get_level_eq_0)
text ‹In @{const get_level} (resp. @{const get_level}), the beginning (resp. the end) can be
skipped if the literal is not in the beginning (resp. the end).›
lemma get_level_skip[simp]:
assumes "undefined_lit M L"
shows "get_level (M @ M') L = get_level M' L"
using assms by (induct M rule: ann_lit_list_induct) (auto simp: get_level_def defined_lit_map)
text ‹If the literal is at the beginning, then the end can be skipped›
lemma get_level_skip_end[simp]:
assumes "defined_lit M L"
shows "get_level (M @ M') L = get_level M L + count_decided M'"
using assms by (induct M' rule: ann_lit_list_induct)
(auto simp: lits_of_def get_level_def count_decided_def defined_lit_map)
lemma get_level_skip_beginning[simp]:
assumes "atm_of L' ≠ atm_of (lit_of K)"
shows "get_level (K # M) L' = get_level M L'"
using assms by (auto simp: get_level_def)
lemma get_level_take_beginning[simp]:
assumes "atm_of L' = atm_of (lit_of K)"
shows "get_level (K # M) L' = count_decided (K # M)"
using assms by (auto simp: get_level_def count_decided_def)
lemma get_level_cons_if:
‹get_level (K # M) L' =
(if atm_of L' = atm_of (lit_of K) then count_decided (K # M) else get_level M L')›
by auto
lemma get_level_skip_beginning_not_decided[simp]:
assumes "undefined_lit S L"
and "∀s∈set S. ¬is_decided s"
shows "get_level (M @ S) L = get_level M L"
using assms apply (induction S rule: ann_lit_list_induct)
apply auto[2]
apply (case_tac "atm_of L ∈ atm_of ` lits_of_l M")
apply (auto simp: image_iff lits_of_def filter_empty_conv count_decided_def defined_lit_map
dest: set_dropWhileD)
done
lemma get_level_skip_all_not_decided[simp]:
fixes M
assumes "∀m∈set M. ¬ is_decided m"
shows "get_level M L = 0"
using assms by (auto simp: filter_empty_conv get_level_def dest: set_dropWhileD)
text ‹the @{term "{#0#}"} is there to ensures that the set is not empty.›
definition get_maximum_level :: "('a, 'b) ann_lits ⇒ 'a clause ⇒ nat"
where
"get_maximum_level M D = Max_mset ({#0#} + image_mset (get_level M) D)"
lemma get_maximum_level_ge_get_level:
"L ∈# D ⟹ get_maximum_level M D ≥ get_level M L"
unfolding get_maximum_level_def by auto
lemma get_maximum_level_empty[simp]:
"get_maximum_level M {#} = 0"
unfolding get_maximum_level_def by auto
lemma get_maximum_level_exists_lit_of_max_level:
"D ≠ {#} ⟹ ∃L∈# D. get_level M L = get_maximum_level M D"
unfolding get_maximum_level_def
apply (induct D)
apply simp
by (rename_tac x D, case_tac "D = {#}") (auto simp add: max_def)
lemma get_maximum_level_empty_list[simp]:
"get_maximum_level [] D = 0"
unfolding get_maximum_level_def by (simp add: image_constant_conv)
lemma get_maximum_level_add_mset:
"get_maximum_level M (add_mset L D) = max (get_level M L) (get_maximum_level M D)"
unfolding get_maximum_level_def by simp
lemma get_level_append_if:
‹get_level (M @ M') L = (if defined_lit M L then get_level M L + count_decided M'
else get_level M' L)›
by (auto)
text ‹Do mot activate as [simp] rules. It breaks everything.›
lemma get_maximum_level_single:
‹get_maximum_level M {#x#} = get_level M x›
by (auto simp: get_maximum_level_add_mset)
lemma get_maximum_level_plus:
"get_maximum_level M (D + D') = max (get_maximum_level M D) (get_maximum_level M D')"
by (induction D) (simp_all add: get_maximum_level_add_mset)
lemma get_maximum_level_cong:
assumes ‹∀L ∈# D. get_level M L = get_level M' L›
shows ‹get_maximum_level M D = get_maximum_level M' D›
using assms by (induction D) (auto simp: get_maximum_level_add_mset)
lemma get_maximum_level_exists_lit:
assumes n: "n > 0"
and max: "get_maximum_level M D = n"
shows "∃L ∈#D. get_level M L = n"
proof -
have f: "finite (insert 0 ((λL. get_level M L) ` set_mset D))" by auto
then have "n ∈ ((λL. get_level M L) ` set_mset D)"
using n max Max_in[OF f] unfolding get_maximum_level_def by simp
then show "∃L ∈# D. get_level M L = n" by auto
qed
lemma get_maximum_level_skip_first[simp]:
assumes "atm_of (lit_of K) ∉ atms_of D"
shows "get_maximum_level (K # M) D = get_maximum_level M D"
using assms unfolding get_maximum_level_def atms_of_def
atm_of_in_atm_of_set_iff_in_set_or_uminus_in_set
by (smt atm_of_in_atm_of_set_in_uminus get_level_skip_beginning image_iff lit_of.simps(2)
multiset.map_cong0)
lemma get_maximum_level_skip_beginning:
assumes DH: "∀x ∈# D. undefined_lit c x"
shows "get_maximum_level (c @ H) D = get_maximum_level H D"
proof -
have "(get_level (c @ H)) ` set_mset D = (get_level H) ` set_mset D"
apply (rule image_cong)
apply (simp; fail)
using DH unfolding atms_of_def by auto
then show ?thesis using DH unfolding get_maximum_level_def by auto
qed
lemma get_maximum_level_D_single_propagated:
"get_maximum_level [Propagated x21 x22] D = 0"
unfolding get_maximum_level_def by (simp add: image_constant_conv)
lemma get_maximum_level_union_mset:
"get_maximum_level M (A ∪# B) = get_maximum_level M (A + B)"
unfolding get_maximum_level_def by (auto simp: image_Un)
lemma count_decided_rev[simp]:
"count_decided (rev M) = count_decided M"
by (auto simp: count_decided_def rev_filter[symmetric])
lemma count_decided_ge_get_level:
"count_decided M ≥ get_level M L"
by (induct M rule: ann_lit_list_induct)
(auto simp add: count_decided_def le_max_iff_disj get_level_def)
lemma count_decided_ge_get_maximum_level:
"count_decided M ≥ get_maximum_level M D"
using get_maximum_level_exists_lit_of_max_level unfolding Bex_def
by (metis get_maximum_level_empty count_decided_ge_get_level le0)
lemma get_level_last_decided_ge:
‹defined_lit (c @ [Decided K]) L' ⟹ 0 < get_level (c @ [Decided K]) L'›
by (induction c) (auto simp: defined_lit_cons get_level_cons_if)
lemma get_maximum_level_mono:
‹D ⊆# D' ⟹ get_maximum_level M D ≤ get_maximum_level M D'›
unfolding get_maximum_level_def by auto
fun get_all_mark_of_propagated where
"get_all_mark_of_propagated [] = []" |
"get_all_mark_of_propagated (Decided _ # L) = get_all_mark_of_propagated L" |
"get_all_mark_of_propagated (Propagated _ mark # L) = mark # get_all_mark_of_propagated L"
lemma get_all_mark_of_propagated_append[simp]:
"get_all_mark_of_propagated (A @ B) = get_all_mark_of_propagated A @ get_all_mark_of_propagated B"
by (induct A rule: ann_lit_list_induct) auto
lemma get_all_mark_of_propagated_tl_proped:
‹M ≠ [] ⟹ is_proped (hd M) ⟹ get_all_mark_of_propagated (tl M) = tl (get_all_mark_of_propagated M)›
by (induction M rule: ann_lit_list_induct) auto
subsubsection ‹Properties about the levels›
lemma atm_lit_of_set_lits_of_l:
"(λl. atm_of (lit_of l)) ` set xs = atm_of ` lits_of_l xs"
unfolding lits_of_def by auto
text ‹Before I try yet another time to prove that I can remove the assumption \<^term>‹no_dup M›:
It does not work. The problem is that \<^term>‹get_level M K = Suc i› peaks the first occurrence
of the literal \<^term>‹K›. This is for example an issue for the trail \<^term>‹replicate n (Decided K)›.
An explicit counter-example is below.
›
lemma le_count_decided_decomp:
assumes ‹no_dup M›
shows ‹i < count_decided M ⟷ (∃c K c'. M = c @ Decided K # c' ∧ get_level M K = Suc i)›
(is "?A ⟷ ?B")
proof
assume ?B
then obtain c K c' where
"M = c @ Decided K # c'" and "get_level M K = Suc i"
by blast
then show ?A using count_decided_ge_get_level[of M K] by auto
next
assume ?A
then show ?B
using ‹no_dup M›
proof (induction M rule: ann_lit_list_induct)
case Nil
then show ?case by simp
next
case (Decided L M) note IH = this(1) and i = this(2) and n_d = this(3)
then have n_d_M: "no_dup M" by simp
show ?case
proof (cases "i < count_decided M")
case True
then obtain c K c' where
M: "M = c @ Decided K # c'" and lev_K: "get_level M K = Suc i"
using IH n_d_M by blast
show ?thesis
apply (rule exI[of _ "Decided L # c"])
apply (rule exI[of _ K])
apply (rule exI[of _ c'])
using lev_K n_d unfolding M by (auto simp: get_level_def defined_lit_map)
next
case False
show ?thesis
apply (rule exI[of _ "[]"])
apply (rule exI[of _ L])
apply (rule exI[of _ M])
using False i by (auto simp: get_level_def count_decided_def)
qed
next
case (Propagated L mark' M) note i = this(2) and IH = this(1) and n_d = this(3)
then obtain c K c' where
M: "M = c @ Decided K # c'" and lev_K: "get_level M K = Suc i"
by (auto simp: count_decided_def)
show ?case
apply (rule exI[of _ "Propagated L mark' # c"])
apply (rule exI[of _ "K"])
apply (rule exI[of _ "c'"])
using lev_K n_d unfolding M by (auto simp: atm_lit_of_set_lits_of_l get_level_def
defined_lit_map)
qed
qed
text ‹The counter-example if the assumption \<^term>‹no_dup M›.›
lemma
fixes K
defines ‹M ≡ replicate 3 (Decided K)›
defines ‹i ≡ 1›
assumes ‹i < count_decided M ⟷ (∃c K c'. M = c @ Decided K # c' ∧ get_level M K = Suc i)›
shows False
using assms(3-) unfolding M_def i_def numeral_3_eq_3
by (auto simp: Cons_eq_append_conv)
lemma Suc_count_decided_gt_get_level:
‹get_level M L < Suc (count_decided M)›
by (induction M rule: ann_lit_list_induct) (auto simp: get_level_cons_if)
lemma get_level_neq_Suc_count_decided[simp]:
‹get_level M L ≠ Suc (count_decided M)›
using Suc_count_decided_gt_get_level[of M L] by auto
lemma length_get_all_ann_decomposition: ‹length (get_all_ann_decomposition M) = 1+count_decided M›
by (induction M rule: ann_lit_list_induct) auto
lemma get_maximum_level_remove_non_max_lvl:
‹get_level M a < get_maximum_level M D ⟹
get_maximum_level M (remove1_mset a D) = get_maximum_level M D›
by (cases ‹a ∈# D›)
(auto dest!: multi_member_split simp: get_maximum_level_add_mset)
lemma exists_lit_max_level_in_negate_ann_lits:
‹negate_ann_lits M ≠ {#} ⟹ ∃L∈#negate_ann_lits M. get_level M L = count_decided M›
by (cases ‹M›) (auto simp: negate_ann_lits_def)
lemma get_maximum_level_eq_count_decided_iff:
‹ya ≠ {#} ⟹ get_maximum_level xa ya = count_decided xa ⟷ (∃L ∈# ya. get_level xa L = count_decided xa)›
apply (rule iffI)
defer
subgoal
using count_decided_ge_get_maximum_level[of xa]
apply (auto dest!: multi_member_split dest: le_antisym simp: get_maximum_level_add_mset max_def)
using le_antisym by blast
subgoal
using get_maximum_level_exists_lit_of_max_level[of ya xa]
by auto
done
definition card_max_lvl where
‹card_max_lvl M C ≡ size (filter_mset (λL. get_level M L = count_decided M) C)›
lemma card_max_lvl_add_mset: ‹card_max_lvl M (add_mset L C) =
(if get_level M L = count_decided M then 1 else 0) +
card_max_lvl M C›
by (auto simp: card_max_lvl_def)
lemma card_max_lvl_empty[simp]: ‹card_max_lvl M {#} = 0›
by (auto simp: card_max_lvl_def)
lemma card_max_lvl_all_poss:
‹card_max_lvl M C = card_max_lvl M (poss (atm_of `# C))›
unfolding card_max_lvl_def
apply (induction C)
subgoal by auto
subgoal for L C
using get_level_uminus[of M L]
by (cases L) (auto)
done
lemma card_max_lvl_distinct_cong:
assumes
‹⋀L. get_level M (Pos L) = count_decided M ⟹ (L ∈ atms_of C) ⟹ (L ∈ atms_of C')› and
‹⋀L. get_level M (Pos L) = count_decided M ⟹ (L ∈ atms_of C') ⟹ (L ∈ atms_of C)› and
‹distinct_mset C› ‹¬tautology C› and
‹distinct_mset C'› ‹¬tautology C'›
shows ‹card_max_lvl M C = card_max_lvl M C'›
proof -
have [simp]: ‹NO_MATCH (Pos x) L ⟹ get_level M L = get_level M (Pos (atm_of L))› for x L
by (simp add: get_level_def)
have [simp]: ‹atm_of L ∉ atms_of C' ⟷ L ∉# C' ∧ -L ∉# C'› for L C'
by (cases L) (auto simp: atm_iff_pos_or_neg_lit)
then have [iff]: ‹atm_of L ∈ atms_of C' ⟷ L ∈# C' ∨ -L ∈# C'› for L C'
by blast
have H: ‹distinct_mset {#L ∈# poss (atm_of `# C). get_level M L = count_decided M#}›
if ‹distinct_mset C› ‹¬tautology C› for C
using that by (induction C) (auto simp: tautology_add_mset atm_of_eq_atm_of)
show ?thesis
apply (subst card_max_lvl_all_poss)
apply (subst (2) card_max_lvl_all_poss)
unfolding card_max_lvl_def
apply (rule arg_cong[of _ _ size])
apply (rule distinct_set_mset_eq)
subgoal by (rule H) (use assms in fast)+
subgoal by (rule H) (use assms in fast)+
subgoal using assms by (auto simp: atms_of_def imageI image_iff) blast+
done
qed
lemma get_maximum_level_card_max_lvl_ge1:
‹count_decided xa > 0 ⟹ get_maximum_level xa ya = count_decided xa ⟷ card_max_lvl xa ya > 0›
apply (cases ‹ya = {#}›)
subgoal by auto
subgoal
by (auto simp: card_max_lvl_def get_maximum_level_eq_count_decided_iff dest: multi_member_split
dest!: multi_nonempty_split[of ‹filter_mset _ _›] filter_mset_eq_add_msetD
simp flip: nonempty_has_size)
done
lemma card_max_lvl_remove_hd_trail_iff:
‹xa ≠ [] ⟹ - lit_of (hd xa) ∈# ya ⟹ 0 < card_max_lvl xa (remove1_mset (- lit_of (hd xa)) ya) ⟷ Suc 0 < card_max_lvl xa ya›
by (cases xa)
(auto dest!: multi_member_split simp: card_max_lvl_add_mset)
lemma card_max_lvl_Cons:
assumes ‹no_dup (L # a)› ‹distinct_mset y›‹¬tautology y› ‹¬is_decided L›
shows ‹card_max_lvl (L # a) y =
(if (lit_of L ∈# y ∨ -lit_of L ∈# y) ∧ count_decided a ≠ 0 then card_max_lvl a y + 1
else card_max_lvl a y)›
proof -
have [simp]: ‹count_decided a = 0 ⟹ get_level a L = 0› for L
by (simp add: count_decided_0_iff)
have [simp]: ‹lit_of L ∉# A ⟹
- lit_of L ∉# A ⟹
{#La ∈# A. La ≠ lit_of L ∧ La ≠ - lit_of L ⟶ get_level a La = b#} =
{#La ∈# A. get_level a La = b#}› for A b
apply (rule filter_mset_cong)
apply (rule refl)
by auto
show ?thesis
using assms by (auto simp: card_max_lvl_def get_level_cons_if tautology_add_mset
atm_of_eq_atm_of
dest!: multi_member_split)
qed
lemma card_max_lvl_tl:
assumes ‹a ≠ []› ‹distinct_mset y›‹¬tautology y› ‹¬is_decided (hd a)› ‹no_dup a›
‹count_decided a ≠ 0›
shows ‹card_max_lvl (tl a) y =
(if (lit_of(hd a) ∈# y ∨ -lit_of(hd a) ∈# y)
then card_max_lvl a y - 1 else card_max_lvl a y)›
using assms by (cases a) (auto simp: card_max_lvl_Cons)
end