Theory Examples.Sorting_Strings
theory Sorting_Strings
imports "HOL-Library.List_Lexorder" Sorting_Setup
begin
definition arl_copy :: "('a::llvm_rep,'l::len2) array_list ⇒ ('a,'l) array_list llM"
where [llvm_code]: "arl_copy al ≡ doM {
let (l,c,a) = al;
a' ← narray_new TYPE('a) l;
arraycpy a' a l;
Mreturn (l,l,a')
}"
lemma arl_copy_rule[vcg_rules]: "llvm_htriple
(↿arl_assn xs xsi) (arl_copy xsi) (λr. ↿arl_assn xs xsi ** ↿arl_assn xs r)"
unfolding arl_copy_def arl_assn_def arl_assn'_def
by vcg
lemma al_copy_hnr: "(arl_copy,RETURN o op_list_copy) ∈ (al_assn A)⇧k →⇩a al_assn A"
unfolding al_assn_def hr_comp_def
apply sepref_to_hoare
by vcg
sepref_decl_impl al_copy_hnr uses op_list_copy.fref[of Id, simplified] .
lemma al_copy_gen_algo[sepref_gen_algo_rules]: "GEN_ALGO arl_copy (is_copy (al_assn A))"
using al_copy_hnr
unfolding GEN_ALGO_def is_copy_def COPY_def op_list_copy_def
.
text ‹The string comparison algorithm from libstdc++, abstractly: Compare min-length first, then compare lengths to break tie›
lemma list_lexorder_alt: "xs < ys ⟷ (let n=min (length xs) (length ys) in (take n xs < take n ys) ∨ (take n xs = take n ys ∧ length xs < length ys))"
proof (cases "length xs < length ys")
case True
then show ?thesis
apply (simp add: Let_def)
proof (induction xs arbitrary: ys)
case Nil
then show ?case by (cases ys) auto
next
case (Cons a xs)
then show ?case by (cases ys) auto
qed
next
case False
then show ?thesis
apply (simp add: Let_def)
proof (induction xs arbitrary: ys)
case Nil
then show ?case by (cases ys) auto
next
case (Cons a xs)
then show ?case by (cases ys) auto
qed
qed
definition cmpi :: "'a::preorder ⇒ 'a ⇒ int" where "cmpi x y ≡ if x = y then 0 else if x < y then -1 else (1::int)"
lemma cmpi_simps[simp]:
"cmpi x y = 0 ⟷ x=y"
"cmpi x y = -1 ⟷ x<y"
"cmpi x y = 1 ⟷ x≠y ∧ (¬x<y)"
"0 = cmpi x y ⟷ x=y"
"-1 = cmpi x y ⟷ x<y"
"1 = cmpi x y ⟷ x≠y ∧ (¬x<y)"
"x=y ⟹ cmpi x y = 0"
"x<y ⟹ cmpi x y = -1"
unfolding cmpi_def by auto
definition "compare_spec xs ys n ≡ doN {ASSERT (n≤length xs ∧ n≤length ys); RETURN (cmpi (take n xs) (take n ys))}"
definition "compare1 xs ys n ≡ doN {
ASSERT (n≤length xs ∧ n≤length ys);
(i,r)←WHILEIT (λ(i,r). i≤n ∧ r=cmpi (take i xs) (take i ys) ) (λ(i,r). i<n ∧ r=0) (λ(i,r). doN {
x ← mop_list_get xs i;
y ← mop_list_get ys i;
ASSERT (i<n);
if x=y then RETURN (i+1,0)
else if x<y then RETURN (i+1,-1)
else RETURN (i+1,1)
}) (0,0);
RETURN r
}"
lemma irreflD: "irrefl R ⟹ (x,x)∉R" by (auto simp: irrefl_def)
lemma lexord_append: "length u = length w ⟹ (u@v,w@x)∈lexord R ⟷ (u,w)∈lexord R ∨ (u=w ∧ (v,x)∈lexord R)"
by (induction u w rule: list_induct2) auto
lemma lexord_irreflD: "irrefl R ⟹ ¬(u,u)∈lexord R"
by (simp add: irreflD lexord_irrefl)
lemma lexord_irrefl_common_prefix: "irrefl R ⟹ (u@v,u@w)∈lexord R ⟷ (v,w)∈lexord R"
by (auto simp: lexord_append lexord_irreflD)
context begin
private lemma take_smaller: "m≤n ⟹ take n xs = take m xs @ (take (n-m) (drop m xs))"
by (metis le_add_diff_inverse take_add)
private lemma compare_impl_aux1: "⟦aa≤n; aa ≤ length xs; aa≤length ys; take aa xs ≠ take aa ys⟧ ⟹ cmpi (take n xs) (take n ys) = cmpi (take aa xs) (take aa ys)"
by (auto simp: take_smaller cmpi_def list_less_def lexord_append)
private lemma preorder_less_irrefl: "irrefl {(x, y::_::preorder). x < y}" by (auto simp: irrefl_def)
lemma compare1_refine: "(compare1, compare_spec) ∈ Id → Id → Id → ⟨Id⟩nres_rel"
apply (intro fun_relI, clarsimp)
subgoal for xs ys n
unfolding compare1_def compare_spec_def
apply (refine_vcg WHILEIT_rule[where R="measure (λ(i,_). n-i)"])
by (auto simp: take_Suc_conv_app_nth list_less_def lexord_append compare_impl_aux1 lexord_irreflD[OF preorder_less_irrefl])
done
end
abbreviation "string_assn' TYPE('size_t::len2) TYPE('w::len) ≡ al_assn' TYPE('size_t::len2) (unat_assn' TYPE('w::len))"
sepref_definition compare_impl [llvm_inline, llvm_code] is "uncurry2 compare1" ::
"(string_assn' TYPE('size_t::len2) TYPE('w::len))⇧k *⇩a (string_assn' TYPE('size_t) TYPE('w))⇧k *⇩a (snat_assn' TYPE('size_t))⇧k →⇩a sint_assn' TYPE('r::len2)"
unfolding compare1_def
apply (annot_snat_const "TYPE('size_t)")
apply (annot_sint_const "TYPE('r)")
by sepref
lemmas compare_hnr[sepref_fr_rules] = compare_impl.refine[FCOMP compare1_refine]
definition "strcmp xs ys ≡ doN {
let n = min (length xs) (length ys);
i ← compare_spec xs ys n;
if i=-1 then RETURN True
else if i=0 then RETURN (length xs < length ys)
else RETURN False
}"
lemma strcmp_correct: "strcmp xs ys ≤ RETURN (xs<ys)"
unfolding strcmp_def compare_spec_def
apply (rewrite in "_ ≤ ⌑" list_lexorder_alt)
apply refine_vcg
by (simp_all)
lemma strcmp_refines_aux: "(strcmp,RETURN oo (<)) ∈ Id → Id → ⟨Id⟩nres_rel"
using strcmp_correct by (force intro!: nres_relI)
sepref_def strcmp_impl is "uncurry strcmp" :: "(string_assn' TYPE('size_t::len2) TYPE('w::len))⇧k *⇩a (string_assn' TYPE('size_t) TYPE('w))⇧k →⇩a bool1_assn"
unfolding strcmp_def min_def
apply (annot_sint_const "TYPE(2)")
by sepref
export_llvm "strcmp_impl :: 64 word × 64 word × 8 word ptr ⇒ 64 word × 64 word × 8 word ptr ⇒ 1 word llM"
lemma strcmp_refines_relp: "GEN_ALGO strcmp_impl (refines_relp (al_assn unat_assn) (<))"
apply rule
using strcmp_impl.refine[FCOMP strcmp_refines_aux] .
lemma strcmp_sort_impl_context: "sort_impl_context (≤) (<) strcmp_impl (string_assn' TYPE('size_t::len2) TYPE('w::len))"
apply unfold_locales
apply (auto simp: strcmp_refines_relp)
done
lemma strcmp_sort_impl_copy_context:
"sort_impl_copy_context (≤) (<) strcmp_impl (string_assn' TYPE('size_t::len2) TYPE('w::len)) arl_copy arl_free"
proof -
from strcmp_sort_impl_context
interpret sort_impl_context "(≤)" "(<)" strcmp_impl "(string_assn' TYPE('size_t::len2) TYPE('w::len))" .
show ?thesis
apply unfold_locales
apply (rule al_copy_gen_algo)
apply (rule al_assn_free)
done
qed
end